高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿拉善高原植物区域物种丰富度格局及其环境解释

王健铭 崔盼杰 钟悦鸣 李景文 褚建民

王健铭, 崔盼杰, 钟悦鸣, 李景文, 褚建民. 阿拉善高原植物区域物种丰富度格局及其环境解释[J]. 北京林业大学学报, 2019, 41(3): 14-23. doi: 10.13332/j.1000-1522.20180403
引用本文: 王健铭, 崔盼杰, 钟悦鸣, 李景文, 褚建民. 阿拉善高原植物区域物种丰富度格局及其环境解释[J]. 北京林业大学学报, 2019, 41(3): 14-23. doi: 10.13332/j.1000-1522.20180403
Wang Jianming, Cui Panjie, Zhong Yueming, Li Jingwen, Chu Jianmin. Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 14-23. doi: 10.13332/j.1000-1522.20180403
Citation: Wang Jianming, Cui Panjie, Zhong Yueming, Li Jingwen, Chu Jianmin. Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 14-23. doi: 10.13332/j.1000-1522.20180403

阿拉善高原植物区域物种丰富度格局及其环境解释

doi: 10.13332/j.1000-1522.20180403
基金项目: 科技部科技基础资源调查专项(2017FY100205),国家自然科学基金项目(31570610)
详细信息
    作者简介:

    王健铭,博士生。主要研究方向:生物多样性与恢复生态。Email:651821939@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    李景文,教授,博士生导师。主要研究方向:生物多样性与恢复生态。Email:lijingwen@bjfu.edu.cn 地址:同上

  • 中图分类号: Q948.15+6

Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China

  • 摘要: 目的阿拉善高原境内分布着超过20万km2典型的温带荒漠生态系统,这些荒漠生态系统对全球气候与土地利用类型的变化极其敏感,然而水分、能量与生境异质性对该区植物区域物种丰富度的相对影响,以及这种影响在不同生活型植物间的差异还没有得到系统研究。方法本文利用阿拉善高原大尺度植物区域物种丰富度数据,并结合相关的气候与生境异质性数据,尝试系统地探讨阿拉善高原植物区域物种丰富度地理格局及其潜在的影响因素。结果(1)阿拉善高原植物区域物种丰富度存在显著的经纬度格局,全部物种、草本植物与木本植物区域物种丰富度均呈现出沿经度的升高而增加,沿纬度的升高而递减的变化趋势。(2)方差分解结果显示,水分与能量因子共同解释了全部物种、草本植物与木本植物区域物种丰富度60.7%、62.5%及42.6%的空间变异; 两者单独的解释率分别为15.2% ~ 19.6%与2.8% ~ 5.3%。生境异质性分别解释了3组植物区域物种丰富度17.2%、12.3%、29.3%的变异,其单独解释率分别为3.1%、1.0%和11.8%。气候因素与生境异质性对草本植物与木本植物区域物种丰富度的相对影响并不一致;草本植物物种丰富度主要由气候因素决定,而木本植物丰富度则受气候因素与生境异质性的共同控制。(3)气候与生境异质性三者共同解释了区域物种丰富度54.4% ~ 63.8%的变异,但仍然有36.2% ~ 45.6%的变异没有得到解释。结论阿拉善高原植物区域物种丰富度格局由水分与能量类气候因子共同决定,水资源可用性是阿拉善地区植物物种多样性维持最为关键的限制因子。生境异质性对阿拉善高原植物丰富度,尤其是木本植物丰富度有着不可忽略的作用,是干旱区植物多样性维持的重要影响因素。阿拉善高原不同生活型植物区域物种丰富度的影响因素可能并不一致,其他未知潜在因素对阿拉善植物区域物种丰富度亦存在着重要影响。

     

  • 图  1  阿拉善高原

    Figure  1.  Alxa Plateau

    图  2  阿拉善高原植物区域物种丰富度分布格局

    Figure  2.  Patterns of plant regional species richness in Alxa Plateau

    图  3  水分、能量与生境异质性对植物区域物种丰富度的解释

    a. 水分单独解释率;b. 能量单独解释率;c. 生境异质性单独解释率;d. 三者共同的解释率;g. 水分与能量的共同解释率;e. 能量与生境异质性的共同解释率;f. 水分与生境异质性共同解释率;Unexplained为未解释部分。a, the independent influence of water factors; b, the independent influence of energy factors; c, the independent influence of habitat heterogeneity; d, the combined influence of all three groups of factors; g, the joint influence of water and energy factors; e, the joint influence of energy and habitat heterogeneity; f, the joint influence of water and habitat heterogeneity; unexplained, unexplained variation.

