• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

BpCCR1正义链及反义链对7年生盆栽白桦木质素的影响及优良株系选择

张嫚嫚, 刘宝光, 顾宸瑞, 王楚, 陈肃, 姜静, 刘桂丰

张嫚嫚, 刘宝光, 顾宸瑞, 王楚, 陈肃, 姜静, 刘桂丰. 转BpCCR1正义链及反义链对7年生盆栽白桦木质素的影响及优良株系选择[J]. 北京林业大学学报, 2019, 41(6): 86-95. DOI: 10.13332/j.1000-1522.20180412
引用本文: 张嫚嫚, 刘宝光, 顾宸瑞, 王楚, 陈肃, 姜静, 刘桂丰. 转BpCCR1正义链及反义链对7年生盆栽白桦木质素的影响及优良株系选择[J]. 北京林业大学学报, 2019, 41(6): 86-95. DOI: 10.13332/j.1000-1522.20180412
Zhang Manman, Liu Baoguang, Gu Chenrui, Wang Chu, Chen Su, Jiang Jing, Liu Guifeng. Effects of transgenic sense and antisense of BpCCR1 on 7-year-old potted birch and selection of excellent lines[J]. Journal of Beijing Forestry University, 2019, 41(6): 86-95. DOI: 10.13332/j.1000-1522.20180412
Citation: Zhang Manman, Liu Baoguang, Gu Chenrui, Wang Chu, Chen Su, Jiang Jing, Liu Guifeng. Effects of transgenic sense and antisense of BpCCR1 on 7-year-old potted birch and selection of excellent lines[J]. Journal of Beijing Forestry University, 2019, 41(6): 86-95. DOI: 10.13332/j.1000-1522.20180412

BpCCR1正义链及反义链对7年生盆栽白桦木质素的影响及优良株系选择

基金项目: 国家重点研发计划课题资助(2017YFD0600603)
详细信息
    作者简介:

    张嫚嫚。主要研究方向:林木遗传育种。Email:2450772378@qq.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    刘桂丰,教授,博士生导师。主要研究方向:林木遗传育种。Email:liuguifeng@126.com 地址:同上

  • 中图分类号: S722

Effects of transgenic sense and antisense of BpCCR1 on 7-year-old potted birch and selection of excellent lines

