高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青海湖湖滨不同土地类型土壤酶活性的研究

李娜 黄金 耿玉清 董颖 张超英

李娜, 黄金, 耿玉清, 董颖, 张超英. 青海湖湖滨不同土地类型土壤酶活性的研究[J]. 北京林业大学学报, 2019, 41(10): 49-56. doi: 10.13332/j.1000-1522.20180402
引用本文: 李娜, 黄金, 耿玉清, 董颖, 张超英. 青海湖湖滨不同土地类型土壤酶活性的研究[J]. 北京林业大学学报, 2019, 41(10): 49-56. doi: 10.13332/j.1000-1522.20180402
Li Na, Huang Jin, Geng Yuqing, Dong Ying, Zhang Chaoying. Research on soil enzyme activities of different land types in lakeside of Qinghai Lake, northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(10): 49-56. doi: 10.13332/j.1000-1522.20180402
Citation: Li Na, Huang Jin, Geng Yuqing, Dong Ying, Zhang Chaoying. Research on soil enzyme activities of different land types in lakeside of Qinghai Lake, northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(10): 49-56. doi: 10.13332/j.1000-1522.20180402

青海湖湖滨不同土地类型土壤酶活性的研究

doi: 10.13332/j.1000-1522.20180402
基金项目: 国家重点研发计划重点专项(2016YFC0503401-04)
详细信息
    作者简介:

    李娜。主要研究方向:土壤生态。Email:1103533899@qq.com 地址:100083 北京市清华东路35号北京林业大学林学院

    责任作者:

    耿玉清,副教授。主要研究方向:土壤生态及管理。Email:gengyuqing@bjfu.edu.cn 地址:同上

  • 中图分类号: S714.2

Research on soil enzyme activities of different land types in lakeside of Qinghai Lake, northwestern China

  • 摘要: 目的探讨青海湖湖滨不同土地类型中土壤酶活性的变化及其影响因素,可为退化湿地的植被恢复与生态系统管理提供理论依据。方法选取青海湖东岸尕海区的湖滨湿地、以及由其退化的草地和沙地这3种土地类型为研究对象。分别采集0 ~ 10 cm、10 ~ 20 cm和20 ~ 30 cm的土壤样本,比较不同土地类型土壤化学性质与土壤酶活性的差异,运用CANOCO5.0软件对土壤酶活性与土壤化学性质间关系进行冗余分析(RDA)。结果湿地中的土壤有机碳、全氮和水溶性有机碳氮的含量显著高于沙地,而土壤易氧化碳和铵态氮含量显著高于草地和沙地;对于水溶性有机碳、硝态氮和有效磷来说,湿地和草地显著高于沙地。草地土壤β-葡萄糖苷酶、亮氨酸氨基肽酶和甘氨酸氨基肽酶的活性较湿地分别显著下降了32.17%、30.90%和39.67%;而沙地较草地分别显著下降了79.22%、73.46%和64.84%。湿地和草地的N-乙酰氨基葡萄糖苷酶和酸性磷酸酶活性均显著高于沙地,但仅湿地的纤维二糖酶和碱性磷酸酶活性显著高于沙地。冗余分析结果表明,土壤水溶性有机碳和氮是影响土壤酶活性的主要因素,对其解释程度分别为58.8%和29.4%。水溶性有机碳可以很好解释亮氨酸氨基肽酶和酸性磷酸酶活性的变化;水溶性有机氮与碱性磷酸酶相关性显著;有机碳则与纤维二糖酶存在显著的正相关。结论湖滨湿地退化为草地和沙地后,土壤有机碳和氮以及土壤酶活性呈现下降趋势,土壤水溶性有机碳、水溶性有机氮以及有机碳显著地影响土壤酶活性的变化。

     

