高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太行山南麓刺槐人工林土壤呼吸与土壤温度间的滞后关系

徐昳晅 同小娟 张劲松 孟平 李俊

徐昳晅, 同小娟, 张劲松, 孟平, 李俊. 太行山南麓刺槐人工林土壤呼吸与土壤温度间的滞后关系[J]. 北京林业大学学报, 2019, 41(4): 78-87. doi: 10.13332/j.1000-1522.20180398
引用本文: 徐昳晅, 同小娟, 张劲松, 孟平, 李俊. 太行山南麓刺槐人工林土壤呼吸与土壤温度间的滞后关系[J]. 北京林业大学学报, 2019, 41(4): 78-87. doi: 10.13332/j.1000-1522.20180398
Xu Yixuan, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Li Jun. Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains[J]. Journal of Beijing Forestry University, 2019, 41(4): 78-87. doi: 10.13332/j.1000-1522.20180398
Citation: Xu Yixuan, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Li Jun. Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains[J]. Journal of Beijing Forestry University, 2019, 41(4): 78-87. doi: 10.13332/j.1000-1522.20180398

太行山南麓刺槐人工林土壤呼吸与土壤温度间的滞后关系

doi: 10.13332/j.1000-1522.20180398
基金项目: 国家自然科学基金项目(31872703,31570617)
详细信息
    作者简介:

    徐昳晅。主要研究方向:森林生态系统碳循环。Email:xuyixuan940130@sina.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    同小娟,教授,博士生导师。主要研究方向:气候变化与生态过程。 Email:tongxj@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.51+6

Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains

  • 摘要: 目的土壤呼吸是陆地生态系统碳循环的一个重要组成部分。本研究在年尺度和日尺度上分析刺槐人工林土壤呼吸与各土层温度间的温度敏感系数(Q10)的差异,并探讨土壤呼吸与各土层温度间的时间滞后。方法利用土壤呼吸自动观测系统Li-8150对太行山南麓50年生刺槐林进行定位观测。结果在年尺度上,刺槐人工林土壤呼吸与各土层温度在时间上的滞后不明显,且呈现显著的指数关系(P < 0.001)。Q10在2.23 ~ 2.53之间变动,且Q10随土壤温度测量深度的增加而略微增大,指数模型拟合系数(R2)随土壤温度测量深度的增加而略微减小。土壤呼吸与各土层温度不需要相位校准。在日尺度上,土壤呼吸与各层温度存在时间上的滞后,拟合系数R2较小,获得Q10并不准确。土壤呼吸与各土层温度需要进行相位校准,校准后的土壤呼吸与土壤温度间的拟合系数R2增大,获得的Q10更准确,并且Q10值随土壤温度测量深度增加而增加,但是深层(> 20 cm)的Q10过大并不符合生物学规律。在土壤浅层(< 20 cm),Q10随深度增加与土层温度变化幅度有关。结论在年尺度上,各土层Q10值相差不大,都能较理想反映全年刺槐林土壤呼吸与温度的关系。在日尺度上,本研究推荐使用浅层的Q10来反映日间刺槐林土壤呼吸与土壤温度关系。

     

  • 图  1  土壤温度(a)、湿度(b)和土壤呼吸(c)的月均变化

    测量时间是从2017年7月至2018年6月,其中2月份仪器故障导致土壤呼吸数据缺失。The measurement period ranged from July 2017 to June 2018, the soil respiration data was missing due to instrument failure in February.

    Figure  1.  Average monthly variations of soil temperature (a), soil moisture (b) and soil respiration (c)

    图  2  全年土壤呼吸与5、15、25、和35 cm土壤温度的关系

    Figure  2.  Relationship between soil respiration and soil temperature at the 5, 15, 25 and 35 cm depth throughout the year

    图  3  各月土壤呼吸与土壤5 cm温度的日变化

                 2018年2月份土壤呼吸数据缺失 Soil respiration data is missing in February 2018

    Figure  3.  Diurnal pattern of soil respiration and soil temperature at the depth of 5 cm

    表  1  各月土壤5 cm处的未校准化Q10与校准化Q10比较

    Table  1.   Comparison between non-calibrated Q10 and calibrated Q10 at soil depth of 5 cm