  • 摘要:
    目的肉桂酰辅酶还原酶(Cinnamoyl-CoA Reductase,CCR)是催化木质素合成特异途径中的第一个限速酶。通过测定转基因株系和野生型株系(WT)的木质素和单体含量,探究转BpCCR1基因正义链和反义链对白桦木质素含量的影响,进而筛选出转基因优良株系。
    方法以获得的7年生白桦转BpCCR1正、反义链株系为试验材料,采用PCR及qRT-PCR技术分别对目标基因的稳定性及表达量进行检测,采用改进的Klason法及液相色谱法分别对木质素含量及单体含量进行测定,采用硝酸-氯酸钾法和排水法分别对木纤维长和宽及基本密度进行测定,并调查树高及胸径,以此来分析转BpCCR1正、反义链对白桦上述性状的影响。
    结果PCR检测表明,5个转正义链株系及14个转反义链株系的目标基因均为阳性;qRT-PCR分析显示,BpCCR1基因不但在转正义链株系中上调表达,而且在转反义链株系中也呈上调表达。转正、反义链白桦株系木质素含量均增加,其中10个转反义链株系的Klason木质素和总木质素含量均值较野生型株系(WT)分别提高了7.46%和7.05%,木质素含量最高的FCR11株系较WT株系分别提高了12.26%和11.81%;转基因株系基本密度虽然有一定的变化,但无明显规律。转正义链株系的木纤维宽明显变小,5个株系均值较WT减少8.82%;而转反义链株系的木纤维长受到明显抑制,有11个株系与WT的差异达到了显著性水平(P < 0.05),其均值较WT减少12.12%。转基因株系与WT的材积差异也达到显著性水平,有11个转反义链株系的材积大于WT,7个株系达到显著性水平(P < 0.05),其平均材积生长量较WT提高77.1%。采用主成分分析法选择FCR2、FCR27和FCR33株系为优良株系。
    结论BpCCR1正义链及反义链均提高白桦木质素含量,综合树高、胸径等6个性状筛选出3个优良转基因株系。
    Abstract:
    ObjectiveCinnamoyl-CoA Reductase (CCR) is the first rate-limiting enzyme in the specific pathway for the synthesis of lignin and plays a crucial role in the biosynthesis of lignin. Measuring the lignin and monomer content of transgenic lines and wild lines (WT) aims to explore the effects of BpCCR1-sense and BpCCR1-antisense on the lignin of Betula platyphylla.
    Method7-year-old BpCCR1-sense and BpCCR1-antisense transgenic lines were selected as experimental materials. The expression of BpCCR1 in transgenic lines was determined using PCR and qRT-PCR, respectively. The lignin content and monomer content were determined by the modified Klason method and high performance liquid chromatography (HPLC), respectively. The length and width of the wood fiber and basic density were measured by the method of nitric acid-potassium chlorate and drainage, and the height (H) and diameter at breast height (DBH) of the trees were investigated to investigate the effects of BpCCR1 sense and antisense lines in B. platyphylla.
    ResultPCR analysis showed that the BpCCR1 was successfully integrated into the birch genome in 5 BpCCR1-sense transgenic lines and 14 BpCCR1-antisense transgenic lines. QRT-PCR analysis revealed that the expression of BpCCR1 was up-regulated in transgenic lines compared with wild type (WT). Lignin content of the transgenic lines was increased. There into, the average Klason lignin and total lignin content of 10 transgenic lines were respectively 7.46% and 7.05% higher than wild type. Compared with WT, FCR11 line had the highest content of average Klason lignin and total lignin, which was respectively increased by 12.26% and 11.81%. Although the wood basic density of transgenic lines had changed, while there was no obvious law. The wood fiber width of BpCCR1-sense transgenic lines was significantly smaller than WT, the average value of which decreased by 8.82% in five transgenic lines. Whereas, the wood fiber length of BpCCR1-antisense transgenic lines was restrained, and the difference between 11 lines and WT reached a significant level (P < 0.05), and the average value was 12.12% shorter than WT. The difference in volume between transgenic lines and WT also reached a significant level. The volume of 11 transgenic lines was larger than WT, and 7 lines reached a significant level, and the average volume growth was 77.1% higher than WT. FCR2, FCR27 and FCR32 lines were selected as excellent lines using principal component analysis.
    ConclusionBoth the sense and antisense of BpCCR1 can increase the lignin content of B. platyphylla, three excellent transgenic lines were selected by six characters including height and DBH.
  • 图  1   BpCCR1基因株系PCR检测

    M. DL2000;1. 阳性质粒;2. 水对照;3. 野生型(WT);4 ~ 8. 转正义链株系;9 ~ 22. 转反义链株系。M, DL2000; 1, plasmid control; 2, water control; 3, wild type (WT); 4−8, sense BpCCR1 transgenic line; 9−22, antisense BpCCR1 transgenic line.

    Figure  1.   PCR detection of BpCCR1 transgenic lines

    图  2   BpCCR1基因株系qRT-PCR检测

    WT. 野生型;CR. 转BpCCR1正义链株系;FCR. 转BpCCR1反义链株系;不同小写字母代表差异显著,P < 0.05。下同。WT, wild type; CR, sense BpCCR1 transgenic lines; FCR, antisense BpCCR1 transgenic lines; different lowercase letters represent significant differences at P < 0.05 level. The same below.

    Figure  2.   Detection of BpCCR1 transgenic lines by qRT-PCR

    图  3   转基因株系内源BpCCR1基因qRT-PCR分析

    Figure  3.   Detection of endogenous BpCCR1 transgenic lines by qRT-PCR

    表  1   BpCCR1基因及内源BpCCR1基因qRT-PCR引物序列

    Table  1   qRT-PCR primer sequence for BpCCR1 gene and endogenous BpCCR1 gene

    基因名称 Gene name   正向引物(5′→3′) Forward primer (5′→3′)反向引物(5′→3′) Reverse primer (5′→3′)
    18S rRNAGAGGTAGCTTCGGGCGCAACTGCAGGTTAGCGAAATGCGATAC
    BpCCR1 AGCATGTGCGAGAACACCATCACTCATCACTCCAGCAGCCA
    内源BpCCR1 Endogenous BpCCR1CAAGAATGCAGCAGGCAGATACGAGAGAGGTGACATAAACGGCC
    下载: 导出CSV