  • 图  1  土壤化学性质与酶活性的冗余分析结果

    箭头长度和角度余弦反映了土壤化学性质和酶活性之间的关系。带有空箭头的灰色线表示土壤酶,带有实箭头的黑色线表示与酶活性变化显著相关的土壤化学性质(P < 0.05),相对应的变量解释比例在图的右上角,其他土壤化学性质由带有实箭头的点状黑色线表示。The length of the arrow and the angle cosine in the figure reflect the relationship between soil chemistry and enzyme activity. Gray lines with empty arrows indicate soil enzymes, and black lines with solid arrows indicate soil chemistry properties that are significantly associated with changes in enzyme activity (P < 0.05), and the corresponding explained proportions of variability are presented in the upper right corner. Other soil chemical properties are represented by dotted black lines with solid arrows.

    Figure  1.  Results of redundancy analysis between soil chemical properties and enzyme activities

    表  1  不同土地类型不同土层的土壤化学性质

    Table  1.   Soil chemical properties at different soil depths in different land types

    土地
    类型
    Land
    type
    土层
    Soil
    layer/
    cm
    pHSOC/
    (g·kg− 1)
    TN/
    (g·kg− 1)
    AC/
    (mg·kg− 1)
    DOC/
    (mg·kg− 1)
    DON/
    (mg·kg− 1)
    $\scriptstyle{\rm{NO}}_3^ - $-N/
    (mg·kg− 1)
    $\scriptstyle{\rm{NH}}_4^ + $-N/
    (mg·kg− 1)
    AP/
    (mg·kg− 1)
    WL 0 ~ 10 8.02±0.24a 38.36±2.18a 2.90±0.39a 690.90±35.16a 105.87±9.09a 26.62±3.31a 5.20±0.57a 3.91±0.08b 2.46±0.38a
    WL 10 ~ 20 7.96±0.07a 37.82±0.58a 2.47±0.14ab 625.43±32.50ab 116.37±10.26a 13.83±0.38b 4.70±0.49a 4.91±0.28a 2.87±0.44a
    WL 20 ~ 30 7.96±0.05a 18.78±0.38b 1.67±0.18b 531.77±30.42b 96.18±11.29a 9.49±1.50b 4.79±0.41a 4.78±0.20a 2.31±0.41a
    GL 0 ~ 10 8.39±0.25a 23.44±2.58a 1.87±0.21a 527.62±21.89a 98.13±1.64a 9.98±1.69a 5.68±0.10a 3.87±0.46a 2.48±0.13a
    GL 10 ~ 20 8.32±0.01a 18.42±0.52ab 1.54±0.12ab 484.24±11.59ab 87.28±2.17b 8.48±0.26a 4.98±0.13b 3.51±0.20a 2.02±0.19ab
    GL 20 ~ 30 8.22±0.08a 16.05±0.32b 1.23±0.13b 451.16±20.65b 76.87±1.52c 7.70±0.29a 3.53±0.15c 3.45±0.26a 1.61±0.04b
    SL 0 ~ 10 8.60±0.03b 11.65±0.69a 0.93±0.14a 398.67±13.67a 58.80±3.52a 4.86±0.27a 3.32±0.39a 3.21±0.34a 0.39±0.03a
    SL 10 ~ 20 8.79±0.01a 8.24±1.06b 0.87±0.04a 359.03±10.16ab 46.97±3.28b 4.71±0.08a 3.00±0.20a 3.19±0.14a 0.31±0.01a
    SL 20 ~ 30 8.60±0.04b 7.54±0.53b 0.81±0.06a 347.28±10.71b 41.15±2.22b 3.97±0.07b 3.14±0.05a 3.20±0.12a 0.22±0.02b
    注:WL. 湿地;GL. 草地;SL. 沙地;SOC. 土壤有机碳;TN. 全氮;AC. 土壤易氧化碳;DOC. 土壤水溶性有机碳;DON. 土壤水溶性有机氮;AP. 速效磷。表中数值为“平均值 ± 标准误”,同列不同小写字母表示差异显著(P < 0.05)。下同。Notes: WL, wetland; GL, grassland; SL, sandy land; SOC, soil organic carbon; TN, total nitrogen; AC, active carbon; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; AP, available phosphorus. The data in the table are “values ± standard error”, different letters in the same column indicate significant difference (P < 0.05). The same below.
    下载: 导出CSV