    日期   
    Date   
    未校准 Non-calibrated 滞后时间
    Lag time/h
    校准 Calibrated
    Q10 R2 P Q10 R2 P
    2017−07 0.76 0.11 0.11 4 1.39 0.16 0.06
    2017−08 0.79 0.41 0.34 1 1.03 0.001 0.90
    2017−09 0.99 0.001 0.95 3 3.00 0.48 ***
    2017−10 7.92 0.67 *** 0 7.92 0.67 ***
    2017−11 1.36 0.164 ** 2 1.80 0.62 ***
    2017−12 0.42 0.37 *** 4 1.14 0.67 ***
    2018−01 0.92 0.006 0.71 4 2.05 0.49 ***
    2018−03 2.51 0.72 *** 0 2.51 0.72 ***
    2018−04 2.01 0.62 *** 0 2.01 0.62 ***
    2018−05 1.63 0.29 *** 0 1.63 0.27 ***
    2018−06 1.45 0.11 0.11 3 2.53 0.73 ***
    注:滞后时间等于呼吸最高峰出现的时间减去温度最高峰出现的时间,即lag time = t呼吸的高峰值t温度高峰值**表示P < 0.05,差异显著;***表示P < 0.01,差异极显著。各月土壤呼吸与5 cm土壤温度的相位图详细信息参考图3。Notes: lag time is equal to the time of the peak of respiration minus the time of the peak of temperature, i.e., lag time = tmax soil respirationtmin soil respiration. ** means P < 0.05 and *** means P < 0.01. Referring to Fig. 3 for detailed information that monthly phase pattern of soil respiration and temperature at depth of 5 cm.
    下载: 导出CSV

    表  2  不同土层的未校准Q10与校准Q10的比较

    Table  2.   Comparison of non-calibrated Q10 and calibrated Q10 in each soil layer

    月份 
    Month 
    深度
    Depth/cm
    未校准
    Non-calibrated
    滞后时间
    Lag time/h
    校准
    Calibrated
    温度幅度
    Temperature amplitude/℃
    Q10 R2 P Q10 R2 P ΔT (TmaxTmin)
    2017−11 5 1.36 0.16 ** 2 1.80 0.62 *** 1.9
    15 9.68 0.83 *** 0 9.68 0.83 *** 0.6
    25 2.92 0.08 0.18 − 4 0.13 0.29 *** 0.4
    35 0.41 0.03 0.40 − 7 79.0 0.83 *** 0.26
    2018−01 5 0.92 0.006 0.71 4 2.05 0.49 *** 2.15
    15 1.17 0.007 0.70 4 0.28 0.44 *** 1.18
    25 1.01 0.000 1 0.99 4 0.18 0.47 *** 1.05
    35 2.03 0.02 0.51 2 20.5 0.36 *** 0.47
    2018−03 5 2.51 0.72 *** 0 2.51 0.72 *** 5.49
    15 0.001 0.67 *** − 1 10.3 0.79 *** 2.09
    25 14.59 0.22 ** − 4 116.75 0.69 *** 0.99
    35 3.67 0.007 0.70 − 6 55 128 0.72 *** 0.41
    2018−06 5 1.45 0.11 0.11 3 2.53 0.73 *** 1.6
    15 5.42 0.70 *** 1 6.3 0.84 *** 0.91
    25 32.40 0.78 *** − 1 39.7 0.87 *** 0.44
    35 395.40 0.56 *** − 3 3 327.6 0.81 *** 0.26
    注:滞后时间等于呼吸最高峰出现的时间减去温度最高峰出现的时间,即lag time = t呼吸的高峰值t温度高峰值。土壤呼吸在温度之前先达到峰值,滞后时间为负数,反之(温度先达到峰值)为正。**表示P < 0.05,差异显著;***表示P < 0.01,差异极显著。Notes: lag time is equal to the time of the peak of respiration minus the time of the peak of temperature, i.e., lag time = tmax soil respirationtmin soil respiration. Negative lags indicate soil respiration reaching a maximum before temperature whereas positive lags indicate temperature peaking first. ** means P < 0.05, *** means P < 0.01.
    下载: 导出CSV

    表  3  不同公式计算的Q10比较

    Table  3.   Comparison of Q10 calculated by different formulas

    深度
    Depth/cm
    2018−03 2018−06
    Q10Eq.3 Q10Eq.4 Q10Eq.3 Q10Eq.4
    5 2.51 2.51 2.53 2.53
    15 10.3 11.24 6.3 5.1
    25 116.8 137 39.7 29.2
    35 55 128 110 689 3 327.6 301
    注:Q10Eq.3表示利用式(3)计算获得的Q10Q10Eq.4表示利用式(4)计算获得的Q10。Notes: Q10Eq.3 is calculated with equation (3) and Q10Eq.4 is calculated with equation (4).
    下载: 导出CSV
  • [1] 谷蕊, 潮洛濛, 张立欣, 等. 水热因子对克氏针茅草原土壤呼吸及其土壤温度敏感性的影响[J]. 草业学报, 2015, 24(4):21−29.