    表  2   BpCCR1株系木质素含量多重比较

    Table  2   Multiple comparisons of lignin content of BpCCR1 transgenic lines

    基因
    Gene
    株系
    Line
    木质素含量 Lignin content/%木质素单体类型 Type of lignin monomer
    Klason木质素
    Klason lignin
    酸溶性木质素
    Acid-soluble lignin
    总木质素
    Total lignin
    GSS/GH
    正义链
    Sense
    CR1523.098 ± 0.206a 0.744 ± 0.015a23.841 ± 0.192a 0.261 ± 0.002cd0.726 ± 0.002c2.779 ± 0.035cd0.012 8
    CR1322.827 ± 0.287ab0.867 ± 0.158a23.694 ± 0.160ab0.280 ± 0.006a 0.715 ± 0.006d2.552 ± 0.070e 0.004 6
    CR422.683 ± 0.392ab0.776 ± 0.012a 23.459 ± 0.399abc
    CR1122.472 ± 0.497ab0.566 ± 0.035b23.038 ± 0.506bc
    WT22.042 ± 0.337b 0.845 ± 0.046a22.887 ± 0.331c 0.259 ± 0.002cd0.736 ± 0.002b2.841 ± 0.024bc0.004 3
    CR821.284 ± 0.648c 0.879 ± 0.025a22.163 ± 0.626d 0.243 ± 0.002e 0.752 ± 0.002a3.101 ± 0.026a 0.005 0
    反义链
    Antisense
    FCR1124.745 ± 0.065a 0.844 ± 0.061abcd25.589 ± 0.091a 0.257 ± 0.001d 0.738 ± 0.001b2.873 ± 0.011b 0.005 0
    FCR824.338 ± 0.109ab 0.816 ± 0.111bcd25.154 ± 0.190ab
    FCR3624.323 ± 0.116ab 0.799 ± 0.061cde25.122 ± 0.128ab
    FCR2523.896 ± 0.500bc 0.933 ± 0.026ab24.829 ± 0.526b
    FCR523.617 ± 0.164cd0.960 ± 0.041a24.578 ± 0.204bc
    FCR1323.411 ± 0.145cd 0.763 ± 0.043de24.174 ± 0.139cd0.267 ± 0.003b 0.729 ± 0.003c2.725 ± 0.048d 0.003 7
    FCR1523.370 ± 0.049cd 0.738 ± 0.096def24.108 ± 0.145cd
    FCR2423.248 ± 0.022de 0.666 ± 0.143ef23.914 ± 0.124d
    FCR123.206 ± 0.432de 0.733 ± 0.089def23.938 ± 0.371cd
    FCR322.708 ± 0.566ef 0.898 ± 0.029abc23.606 ± 0.541de
    FCR3222.385 ± 0.426fg 0.752 ± 0.048de23.137 ± 0.395ef
    WT22.042 ± 0.337g 0.845 ± 0.046abcd22.887 ± 0.331fg0.259 ± 0.002cd0.736 ± 0.002b2.841 ± 0.024bc0.004 3
    FCR222.016 ± 0.356g 0.669 ± 0.058ef22.685 ± 0.380fg0.262 ± 0.001c 0.734 ± 0.001b2.796 ± 0.017c 0.004 4
    FCR3322.010 ± 0.497g 0.674 ± 0.037ef22.683 ± 0.534fg
    FCR2721.772 ± 0.579g 0.611 ± 0.055f 22.383 ± 0.571g
    注:“—” 代表未测定的数据;表中不同字母表示在0.05水平上差异显著;表中数据表示形式为均值 ± 标准差。下同。Notes: “—” stands for unmeasured values. Different letters mean significant difference at P < 0.05 level; data in the table are mean ± standard deviation. The same below.
    下载: 导出CSV

    表  3   BpCCR1株系纤维长、宽及基本密度多重比较

    Table  3   Multiple comparisons of fiber length, width and basic density of BpCCR1 transgenic lines