    表  2  土壤化学性质的双因素方差分析

    Table  2.   A two-way ANOVA for analysing the soil chemical properties

    因素 Factor 项目 ItempHSOCTNACDOCDON$\scriptstyle{\rm{NO}}_3^ - $-N$\scriptstyle{\rm{NH}}_4^ + $-NAP
    土地类型
    Land type
    F 23.156 242.622 47.890 88.851 64.939 62.304 25.497 21.111 65.574
    P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    Sig.(f) c, b, a a, ab, b a, ab, b a, b, b a, a, b a, ab, b a, a, b a, b, b a, a, b
    土层
    Soil layer
    F 0.516 54.294 9.794 13.251 5.431 19.913 5.740 0.513 2.237
    P 0.605 < 0.01 0.001 < 0.01 0.014 0.000 0.012 0.607 0.136
    土地类型 × 土层
    Land type × soil layer
    F 0.420 18.507 2.398 1.666 1.054 12.169 3.089 2.369 1.100
    P 0.792 < 0.01 0.088 0.202 0.408 < 0.01 0.042 0.091 0.387
    注:Sig.(f)中的不同小写字母分别代表WL、GL和SL不同指标的差异显著。表4同。Notes: different lowercase letters in Sig.(f) represent significant differences in WL, GL, and SL metrics, respectively. The same as tab. 4.
    下载: 导出CSV

    表  3  不同土地类型不同土层的土壤酶活性

    Table  3.   Soil enzyme activity at different soil depths in different land types

    土地类型
    Land type
    土层
    Soil layer/cm
    BGL/
    (μmol·g− 1·h− 1)
    CBH/
    (μmol·g− 1·h− 1)
    NAG/
    (μmol·g− 1·h− 1)
    LAP/
    (μmol·g− 1·h− 1)
    GAP/
    (μmol·g− 1·h− 1)
    APH/
    (μmol·g− 1·h− 1)
    ALP/
    (μmol·g− 1·h− 1)
    WL 0 ~ 10 109.18 ± 8.28a 35.51 ± 1.57a 65.61 ± 2.46a 33.21 ± 0.83b 36.50 ± 0.83a 179.31 ± 8.48ab 511.05 ± 26.55a
    WL 10 ~ 20 105.73 ± 3.18a 29.54 ± 2.01b 50.39 ± 1.95b 37.18 ± 0.80a 35.97 ± 0.69a 209.48 ± 10.70a 368.63 ± 13.93b
    WL 20 ~ 30 82.78 ± 2.03b 16.26 ± 1.28c 43.65 ± 0.83c 30.09 ± 1.59b 31.06 ± 1.08b 155.94 ± 13.27b 231.02 ± 13.46c
    GL 0 ~ 10 65.76 ± 2.16ab 25.10 ± 1.69a 48.97 ± 3.91a 24.08 ± 0.69a 25.67 ± 1.20a 160.5 ± 4.47a 267.05 ± 4.12a
    GL 10 ~ 20 71.92 ± 1.00a 17.40 ± 0.79b 31.56 ± 1.45b 25.38 ± 1.19a 19.71 ± 1.30b 141.38 ± 3.65b 243.71 ± 5.81b
    GL 20 ~ 30 64.25 ± 2.60b 13.70 ± 0.54c 27.47 ± 2.12b 19.97 ± 0.57b 17.08 ± 0.24c 113.72 ± 5.70c 225.20 ± 2.92c
    SL 0 ~ 10 18.83 ± 1.15a 10.33 ± 0.64a 19.87 ± 0.95a 9.85 ± 1.00a 10.70 ± 1.07a 76.78 ± 4.03a 227.02 ± 8.61a
    SL 10 ~ 20 13.98 ± 0.79b 8.07 ± 0.35b 15.04 ± 0.49b 5.21 ± 0.51b 6.34 ± 0.14b 55.37 ± 2.70b 175.88 ± 10.89b
    SL 20 ~ 30 9.17 ± 0.82c 8.45 ± 0.53b 11.62 ± 0.65c 3.37 ± 0.05c 4.92 ± 0.38b 59.01 ± 4.04b 165.33 ± 2.56b
    注:BGL. β-葡萄糖苷酶;CBH. 纤维二糖酶;NAG. N-乙酰氨基葡萄糖苷酶;LAP. 亮氨酸氨基肽酶;GAP. 甘氨酸氨基肽酶;APH. 酸性磷酸酶;ALP. 碱性磷酸酶。下同。Notes: BGL, β-glucosidase; CBH, cellobiohydrolase; NAG, N-acetyl-glucosaminidase; LAP, leucine aminopeptidase; GAP, glycine aminopeptidase; APH, acid phosphatase; ALP, alkaline phosphatase. The same below.
    下载: 导出CSV