    Figure  3.  Relative influence of water, energy and habitat heterogeneity on plant regional species richness patterns

    表  1  阿拉善高原植物物种丰富度与环境变量描述性统计

    Table  1.   Descriptive statistics for species richness in Alxa Plateau and environmental variables used in the study

    项目 Item最大值 Max.平均值 Mean最小值 Min.标准偏差 SD
    物种丰富度 Species richness
    全部物种 Overall species340 275.13230 26.96
    木本植物 Woody plant74 56.3641 7.79
    草本植物 Herb species266 218.77189 19.61
    水分因子 Water factor
    年降水 Mean annual precipitation (MAP)/mm227.0085.8229.0043.71
    最湿润季降水 Precipitation of the wettest quarter (PWQ)/mm139.0055.0221.0025.98
    最干燥季降水 Precipitation of the driest quarter (PDQ)/mm6.001.460.001.62
    实际蒸散量 Actual evapotranspiration (AET)/mm201.0082.3231.0037.15
    能量因子 Energy factor
    年均温 Mean annual temperature (MAT)/℃9.607.893.700.95
    气温日较差 Mean diurnal range (MDR)/℃15.2014.4512.800.52
    气温年较差 Annual temperature range (ART)/℃51.9048.1242.901.91
    最热季均温 Mean temperature of the warmest quarter (MTWQ)/℃25.8022.6417.001.42
    最冷季均温 Mean temperature of the coldest quarter (MTCQ)/℃−5.30−8.30−11.200.99
    潜在蒸散量 Potential evapotranspiration (PET)/mm1 197.001 092.50903.0049.79
    生境异质性 Habitat heterogeneity
    植被多样性 Vegetation diversity (VD)8.002.711.001.17
    降水异质性 Ranges of MAP (RMAP)/mm110.008.470.007.60
    温度异质性 Ranges of MAT (RMAT)/mm40.006.100.004.54
    海拔范围 Elevation range (Elev)/m905.00124.538.0092.97
    下载: 导出CSV

    表  2  阿拉善高原植物物种丰富度、环境因子与地理因子的一元回归分析

    Table  2.   Least square regressions for the relationships between geographical factors and species richness, environmental factors in Alxa Plateau

    项目 Item经度 Longitude纬度 Latitude海拔 Elevation
    物种丰富度 Species richness
    全部物种 Overall species0.639(+)***0.567(−)***0.226(+)***
    木本植物 Woody plant0.472(+)***0.517(−)***0.289(+)***
    草本植物 Herb species0.631(+)***0.521(−)***0.179(+)***
    水分因子 Water factor
    年降水 Mean annual precipitation (MAP)0.408(+)***0.795(−)***0.373(+)***
    最湿润季降水 Precipitation of the wettest quarter (PWQ)0.405(+)***0.756(−)***0.363(+)***
    最干燥季降水 Precipitation of the driest quarter (PDQ)NS0.242(−)***0.228(+)***
    实际蒸散量 Actual evapotranspiration (AET)392(+)***0.772(−)***0.409(+)***
    能量因子 Energy factor
    年均温 Mean annual temperature (MAT)0.145(HS)***0.008(+)***0.529(−)***
    气温日较差 Mean diurnal range (MDR)0.398 (−)***0.398(+)***0.208(−)***
    气温年较差 Annual temperature range (ART)0.233(−)***0.465(+)***0.604(−)***
    最热季均温 Mean temperature of the warmest quarter (MTWQ)0.157(HS)***0.146(+)***0.821(−)***
    最冷季均温 Mean temperature of the coldest quarter (MTCQ)0.037(+)***0.415(−)***0.028(−)***
    潜在蒸散量 Potential evapotranspiration (PET)0.241(HS)***0.0.007(+)***0.572(−)***
    生境异质性 Habitat heterogeneity
    植被多样性 Vegetation diversity (VD)NS0.007(+)***0.004(+)**
    降水异质性 Ranges of MAP (RMAP)0.051(+)***0.173(−)***0.305(+)***
    温度异质性 Ranges of MAT (RMAT)NS0.012(−)***0.205(+)***
    海拔范围 Elevation range (Elev)0.001(+)*0.017(−)***0.207(+)***
    注:*** P < 0.001;** P < 0.01;* P < 0.05。NS表示不存在显著的相关性;HS表示先增后减的二次曲线关系。− 表示单调递减;+ 表示单调递增。下同。Notes: *** P < 0.001; ** P < 0.01; * P < 0.05. NS means no significant correlation; HS represents the quadratic curve relation of increasing first and decreasing later. − represents monotonically decreasing; + represents monotonically increasing.The same below.
    下载: 导出CSV