    基因
    Gene
    株系
    Line
    木纤维 Wood fiber基本密度
    Basic density/(g·cm− 3)
    长 Length/μm宽 Width/μm长/宽 Length/width
    正义链 SenseCR15661.2 ± 55.5b14.4 ± 2.2b46.7 ± 3.8b0.365 5 ± 0.001 1d
    CR13657.5 ± 42.4bc14.9 ± 2.3b45.0 ± 3.8b0.392 2 ± 0.001 5b
    CR4637.0 ± 52.4c14.2 ± 2.1b45.7 ± 3.9b0.382 0 ± 0.003 9c
    CR11652.4 ± 37.9bc14.7 ± 2.5b45.4 ± 4.7b0.382 9 ± 0.008 9c
    WT650.4 ± 38.8bc16.1 ± 1.8a40.8 ± 2.3c0.381 0 ± 0.001 3c
    CR8798.3 ± 48.2a15.2 ± 1.9b53.4 ± 3.9a0.423 5 ± 0.006 7a
    反义链 AntisenseFCR11619.6 ± 38.8cd15.3 ± 1.9def41.2 ± 5.4a0.387 7 ± 0.004 5bcd
    FCR8622.2 ± 37.1cd15.4 ± 1.9def41.0 ± 5.3a0.371 9 ± 0.001 3g
    FCR36605.9 ± 43.9de16.7 ± 2.1bc36.5 ± 3.6b0.382 1 ± 0.007 9def
    FCR25562.3 ± 29.9f15.1 ± 1.5ef37.5 ± 3.9b0.376 4 ± 0.005 2fg
    FCR5587.1 ± 37.0e16.3 ± 2.8bcde37.0 ± 5.9b0.387 4 ± 0.002 1bcd
    FCR13469.6 ± 30.9h13.5 ± 1.9g35.3 ± 4.8bc0.411 0 ± 0.002 6a
    FCR15638.1 ± 31.9bc17.4 ± 2.7b37.3 ± 4.9b0.381 6 ± 0.005 3def
    FCR24610.4 ± 58.4d15.1 ± 2.2f41.1 ± 5.3a0.378 0 ± 0.000 4efg
    FCR1708.6 ± 55.4a17.3 ± 2.6b42.3 ± 4.8a0.373 3 ± 0.003 0fg
    FCR3559.2 ± 51.5f16.0 ± 2.9cdef35.9 ± 6.0bc0.379 1 ± 0.001 9defg
    FCR32544.7 ± 37.6f16.3 ± 2.1bcd33.7 ± 4.4c0.386 0 ± 0.007 9cde
    WT650.4 ± 38.8b16.1 ± 1.9cdef40.8 ± 4.3a0.381 0 ± 0.001 3def
    FCR2640.1 ± 43.9bc15.6 ± 2.9cdef42.6 ± 4.8a0.395 6 ± 0.008 0b
    FCR33609.3 ± 40.5d16.6 ± 2.0bc37.2 ± 4.5b0.385 7 ± 0.000 3cde
    FCR27496.8 ± 37.9g18.5 ± 2.2a27.2 ± 3.6d0.394 0 ± 0.005 7bc
    下载: 导出CSV

    表  4   BpCCR1基因株系树高、地径、胸径及材积多重比较

    Table  4   Multiple comparisons of tree height, ground diameter, DBH and volume of BpCCR1 transgenic lines