    表  4  土壤酶活性的双因素方差分析

    Table  4.   A two-way ANOVA for analysing the soil enzyme activities

    因素 Factor 项目 ItemBGLCBHNAGLAPGAPAPHALP
    土地类型
    Land type
    F 511.516 174.406 282.805 718.697 872.554 205.091 172.844
    P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    Sig.(f) a,b,c a,ab,b a,a,b a,b,c a,b,c a,a,b a,ab,b
    土层
    Soil layer
    F 13.646 62.110 62.907 27.493 51.641 14.793 82.886
    P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    土地类型×土层
    Land type × soil layer
    F 4.476 15.558 4.800 6.196 3.649 6.106 29.590
    P 0.011 < 0.01 0.008 0.003 0.024 0.003 < 0.01
    下载: 导出CSV
  • [1] Rodríguez-Murillo J C, Almendros G, Knicker H. Wetland soil organic matter composition in a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain): insight into different carbon sequestration pathways[J]. Organic Geochemistry, 2011, 43(7): 762−773.
    [2] 申格, 徐斌, 金云翔, 等. 若尔盖高原湿地研究进展[J]. 地理与地理信息科学, 2016, 32(4):76−89. doi: 10.3969/j.issn.1672-0504.2016.04.013

    Shen G, Xu B, Jin Y X, et al. Advances in studies of wetlands in Zoige Plateau[J]. Geography and Geo-Information Science, 2016, 32(4): 76−89. doi: 10.3969/j.issn.1672-0504.2016.04.013
    [3] 马维伟, 李广, 石万里, 等. 甘肃尕海湿地退化过程中植物生物量及物种多样性变化动态[J]. 草地学报, 2016, 24(5):960−966. doi: 10.11733/j.issn.1007-0435.2016.05.005

    Ma W W, Li G, Shi W L, et al. Changes of plant biomass and species diversity in degradation process of Gahai Wetland in Gansu Province[J]. Acta Agrestia Sinica, 2016, 24(5): 960−966. doi: 10.11733/j.issn.1007-0435.2016.05.005
    [4] 刘学敏, 罗久富, 邓东周, 等. 氮添加对不同退化程度高寒草地生态系统的影响[J]. 草业科学, 2018, 35(12):2773−2783. doi: 10.11829/j.issn.1001-0629.2018-0089

    Liu X M, Luo J F, Deng D Z, et al. Effect of nitrogen addition on alpine grassland ecosystems degraded to different extents[J]. Pratacultural Science, 2018, 35(12): 2773−2783. doi: 10.11829/j.issn.1001-0629.2018-0089
    [5] 马维伟, 王辉, 李广, 等. 甘南尕海湿地退化过程中植被生物量变化及其季节动态[J]. 生态学报, 2017, 37(15):5091−5101.