    表  3  阿拉善高原植物物种丰富度与水分、能量及生境异质性的一元回归分析

    Table  3.   Least square regressions for the relationships between species richness, water, energy and habitat heterogeneity

    环境变量 Environmental variable全部物种 Overall species木本植物 Woody plant草本植物 Herb species
    水分因子 Water factor
    年降水 Mean annual precipitation (MAP)0.644(+)***0.445(+)***0.659(+)***
    最湿润季降水 Precipitation of the wettest quarter (PWQ)0.647(+)***0.424(+)***0.669(+)***
    最干燥季降水 Precipitation of the driest quarter (PDQ)0.117(+)***0.028(+)***0.162(+)***
    实际蒸散量 Actual evapotranspiration (AET)0.643(+)***0.447(+)***0.662(+)***
    能量因子 Energy factor
    年均温 Mean annual temperature (MAT)0.010(−)***0.029(−)***0.033(−)***
    气温日较差 Mean diurnal range (MDR)0.468(−)***0.223(−)***0.537(−)***
    气温年较差 Temperature annual range (ART)0.289(−)***0.174(−)***0.313(−)***
    最热季均温 Mean temperature of the warmest quarter (MTWQ)0.112(−)***0.123(−)***0.098(−)***
    最冷季均温 Mean temperature of the coldest quarter (MTCQ)0.061(−)***0.016(−)***0.079(−)***
    潜在蒸散量 Potential evapotranspiration (PET)0.104 (−)***0.074(−)***0.109(−)***
    生境异质性 Habitat heterogeneity
    植被多样性 Vegetation diversity (VD)NS0.03(+)**NS
    降水异质性 Ranges of MAP (RMAP)0.171(+)***0.223(+)***0.133(+)***
    温度异质性 Ranges of MAT (RMAT)0.064(+)***0.135(+)***0.037(+)***
    海拔范围 Elevation range (Elev)0.078(+)***0.148(+)***0.048(+)***
    下载: 导出CSV
  • [1] Gaston K J. Global patterns in biodiversity[J]. Nature, 2000, 405: 220−227. doi: 10.1038/35012228
    [2] Wiens J J, Donoghue M J. Historical biogeography, ecology and species richness[J]. Trends in Ecology & Evolution, 2004, 19: 639−644.
    [3] Shen G C, Yu M J, Hu X S, et al. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity[J]. Ecology, 2009, 90: 3033−3041. doi: 10.1890/08-1646.1
    [4] O’Brien E M. Water-energy dynamics, climate, and pre-diction of woody plant species richness: an interim general model[J]. Journal of Biogeography, 1998, 25: 379−398. doi: 10.1046/j.1365-2699.1998.252166.x
    [5] Currie D J, Francis A P. Regional versus climatic effect on taxon richness in angiosperms: reply to Qian and Ricklefs[J]. The American Naturalist, 2004, 163: 780−785. doi: 10.1086/383596
    [6] O’Brien E M. Climatic gradients in woody plant species richness: towards an explanation based on an analysis of southern Africa’s woody flora[J]. Journal of Biogeography, 1993, 20: 181−198. doi: 10.2307/2845670
    [7] Francis A P, Currie D J. A globally consistent richness-climate relationship for angiosperms[J]. The American Naturalist, 2003, 161: 523−536. doi: 10.1086/368223
    [8] Wright D H. Species-energy theory: an extension of species-area theory[J]. Oikos, 1983, 41: 496−506. doi: 10.2307/3544109
    [9] 王志恒, 唐志尧, 方精云. 物种多样性地理格局的能量假说[J]. 生物多样性, 2009, 17(6):613−624.