    基因 Gene   株系 Line树高 Tree height/m地径 Ground diameter/mm胸径 DBH/mm材积 Volume/cm3
    正义链 SenseCR13421.5 ± 21.5a32.4 ± 1.2ab16.3 ± 1.2b400.0 ± 32.2a
    CR4402.0 ± 11.5ab33.2 ± 1.3a17.7 ± 0.8ab447.3 ± 30.5a
    CR15388.3 ± 26.4abc30.3 ± 0.9ab18.0 ± 0.9ab446.0 ± 39.5a
    WT368.8 ± 24.8bc28.1 ± 1.6b16.7 ± 0.8b374.0 ± 20.8a
    CR11352.0 ± 10.2cd30.1 ± 0.2ab19.6 ± 1.0a473.3 ± 26.8a
    CR8310.5 ± 13.5d28.3 ± 0.9b13.8 ± 0.8c217.6 ± 31.8b
    反义链 AntisenseFCR2467.5 ± 14.5a39.1 ± 1.7a25.1 ± 1.4a993.4 ± 41.4a
    FCR11460.7 ± 16.2ab36.1 ± 2.9abc23.8 ± 0.6a889.3 ± 33.8b
    FCR8440.5 ± 12.5abc38.4 ± 2.5a20.0 ± 1.2b612.6 ± 28.9c
    FCR36432.5 ± 16.5bc31.7 ± 1.7cde17.7 ± 1.0cd483.5 ± 40.8de
    FCR33420.3 ± 6.7cd33.4 ± 0.5bcd19.7 ± 0.5b571.3 ± 20.4cd
    FCR27410.0 ± 10.0cd37.5 ± 2.2ab20.5 ± 1.3b597.4 ± 47.8c
    FCR32396.0 ± 6.0de37.1 ± 0.6ab18.8 ± 0.0bc489.6 ± 4.9de
    FCR5390.7 ± 17.8def29.6 ± 2.5de16.9 ± 0.7cde398.3 ± 27.4ef
    FCR1390.5 ± 12.5def30.2 ± 0.8de16.7 ± 0.6de391.6 ± 21.4ef
    FCR15389.0 ± 0.0def30.5 ± 0.0de17.0 ± 0.0cde400.9 ± 0.0ef
    FCR24373.0 ± 7.0ef34.3 ± 1.0abcd17.8 ± 1.3cd421.6 ± 38.1ef
    WT368.8 ± 24.8ef28.1 ± 1.6ef16.7 ± 0.8de374.0 ± 40.8f
    FCR3356.7 ± 10.8f23.9 ± 1.7f11.9 ± 0.6g191.1 ± 8.6g
    FCR25310.0 ± 5.0g30.4 ± 2.1de15.5 ± 0.5ef268.5 ± 11.8g
    FCR13306.0 ± 36.1g31.5 ± 1.3cde14.3 ± 1.6f233.9 ± 43.2g
    下载: 导出CSV

    表  5   特征根及标准化特征向量

    Table  5   Characteristic roots and standardized eigenvectors

    主成分
    Main component
    特征根
    Characteristic root
    方差贡献率
    Variance contribution rate/%
    累积贡献率
    Cumulative contribution rate/%
    性状
    Trait
    因子载荷1
    Factor loading 1
    特征向量1
    Standardized eigenvector 1
    因子载荷2
    Factor loading 2
    特征向量2
    Standardized eigenvector 2
    Y12.85247.52647.526树高
    Tree height (X1)
    0.9280.549 5− 0.003− 0.002 5
    Y21.40223.37370.900胸径
    DBH (X2)
    0.9270.548 9 0.278 0.234 8
    Y30.92915.48286.382材积
    Volume (X3)
    0.9490.561 9 0.275 0.232 3
    Y40.60210.03896.420总木质素含量
    Total lignin content (X4)
    0.2370.140 3− 0.766− 0.646 9
    Y50.203 3.39199.811纤维长/宽
    Fiber length/
    width (X5)
    − 0.155 − 0.091 8 0.404 0.341 2
    Y60.011 0.189100.000 密度
    Density (X6)
    − 0.386 − 0.228 6 0.706 0.596 3
    下载: 导出CSV

    表  6   参试株系综合评价

    Table  6   Comprehensive evaluation of each tested lines

    株系 
    Line 
    标准分 Standardized valueY1排名
    Rank
    Y2排名
    Rank
    X1X2X3X4X5X6
    WT− 0.442 3− 0.375 1− 0.453 0− 0.889 70.123 7− 0.369 8− 0.755 1160.205 08
    CR40.273 2− 0.064 3− 0.088 2− 0.298 70.982 9− 0.288 1− 0.001 090.320 57
    CR8− 1.698 6− 1.323 3− 1.230 8− 1.636 22.334 02.859 3− 3.448 8202.967 41
    CR11− 0.804 30.553 20.040 8− 0.733 70.933 9− 0.223 6− 0.253 0140.801 34
    CR130.693 4− 0.520 5− 0.323 7− 0.056 60.854 60.482 0− 0.283 1150.416 56
    CR15− 0.021 30.037 8− 0.094 80.095 11.150 5− 1.545 10.216 78− 0.603 413
    FCR10.025 4− 0.372 2− 0.365 30.195 10.381 9− 0.951 9− 0.185 713− 0.735 914
    FCR21.684 72.323 22.627 7− 1.097 70.432 90.735 13.315 712.447 92
    FCR3− 0.703 7− 1.912 8− 1.362 6− 0.147 3− 0.748 8− 0.510 7− 2.037 518− 1.228 618
    FCR50.029 0− 0.326 5− 0.332 00.854 3− 0.559 7− 0.719 1− 0.014 310− 1.326 220
    FCR81.102 80.672 50.734 01.449 50.154 5− 1.054 01.817 73− 1.187 816
    FCR111.537 41.911 12.109 81.897 70.189 50.142 93.295 52− 0.142 811
    FCR13− 1.795 6− 1.153 0− 1.149 70.438 4− 0.861 91.909 3− 2.561 4190.027 610
    FCR15− 0.007 0− 0.286 7− 0.319 30.370 0− 0.497 0− 0.321 9− 0.169 511− 0.742 415
    FCR24− 0.351 8− 0.020 7− 0.216 00.170 40.163 6− 0.596 3− 0.180 812− 0.464 212
    FCR25− 1.709 4− 0.776 8− 0.977 41.113 5− 0.469 80.119 4− 1.742 817− 1.214 617
    FCR270.445 60.822 40.658 3− 1.409 0− 2.277 50.615 70.936 840.846 53
    FCR320.143 90.277 50.122 0− 0.631 6− 1.131 00.010 70.312 770.122 29
    FCR330.668 30.590 30.528 3− 1.099 3− 0.523 0− 0.009 80.884 150.786 55
    FCR360.930 4− 0.056 20.091 91.415 8− 0.633 3− 0.284 00.853 86− 1.295 519
    下载: 导出CSV
  • [1] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5):838−858.