    Ma W W, Wang H, Li G, et al. Changes in plant biomass and its seasonal dynamics during degradation succession in the Gahai Wetland[J]. Acta Ecologica Sinica, 2017, 37(15): 5091−5101.
    [6] 李璇, 栗忠飞. 滇西北纳帕海高原湿地区域退化草甸土壤有机碳含量特征[J]. 环境科学研究, 2017, 30(7):1079−1088.

    Li X, Li Z F. Characteristics of soil organic carbon content of degraded meadows in Napahai Plateau wetland region in northwest Yunnan Province[J]. Research of Environmental Sciences, 2017, 30(7): 1079−1088.
    [7] Kayranli B, Scholz M, Mustafa A, et al. Carbon storage and fluxes within freshwater wetlands: a critical review[J]. Wetlands, 2010, 30(1): 111−124. doi: 10.1007/s13157-009-0003-4
    [8] 杨文彬, 耿玉清, 王冬梅. 漓江水陆交错带不同植被类型的土壤酶活性[J]. 生态学报, 2015, 35(14):4604−4612.

    Yang W B, Geng Y Q, Wang D M. The activities of soil enzyme under different vegetation types in Li River riparian ecotones[J]. Acta Ecologica Sinica, 2015, 35(14): 4604−4612.
    [9] Khan M S, Sadat S U, Jan A, et al. Impact of transgenic brassica napus harboring the antifungal synthetic chitinase (NiC) gene on rhizosphere microbial diversity and enzyme activities[J]. Frontiers in Plant Science, 2017, 8: 1307. doi: 10.3389/fpls.2017.01307
    [10] 叶春, 蒲玉琳, 张世熔, 等. 湿地退化条件下土壤碳氮磷储量与生态化学计量变化特征[J]. 水土保持学报, 2016, 30(6):181−187.

    Ye C, Pu Y L, Zhang S R, et al. Ecological stoichiometry characteristics and storage of soil carbon, nitrogen and phosphorus during the wetland degradation process[J]. Journal of Soil and Water Conservation, 2016, 30(6): 181−187.
    [11] 夏品华, 喻理飞, 寇永珍, 等. 贵州高原草海湿地土壤有机碳分布特征及其与酶活性的关系[J]. 环境科学学报, 2017, 37(4):1479−1485.

    Xia P H, Yu L F, Kou Y Z, et al. Distribution characteristics of soil organic carbon and its relationship with enzyme activity in the Caohai Wetland of the Guizhou Plateau[J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1479−1485.
    [12] 吴方涛, 曹生奎, 曹广超, 等. 青海湖高寒藏嵩草湿草甸湿地生态系统CO2通量变化特征[J]. 生态与农村环境学报, 2018, 34(2):124−131. doi: 10.11934/j.issn.1673-4831.2018.02.004

    Wu F T, Cao S K, Cao G C, et al. Variation of CO2 flux of alpine wetland ecosystem of Kobresia tibetica wet meadow in Lake Qinghai[J]. Journal of Ecology and Rural Environment, 2018, 34(2): 124−131. doi: 10.11934/j.issn.1673-4831.2018.02.004
    [13] 程雷星, 陈克龙, 杨仕兵, 等. 青海湖流域小泊湖湿地植物种间关系研究[J]. 干旱区地理, 2014, 37(5):1005−1011.

    Cheng L X, Chen K L, Yang S B, et al. Interspecific relations among the plants at Xiaopohu Wetland of eastern Qinghai Lake[J]. Arid Land Geography, 2014, 37(5): 1005−1011.
    [14] 魏俊奇, 李小雁, 蒋志云, 等. 基于EMI的小泊湖退化湿地土壤盐分的空间分布[J]. 水土保持学报, 2016, 30(6):284−288.