    Gu R, Chao L M, Zhang L X, et al. The influence of hydrothermal factors on soil respiration and soil temperature sensitivity of Stipakrylovii steppe, Inner Mongolia, China[J]. Acta Prataculture Sinica, 2015, 24(4): 21−29.
    [2] 陈骥, 曹军骥, 魏永林, 等. 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J]. 草业学报, 2014, 23(6):78−86.

    Chen J, Cao J J, Wei Y L, et al. Effect of grazing exclusion on soil respiration during the dormant season in alpine meadow grassland ecosystems on the northern shore of Qinghai Lake, China[J]. Acta Pedologica Sinica, 2014, 23(6): 78−86.
    [3] 黄石德, 叶功富, 林捷, 等. 干旱对土壤剖面不同深度土壤CO2通量的影响[J]. 生态学报, 2018, 38(23):8475−8488.

    Huang S D, Ye G F, Lin J, et al. The influence of drought on the soil CO2 flux at different depths in soil vertical profiles[J]. Acta Ecologica Sinica, 2018, 38(23): 8475−8488.
    [4] 欧强, 王江涛, 周剑虹, 等. 滨海湿地不同水位梯度下的土壤CO2通量比较[J]. 应用与环境生物学报, 2014, 20(6):992−998.

    Ou Q, Wang J T, Zhou J H, et al. Comparison of soil CO2 flux among different water levels in coastal wetlands[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(6): 992−998.
    [5] 范分良, 黄平容, 唐勇军, 等. 微生物群落对土壤微生物呼吸速率及其温度敏感性的影响[J]. 环境科学, 2012, 33(3):932−937.

    Fan F L, Huang P R, Tang Y J, et al. Altered microbial communities change soil respiration rates and their temperature sensitivity[J]. Environmental Science, 2012, 33(3): 932−937.
    [6] 李炳垠. 毛乌素沙地生物结皮的光合及土壤CO2通量特征研究[D]. 杨凌: 西北农林科技大学, 2018.

    Li B Y. The study of characteristics of photosynthetic and soil CO2 flux of biocrusts in Mu Us Sandland[D]. Yangling: Northwest A & F University, 2018.
    [7] Zhang Q, Phillips R P, Manzoni S, et al. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship[J]. Agricultural and Forest Meteorology, 2018, 259: 184−195. doi: 10.1016/j.agrformet.2018.05.005
    [8] Zeng W, Zhang J, Wang W. Strong root respiration response to nitrogen and phosphorus addition in nitrogen-limited temperate forests[J]. Science of The Total Environment, 2018, 642: 646−655. doi: 10.1016/j.scitotenv.2018.06.014
    [9] Conant R T, Drijber R A, Haddix M L, et al. Sensitivity of organic matter decomposition to warming varies with its quality[J]. Global Change Biology, 2010, 14(4): 868−877.
    [10] Zhou X, Xu X, Zhou G, et al. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: field incubation and data assimilation[J]. Global Change Biology, 2018, 24(2): 810−822. doi: 10.1111/gcb.2018.24.issue-2
    [11] Soe A R, Buchmann N. Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest[J]. Tree Physiology, 2005, 25(11): 1427. doi: 10.1093/treephys/25.11.1427
    [12] 谢明德, 陈明智, 吴蔚东, 等. 施肥及环境因子对海南热带橡胶林土壤呼吸的影响[J]. 生态环境学报, 2014, 23(3):430−438. doi: 10.3969/j.issn.1674-5906.2014.03.010

    Xie M D, Chen M Z, Wu W D, et al. Effect of fertilization and environmental factors on soil respiration in tropical rubber plantation in Hainan[J]. Ecology and Environmental Sciences, 2014, 23(3): 430−438. doi: 10.3969/j.issn.1674-5906.2014.03.010
    [13] 陈亮, 刘子亭, 韩广轩, 等. 环境因子和生物因子对黄河三角洲滨海湿地土壤呼吸的影响[J]. 应用生态学报, 2016, 27(6):1795−1803.