    Lu Y, Wei X Y, Zong Z M, et al. Structural investigation and application of lignins[J]. Progress in Chemistry, 2013, 25(5): 838−858.

    [2] 胡可, 严雪锋, 栗丹, 等. 沉默CCRCAD基因培育低木质素含量转基因多年生黑麦草[J]. 草业学报, 2013, 22(5):72−83. doi: 10.11686/cyxb20130509

    Hu K, Yan X F, Li D, et al. Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD[J]. Acta Prataculturae Sinica, 2013, 22(5): 72−83. doi: 10.11686/cyxb20130509

    [3]

    Chen H C, Song J, Wang J P, et al. Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid: coenzyme A ligase protein complex formation, regulation, and numerical modeling[J]. Plant Cell, 2014, 26(3): 876−893. doi: 10.1105/tpc.113.119685

    [4] 高原, 陈信波, 张志扬. 木质素生物合成途径及其基因调控的研究进展[J]. 生物技术通报, 2007(2):47−51. doi: 10.3969/j.issn.1002-5464.2007.02.011

    Gao Y, Chen X B, Zhang Z Y. Advances in research on lignin biosynthesis and its molecular regulation[J]. Biotechnology Bulletin, 2007(2): 47−51. doi: 10.3969/j.issn.1002-5464.2007.02.011

    [5] 国增超, 侯静, 郭炜, 等. 簸箕柳材性性状株内纵向变异的趋势分析[J]. 南京林业大学学报(自然科学版), 2014, 38(5):149−152.

    Guo Z C, Hou J, Guo W, et al. Variation trends of wood property along stem in Salix suchowensis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(5): 149−152.

    [6]

    Lacombe E, Hawkins S, Van D J, et al. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships[J]. The Plant Journal, 1997, 11(3): 429−441. doi: 10.1046/j.1365-313X.1997.11030429.x

    [7] 李波, 梁颖, 柴友荣. 植物肉桂酰辅酶A还原酶(CCR)基因的研究进展[J]. 分子植物育种, 2006, 4(增刊1):55−65.

    Li B, Liang Y, Chai Y R. Achievements in research on plant cinnamoyl-CoA reductase(CCR) genes[J]. Molecular Plant Breeding, 2006, 4(Suppl.1): 55−65.

    [8] 李魏, 谭晓风, 陈鸿鹏. 植物肉桂酰辅酶A还原酶基因的结构功能及应用潜力[J]. 经济林研究, 2009, 27(1):7−12. doi: 10.3969/j.issn.1003-8981.2009.01.002

    Li W, Tan X F, Chen H P. Structure, function and application potential of cinnamoyl-CoA reductase (CCR) gene in plant[J]. Nonwood Forest Research, 2009, 27(1): 7−12. doi: 10.3969/j.issn.1003-8981.2009.01.002

    [9]

    Wadenback J, Arnold S V, Egertsdotter U, et al. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR)[J]. Transgenic Research, 2008, 17(3): 379−392. doi: 10.1007/s11248-007-9113-z

    [10]

    Rest V D B. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools[J]. Journal of Experimental Botany, 2006, 57(6): 1399−1411. doi: 10.1093/jxb/erj120

    [11] 秋增昌, 王海毅. 木质素的应用研究现状与进展[J]. 西南造纸, 2004, 33(3):29−33.