    Wei J Q, Li X Y, Jiang Z Y, et al. Spatial distribution of soil salinity in a degraded wetland of Xiaopo Lake based on EMI[J]. Journal of Soil and Water Conservation, 2016, 30(6): 284−288.
    [15] Li C, Li Q, Zhao L, et al. Land-use effects on organic and inorganic carbon patterns in the topsoil around Qinghai Lake Basin, Qinghai-Tibetan Plateau[J]. Catena, 2016, 147: 345−355. doi: 10.1016/j.catena.2016.07.040
    [16] 杨英, 耿玉清, 黄桂林, 等. 青海小泊湖区沼泽化草甸、草甸和沙地的土壤酶活性[J]. 湿地科学, 2016, 14(1):20−26.

    Yang Y, Geng Y Q, Huang G L, et al. Soil enzyme activities in marshy meadow, meadow and sands in Small Mooring Lake, Qinghai[J]. Wetland Science, 2016, 14(1): 20−26.
    [17] 邢文黎, 王臣, 熊静, 等. 浦东东滩湿地围垦对土壤碳氮储量及酶活性影响[J]. 生态环境学报, 2018, 27(4):651−657.

    Xing W L, Wang C, Xiong J, et al. Effects of reclamation on soil carbon, nitrogen storage and enzyme activity in Dongtan Wetland of Pudong[J]. Ecology and Environmental Sciences, 2018, 27(4): 651−657.
    [18] 仲波, 孙庚, 陈冬明, 等. 不同恢复措施对若尔盖沙化退化草地恢复过程中土壤微生物生物量碳氮及土壤酶的影响[J]. 生态环境学报, 2017, 26(3):392−399.

    Zhong B, Sun G, Chen D M, et al. Effects of different restoration measures on soil microbial biomass carbon and nitrogen and soil enzymes in the process of restoration of the desertified grassland in Zoige[J]. Ecology and Environmental Sciences, 2017, 26(3): 392−399.
    [19] 赵石磊. 镭同位素示踪青海湖尕海地下水排放通量[D].西宁: 青海师范大学, 2014.

    Zhao S L. Radium isotopes traces groundwater discharge flux in the Gahai, Qinghai Lake[D]. Xining: Qinghai Normal University, 2014.
    [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.

    Lu R K. Soil agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [21] Weil R R, Islam K R, Stine M A, et al. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use[J]. American Journal of Alternative Agriculture, 2003, 18(1): 3−17. doi: 10.1079/AJAA2003003
    [22] Chen C R, Xu Z H, Keay P, et al. Total soluble nitrogen in forest soils as determined by persulfate oxidation and by high temperature catalytic oxidation[J]. Australian Journal of Soil Research, 2005, 43(4): 515−523. doi: 10.1071/SR04132
    [23] Acosta-Martínez V, Bell C W, Morris B E L, et al. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region[J]. Agriculture Ecosystems & Environment, 2010, 137(3): 231−240.
    [24] Verchot L V, Borelli T. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils[J]. Soil Biology & Biochemistry, 2005, 37(4): 625−633.
    [25] German D P, Weintraub M N, Grandy A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies[J]. Soil Biology & Biochemistry, 2011, 43(7): 1387−1397.
    [26] Guenet B, Lenhart K, Leloup J, et al. The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities[J]. Geoderma, 2012, 170: 331−336.
    [27] Grandy A S, Neff J C, Weintraub M N. Carbon structure and enzyme activities in alpine and forest ecosystems[J]. Soil Biology & Biochemistry, 2007, 39(11): 2701−2711.
    [28] Acosta M V, Cruz L, Sotomayor R D, et al. Enzyme activities as affected by soil properties and land use in a tropical watershed[J]. Applied Soil Ecology, 2007, 35(1): 35−45. doi: 10.1016/j.apsoil.2006.05.012
    [29] Yang Y G, Yang Y, Geng Y Q, et al. Effects of different land types on soil enzyme activity in the Qinghai Lake region[J]. Wetlands, 2018, 38(4): 711−721.
    [30] 胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化[J]. 草业学报, 2014, 23(3):8−19. doi: 10.11686/cyxb20140302