    Chen L, Liu Z T, Han G X, et al. Effects of environmental and biotic factors on soil respiration in a coastal wetland in the Yellow River Delta[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1795−1803.
    [14] Feng J G, Wang J S, Song Y J, et al. Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China[J]. Biogeosciences, 2018, 15(17): 5329−5341. doi: 10.5194/bg-15-5329-2018
    [15] Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315−323. doi: 10.2307/2389824
    [16] 姜继韶, 郭胜利, 王蕊, 等. 施氮对黄土旱塬区春玉米土壤呼吸和温度敏感性的影响[J]. 环境科学, 2015, 36(5):1802−1809.

    Jiang J S, Guo S L, Wang R, et al. Effect of nitrogen fertilization on soil respiration and temperature sensitivity in spring maize field in semi-arid regions on Loess Plateau[J]. Enviromental Science, 2015, 36(5): 1802−1809.
    [17] 邓翠, 吕茂奎, 曾敏, 等. 红壤侵蚀区植被恢复对土壤呼吸及其温度敏感性的影响[J]. 土壤学报, 2019, 56(1):135−145.

    Deng C, Lü M K, Zeng M, et al. Impacts of vegetation restoration on soil respiration and its sensitivity to temperature in eroded red soil area[J]. Acta Pedologica Sinica, 2019, 56(1): 135−145.
    [18] Phillips C L, Nickerson N, Risk D, et al. Interpreting diel hysteresis between soil respiration and temperature[J]. Global Change Biology, 2011, 17(1): 515−527. doi: 10.1111/gcb.2010.17.issue-1
    [19] Pavelka M, Acosta M, Marek M V, et al. Dependence of the Q10 values on the depth of the soil temperature measuring point[J]. Plant and Soil, 2007, 292(1-2): 171−179. doi: 10.1007/s11104-007-9213-9
    [20] Vargas R, Baldocchi D D, Allen M F, et al. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux[J]. Ecological Applications: a Publication of the Ecological Society of America, 2010, 20(6): 1569−1582. doi: 10.1890/09-0693.1
    [21] Stockfors J. Temperature variations and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up[J]. Tree Physiology, 2000, 20(15): 1057−1062. doi: 10.1093/treephys/20.15.1057
    [22] Wang X, Piao S, Ciais P, et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality[J]. Soil Biology and Biochemistry, 2010, 42(10): 1728−1734. doi: 10.1016/j.soilbio.2010.06.008
    [23] Xu M, Qi Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest[J]. Global Biogeochemical Cycles, 2001, 15(3): 687−696. doi: 10.1029/2000GB001365
    [24] Davidson E. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 2010, 4(2): 217−227.
    [25] Graf A, Weihermüller L, Huisman J A, et al. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies[J]. Biogeosciences, 2008, 5(4): 1175−1188. doi: 10.5194/bg-5-1175-2008
    [26] Zhang Q, Katul G G, Oren R, et al. The hysteresis response of soil CO2 concentration and soil respiration to soil temperature[J]. Journal of Geophysical Research Biogeosciences, 2015, 120(8): 1605−1618. doi: 10.1002/2015JG003047
    [27] 赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2):351−358.

    Zhao N, Meng P, Zhang J S, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 351−358.
    [28] 庄静静, 张劲松, 孟平, 等. 华北低山丘陵区土壤CH4通量对脉冲降雨的响应[J]. 东北林业大学学报, 2015, 43(10):72−78. doi: 10.3969/j.issn.1000-5382.2015.10.015

    Zhuang J J, Zhang J S, Meng P, et al. Response of soil CH4 fluxes on the pulse precipitation in low hilly land of North China[J]. Journal of Northeast Forestry University, 2015, 43(10): 72−78. doi: 10.3969/j.issn.1000-5382.2015.10.015
    [29] 赵娜. 太行山南段低丘区不同土地利用方式土壤碳通量组成及其影响机理[D]. 北京: 中国林业科学研究院, 2014.