    Qiu Z C, Wang H Y. Current status and progress of application research of lignin[J]. Southwest Pulp and Paper, 2004, 33(3): 29−33.

    [12] 刘宇, 徐焕文, 尚福强, 等. 16年生白桦种源变异及区划[J]. 林业科学, 2016, 52(9):48−56.

    Liu Y, Xu H W, Shang F Q, et al. Variation and zoning of 16-year-old Betula platyphylla provenance[J]. Scientia Silvae Sinicae, 2016, 52(9): 48−56.

    [13] 韦睿. 白桦木质素BpCCR1基因的克隆及遗传转化[D].哈尔滨: 东北林业大学, 2012.

    Wei R. Gene clone and genetic transformation of cinnamoyl-CoA reductase gene 1 in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2012.

    [14] 王朔, 黄海娇, 杨光, 等. 转基因白桦杂种T1代的生长发育及AP1基因的遗传分析[J]. 北京林业大学学报, 2016, 38(9):1−7.

    Wang S, Huang H J, Yang G, et al. Growth and developmental analysis of T1 generation from BpAP1 transgenic birch[J]. Journal of Beijing Forestry University, 2016, 38(9): 1−7.

    [15] 黄海娇, 李慧玉, 姜静. BpAP1转基因白桦中开花相关基因的时序表达[J]. 东北林业大学学报, 2017, 45(1):1−6. doi: 10.3969/j.issn.1000-5382.2017.01.001

    Huang H J, Li H Y, Jiang J. Quantitative expression analysis of several flowering-related genes in BpAP1 transgenic birch (Betula platyphylla × Betula pendula)[J]. Journal of Northeast Forestry University, 2017, 45(1): 1−6. doi: 10.3969/j.issn.1000-5382.2017.01.001

    [16]

    Lu S, Li Q, Wei H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. PNAS, 2013, 110(26): 10848−10853. doi: 10.1073/pnas.1308936110

    [17]

    Yeh T F, Yamada T, Capanema E, et al. Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy[J]. Journal of Agricultural and Food Chemistry, 2005, 53(9): 3328−3332. doi: 10.1021/jf0480647

    [18] 刘超逸, 刘桂丰, 方功桂, 等. 四倍体白桦木材纤维性状比较及优良母树选择[J]. 北京林业大学学报, 2017, 39(2):9−15.

    Liu C Y, Liu G F, Fang G G, et al. Comparison of tetraploid Betula platyphylla wood fiber traits and selection of superior seed trees[J]. Journal of Beijing Forestry University, 2017, 39(2): 9−15.

    [19] 穆怀志, 刘桂丰, 姜静, 等. 白桦半同胞子代生长及木材纤维性状变异分析[J]. 东北林业大学学报, 2009, 37(3):1−3. doi: 10.3969/j.issn.1000-5382.2009.03.001

    Mu H Z, Liu G F, Jiang J, et al. Variations of growth and fiber properties of half-sib family progeny of Betula platyphylla[J]. Journal of Northeast Forestry University, 2009, 37(3): 1−3. doi: 10.3969/j.issn.1000-5382.2009.03.001

    [20] 冯德君, 张文辉, 赵泾峰, 等. 陕西不同天然类型栓皮栎木材的构造与性质[J]. 西北农林科技大学学报(自然科学版), 2014, 42(8):93−98.

    Feng D J, Zhang W H, Zhao J F, et al. Structures and properties of different natural Quercus variabilis woods in Shaanxi[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(8): 93−98.

    [21] 宁坤, 刘笑平, 林永红, 等. 白桦子代遗传变异与纸浆材优良种质选择[J]. 植物研究, 2015, 35(1):39−46. doi: 10.7525/j.issn.1673-5102.2015.01.008

    Ning K, Liu X P, Lin Y H, et al. Germplasm selection of the progeny genetic variation and superior pulpwood of Betula platyphylla[J]. Bulletin of Botanical Research, 2015, 35(1): 39−46. doi: 10.7525/j.issn.1673-5102.2015.01.008

    [22] 刘宇, 徐焕文, 尚福强, 等. 3个地点白桦种源试验生长稳定性分析[J]. 北京林业大学学报, 2016, 38(5):50−57.