    Hu L, Wang C T, Wang G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China[J]. Acta Prataculturae Sinica, 2014, 23(3): 8−19. doi: 10.11686/cyxb20140302
    [31] Douterelo I, Goulder R, Lillie M. Enzyme activities and compositional shifts in the community structure of bacterial groups in English wetland soils associated with preservation of organic remains in archaeological sites[J]. International Biodeterioration and Biodegradation, 2011, 65(3): 435−443. doi: 10.1016/j.ibiod.2010.11.017
    [32] 靳振江, 曾鸿鹄, 李强, 等. 起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及土壤酶活性比较[J]. 环境科学, 2016, 37(1):335−341.

    Jin Z J, Zeng H H, Li Q, et al. Comparisons of microbial numbers, biomasses and soil enzyme activities between paddy field and dryland origins in karst cave wetland[J]. Environmental Science, 2016, 37(1): 335−341.
    [33] 毛志刚, 谷孝鸿, 刘金娥, 等. 盐城海滨盐沼湿地及围垦农田的土壤质量演变[J]. 应用生态学报, 2010, 21(8):1986−1992.

    Mao Z G, Gu X H, Liu J E, et al. Evolvement of soil quality in salt marshes and reclaimed farmlands in Yancheng coastal wetland[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 1986−1992.
    [34] 张鑫, 耿玉清, 徐明, 等. 鄱阳湖湖滨湿地土壤酶活性及影响因素[J]. 北京林业大学学报, 2014, 36(1):34−40.

    Zhang X, Geng Y Q, Xu M, et al. Soil enzyme activity and influencing factors in lakeside wetland of Poyang Lake[J]. Journal of Beijing Forestry University, 2014, 36(1): 34−40.
    [35] Cleveland M R, Smithwick E A H, Brooks R P, et al. The wetland disturbance index: links with soil and water nitrate concentrations[J]. Wetlands, 2011, 31(5): 853−863. doi: 10.1007/s13157-011-0200-9
    [36] Song Y, Song C, Yang G, et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in northeast China[J]. Environmental Management, 2012, 50(3): 418−426. doi: 10.1007/s00267-012-9890-x
    [37] Li S, Zhang S, Pu Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289−297. doi: 10.1016/j.still.2015.07.019
    [38] 江淼华, 倪梦颖, 周嘉聪, 等. 增温和降雨减少对杉木幼林土壤酶活性的影响[J]. 生态学杂志, 2018, 37(11):3210−3219.

    Jiang M H, Ni M Y, Zhou J C, et al. Effects of warming and precipitation reduction on soil enzyme activity in a young Cunning- hamia lanceolata plantation[J]. Chinese Journal of Ecology, 2018, 37(11): 3210−3219.
    [39] 刘俊第, 林威, 王玉哲, 等. 火烧对马尾松林土壤酶活性和有机碳组分的影响[J]. 生态学报, 2018, 38(15):5374−5382.

    Liu J D, Lin W, Wang Y Z, et al. Effects of fire on soil enzyme activities and organic carbon fractions in Pinus massoniana forest[J]. Acta Ecologica Sinica, 2018, 38(15): 5374−5382.
    [40] 肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23):7625−7633.

    Xiao Y, Huang Z G, Wu H T, et al. Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain, Northeast China[J]. Acta Ecologica Sinica, 2015, 35(23): 7625−7633.
    [41] Liang Q, Gao R T, Xi B D, et al. Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities[J]. Agricultural Water Management, 2014, 135(4): 100−108.
    [42] Zhang X, Tang Y, Shi Y, et al. Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia[J/OL]. Scientific Reports, 2016, 6: 32791 [2018−06−25]. https://www.nature.com/articles/srep32791.
    [43] Weand M P, Arthur M A, Lovett G M, et al. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities[J]. Soil Biology & Biochemistry, 2010, 42(12): 2161−2173.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  1281
  • HTML全文浏览量:  945
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-11
  • 修回日期:  2019-03-01
  • 网络出版日期:  2019-07-09
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回