    Wang Z H, Tang Z Y, Fang J Y. The species-energy hypothesis as a mechanism for species richness patterns[J]. Biodiversity Science, 2009, 17(6): 613−624.
    [10] Xu H, Cao M, Wu Y, et al. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales[J]. Scientific Reports, 2016, 6: 21988. doi: 10.1038/srep21988
    [11] Wang Z H, Fang J Y, Tang Z Y, et al. Relative role of contemporary environment versus history in shaping diversity patterns of China ’s woody plants[J]. Ecography, 2013, 35(12): 1124−1133.
    [12] Wang J, Long T, Zhong Y, et al. Disentangling the influence of climate, soil and belowground microbes on local species richness in a dryland ecosystem of Northwest China[J]. Scientific Reports, 2017, 7(1): 18029. doi: 10.1038/s41598-017-17860-7
    [13] Zellweger F, Braunisch V, Morsdorf F, et al. Disentangling the effects of climate, topography, soil and vegetation on stand-scale species richness in temperate forests[J]. Forest Ecology and Management, 2015, 349: 36−44. doi: 10.1016/j.foreco.2015.04.008
    [14] Tuomisto H, Zuquim G, Glenda C. Species richness and diversity along edaphic and climatic gradients in Amazonia[J]. Ecography, 2014, 37(11): 1034−1046.
    [15] Mcgill B J. Matters of scale[J]. Science, 2010, 328: 575−576. doi: 10.1126/science.1188528
    [16] Zhang Y, Chen H Y H, Taylor A. Multiple drivers of plant diversity in forest ecosystems[J]. Global Ecology & Biogeography, 2014, 23(8): 885−893.
    [17] 李新荣, 谭会娟, 何明珠, 等. 阿拉善高原灌木种的丰富度和多度格局对环境因子变化的响应: 极端干旱戈壁地区灌木多样性保育的前提[J]. 中国科学(地球科学), 2009, 39(4):504−515.

    Li X R, Tan H J, He M Z, et al. The response of shrub species richness and abundance patterns to environmental change in Alxa Plateau: the premise of shrubs diversity conservation in extremely arid Gobi regions[J]. Science China (Earth Sciences), 2009, 39(4): 504−515.
    [18] Easterling, D R. Climate extremes: observations, modeling, and impacts[J]. Science, 2000, 289: 2068−2074. doi: 10.1126/science.289.5487.2068
    [19] Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2012, 3(1): 52−58.
    [20] Feng S, Fu Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13: 10081−10094.
    [21] Maestre F T, Gómez R S, Quero J L. It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands[J]. Philosophical Transactions of the Royal Society of London, 2012, 367(1606): 3062−3075. doi: 10.1098/rstb.2011.0323
    [22] Delgado-Baquerizo M, Maestre F T, Gallardo A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502: 672−676. doi: 10.1038/nature12670
    [23] Wang X P, Fang J Y, Sanders N J, et al. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China[J]. Ecography, 2010, 32(1): 133−142.
    [24] Austin M P, Pausas J G, Nicholls A O. Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia[J]. Australian Journal of Ecology, 1996, 21(2): 154−164. doi: 10.1111/aec.1996.21.issue-2
    [25] 王健铭, 钟悦鸣, 张天汉, 等. 中国黑戈壁地区植物物种丰富度格局的水热解释[J]. 植物科学学报, 2016, 34(4):530−538.

    Wang J M, Zhong Y M, Zhang T H, et al. Plant species richness patterns and water-energy dynamics in the Black Gobi Desert, China[J]. Plant Science Journal, 2016, 34(4): 530−538.
    [26] 马斌, 周志宇, 张莉丽, 等. 阿拉善左旗植物物种多样性空间分布特征[J]. 生态学报, 2007, 28(12):6099−6106.

    Ma B, Zhou Z Y, Zhang L L, et al. The spatial distribution characteristics of plant diversity in Alex Left Banner[J]. Acta Ecologica Sinica, 2007, 28(12): 6099−6106.
    [27] 王健铭, 董芳宇, 巴海·斯拉, 等. 中国黑戈壁植物多样性分布格局及其影响因素[J]. 生态学报, 2016, 36(12):3488−3498.

    Wang J M, Dong F Y, Nasina B, et al. Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China[J]. Acta Ecologica Sinica, 2016, 36(12): 3488−3498.
    [28] 何明珠, 张志山, 李小军, 等. 阿拉善高原荒漠植被组成分布特征及其环境解释Ⅰ: 典型荒漠植被分布格局的环境解释[J]. 中国沙漠, 2010, 30(1):46−56.