    Zhao N. The components and influence mechanism of soil carbon flux under different land use types in hilly area of southern Taihang Mountains, China[D]. Beijing:Chinese Academy of Forestry, 2014.
    [30] Vries F W T P D. The cost of maintenance processes in plant cells[J]. Annals of Botany, 1975, 39(1): 77−92. doi: 10.1093/oxfordjournals.aob.a084919
    [31] Amthor J S. Plant respiratory responses to the environmental and their effects on the carbon balance[M]//Willkinson R E. Plant-environment interactions. New York: Marcel Dekker, 1994: 501−554.
    [32] Wang B, Zha T S, Jia X, et al. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J]. Biogeosciences, 2014, 11(6): 9213−9242.
    [33] 王娟. 宝天曼森林凋落物分解与土壤呼吸特征研究[D]. 北京: 北京林业大学, 2015.

    Wang J. Forest litter decomposition and soil respiration characteristics in baotianman[D]. Beijing: Beijing Forestry University, 2015.
    [34] 刘春霞, 王玉杰, 王云琦, 等. 重庆缙云山3种林型土壤呼吸及其影响因子[J]. 土壤通报, 2013, 44(3):587−593.

    Liu C X, Wang Y J, Wang Y Q, et al. Soil respiration and impact factors of 3 forest types in Jinyun Mountain of Chongqing[J]. Chinese Journal of Soil Science, 2013, 44(3): 587−593.
    [35] 周政达, 张蕊, 高升华, 等. 模拟氮沉降对长江滩地杨树林土壤呼吸温度敏感性的影响[J]. 生态学报, 2015, 35(21):6947−6956.

    Zhou Z D, Zhang R, Gao S H, et al. Effects of simulated nitrogen deposition on temperature sensitivity of soil respiration components in Populus L. plantations in a riparian zone of the Yangtze River[J]. Acta Ecologica Sinica, 2015, 35(21): 6947−6956.
    [36] 王慧梅, 祖元刚, 李雪莹, 等. 林木非同化器官与土壤呼吸的温度系数Q10值的特征分析[J]. 植物生态学报, 2005, 29(4):680−691. doi: 10.3321/j.issn:1005-264X.2005.04.022

    Wang H M, Zu Y G, Li X Y, et al. Characteristics of root, stem, and soil respiration Q10 temperature coefficients in forest ecosystems[J]. Acta Phytoecologica Sinica, 2005, 29(4): 680−691. doi: 10.3321/j.issn:1005-264X.2005.04.022
    [37] 展小云, 于贵瑞, 郑泽梅, 等. 中国区域陆地生态系统土壤呼吸碳排放及其空间格局: 基于通量观测的地学统计评估[J]. 地理科学进展, 2012, 31(1):97−108.

    Zhan X Y, Yu G R, Zheng Z M, et al. Carbon emission and spatial pattern of soil respiration of terrestrial ecosystems in China: based on geostatistic estimation of flux measurement[J]. Progress in Geography, 2012, 31(1): 97−108.
    [38] Kuzyakov Y, Gavrichkova O. Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls[J]. Global Change Biology, 2010, 16(12): 3386−3406. doi: 10.1111/j.1365-2486.2010.02179.x
    [39] Vargas R, Allen M F. Diel patterns of soil respiration in a tropical forest after Hurricane Wilma[J]. Journal of Geophysical Research, 2008, 113(G3): 1−10.
    [40] Savage K, Davidson E A, Tang J. Diel patterns of autotrophic and heterotrophic respiration among phenological stages[J]. Global Change Biology, 2013, 19(4): 1151−1159. doi: 10.1111/gcb.12108
    [41] Mencuccini M, Hölttä T. The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked[J]. New Phytologist, 2010, 185(1): 189−203. doi: 10.1111/j.1469-8137.2009.03050.x
    [42] Vargas R, Baldocchi D D, Bahn M, et al. On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations[J]. New Phytologist, 2011, 191(4): 1006−1017. doi: 10.1111/nph.2011.191.issue-4
    [43] 廖艳. 我国典型低温区土壤有机碳变化及土壤呼吸特征[D]. 北京: 中国地质大学, 2011.

    Liao Y. Soil organic carbon change and soil respiration characteristics in the typical regions with low temperature in China[D]. Beijing: China University of Geosciences, 2011.
    [44] Luo Y, Zhou X. Soil respiration and the environment[M]. New York: Academic Press, 2006.
    [45] Hirano T, Kim H, Tanaka Y. Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest[J/OL]. Journal of Geophysical Research Atmospheres, 2003, 108(20): 4631. (2003−10−18) [2017−12−02]. https://doi.org/10.1029/2003JD003766.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  1015
  • HTML全文浏览量:  426
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-06
  • 修回日期:  2019-01-17
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回