    He M Z, Zhang Z S, Li X J, et al. Environmental effects on distribution and composition of desert vegetations in Alxa Plateau[J]. Journal of Desert Research, 2010, 30(1): 46−56.
    [29] 朱震达. 中国土地沙质荒漠化[M]. 北京: 科学出版社, 1994.

    Zhu Z D. Land sandy desertification in China[M]. Beijing: Science Press, 1994
    [30] 张新时. 中国植被及其地理格局, 中华人民共和国植被图集 (1: 1 000 000)说明书: 下卷[M]. 北京: 地质出版社, 2007.

    Zhang X S. Vegetation of China and its geographic patterns, illustration of the vegetation map of the People ’s Republic of China (1:1 000 000): Volume Ⅱ [M]. Beijing: Geological Publishing House, 2007.
    [31] 内蒙古植物志编辑委员会. 内蒙古植物志[M]. 呼和浩特: 内蒙古人民出版社, 1991.

    Editorial Committee of Flora of Inner Mongolia. Flora of Inner Mongolia[M]. Huhehot: Inner Mongolia People ’s Publishing House, 1991.
    [32] Burnham K, Anderson D. Model selection and multimodel inference[J]. Technometrics, 2003, 45(2): 1.
    [33] Keough M J. Experimental design and data analysis for biologists[M]. Cambridge: Cambridge University Press, 2002.
    [34] Legendre P, Legendre L. Numerical ecology[M]. 3rded. Amsterdam: Elsevier Science, 2012.
    [35] Oksanen J, Blanchet F G, Kindt R, et al. Vegan: community ecology package. R package version 2.4-5[EB/OL]. (2017-10-18) [2017-03-15]. https://CRAN.R-project.org/pack age=vegan/.
    [36] 王健铭, 王文娟, 李景文, 等. 中国西北荒漠区植物物种丰富度分布格局及其环境解释[J]. 生物多样性, 2017, 25(11):1192−1201. doi: 10.17520/biods.2017149

    Wang J M, Wang W J, Li J W, et al. Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China[J]. Biodiversity Science, 2017, 25(11): 1192−1201. doi: 10.17520/biods.2017149
    [37] 刘庆福, 刘洋, 孙小丽, 等. 气候假说对内蒙古草原群落物种多样性格局的解释[J]. 生物多样性, 2015, 23(4):463−470.

    Liu Q F, Liu Y, Sun X L, et al. The explanation of climatic hypotheses to community species diversity patterns in Inner Mongolia grasslands[J]. Biodiversity Science, 2015, 23(4): 463−470.
    [38] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1980.

    Wu Z Y. Vegetation of China[M]. Beijing: Science Press, 1980.
    [39] Li L P, Wang Z H, Zerbe S, et al. Species richness patterns and water-energy dynamics in the drylands of Northwest China[J/OL]. PLoS One, 2013, 8(6): e66450 [2018-11-30]. https://doi.org/10.1371/journal.pone.0066450.
    [40] O’Brien E M, Field R, Whittaker R J. Species-energy theory: an extension of species-area theory[J]. Oikos, 1983, 41(3): 496−506.
    [41] Chen S B, Jiang G M, Ouyang Z Y, et al. Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China[J]. Journal of Systematics & Evolution, 2011, 49(2): 95−107.
    [42] Jetz W, Rahbek C, Colwell R K. The coincidence of rarity and richness and the potential signature of history in centres of endemism[J]. Ecology Letters, 2010, 7(12): 1180−1191.
    [43] 夏延国, 宁宇, 李景文, 等. 中国黑戈壁地区植物区系及其物种多样性研究[J]. 西北植物学报, 2013, 33(9):1906−1915.

    Xia Y G, Ning Y, Li J W, et al. Plant species diversity and floral characters in the Black Gobi Desert of China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(9): 1906−1915.
    [44] Turner R M, Bowers J E, Burgess T L. Sonoran desert pplants: an ecological atlas [M]. Tucson: University of Arizona Press, 2005.
    [45] Costa F R C, Magnusson W E, Luizao R C. Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds[J]. Journal of Ecology, 2006, 93: 863−878.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  3458
  • HTML全文浏览量:  566
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-11
  • 修回日期:  2018-12-26
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回