    Liu Y, Xu H W, Shang F Q, et al. Growth stability of Betula platyphylla provenances from three sites[J]. Journal of Beijing Forestry University, 2016, 38(5): 50−57.

    [23] 蔺占兵. 小麦肉桂酰辅酶A还原酶(CCR)基因的分离和功能分析[D]. 北京: 中国科学院植物研究所, 2003.

    Lin Z B. Cloning and functonal analysis of cinnamoyl-CoA reductase(CCR) gene from Triticum aesticum L. cv. H4564[D]. Beijing: Institute of Botany, the Chinese Academy of Sciences, 2003.

    [24]

    Xu W, Xu H, Li K, et al. The R-loop is a common chromatin feature of the Arabidopsis genome[J]. Nature Plants, 2017, 3(9): 704−714. doi: 10.1038/s41477-017-0004-x

    [25] 谢兆辉. 天然反义转录物及其调控基因的表达机制[J]. 遗传, 2010, 32(2):122−128. doi: 10.3760/cma.j.issn.1673-4386.2010.02.014

    Xie Z H. Natural antisense transcript and its mechanism of gene regulation[J]. Hereditas, 2010, 32(2): 122−128. doi: 10.3760/cma.j.issn.1673-4386.2010.02.014

    [26]

    Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome[J]. Science, 2005, 309: 1564−1566. doi: 10.1126/science.1112009

    [27] 毕延震, 黄捷, 姜黎. 天然反义RNA (NATs): 基因表达的重要调控分子[J]. 中国生物化学与分子生物学报, 2010, 26(9):788−795.

    Bi Y Z, Huang J, Jiang L. Natural antisense transcripts (NATs): important regulatory molecules upon gene expression[J]. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(9): 788−795.

    [28]

    Leple J, Dauwe R, Morreel K, et al. Down regulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J]. Plant Cell, 2007, 19(11): 3669−3691. doi: 10.1105/tpc.107.054148

    [29]

    Prashant S, Sunita M S, Pramod S, et al. Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco[J]. Plant Cell Reports, 2011, 30(12): 2215−2231. doi: 10.1007/s00299-011-1127-6

    [30] 安培钧, 邱荣, 刘丽萍. 尤金杨等九种杨树木材纤维形态值及对制浆造纸适宜性的研究[J]. 西北农林科技大学学报(自然科学版), 1985, 3(2):14−31. doi: 10.3321/j.issn:1671-9387.1985.02.002

    An P J, Qiu R, Liu L P. Research on wood-fibre morphological value of nine kinds of populars-Populus × euramericana (Dode) Guinier cv " Eugenei” etc. and their suitability of paper-pulp for paper-making[J]. Journal of Northwest A&F University (Natural Science Edition), 1985, 3(2): 14−31. doi: 10.3321/j.issn:1671-9387.1985.02.002

    [31] 任建中, 刘长青, 汪清锐, 等. 杨树纸浆材优良无性系选择方法的研究[J]. 北京林业大学学报, 2003, 25(4):25−29. doi: 10.3321/j.issn:1000-1522.2003.04.006

    Ren J Z, Liu C Q, Wang Q R, et al. Methods to select superior clones of poplar pulpwood[J]. Journal of Beijing Forestry University, 2003, 25(4): 25−29. doi: 10.3321/j.issn:1000-1522.2003.04.006

    [32] 刘宇, 徐焕文, 姜静, 等. 基于种子活力及苗期生长性状的白桦四倍体半同胞家系初选[J]. 北京林业大学学报, 2014, 36(2):74−80.

    Liu Y, Xu H W, Jiang J, et al. Family selection of birch tetraploid half-sibling based on seed vigor and seedling growth traits[J]. Journal of Beijing Forestry University, 2014, 36(2): 74−80.

  • 期刊类型引用(6)

    1. 莫崇杏,董明亮,李荣生,余纽,郑显澄,杨锦昌. 米老排杂交子代苗期生长性状遗传变异及选择. 森林与环境学报. 2023(05): 555-560 . 百度学术
    2. Shuchun Li,Jiaqi Li,Yanyan Pan,Xiange Hu,Xuesong Nan,Dan Liu,Yue Li. Variation analyses of controlled pollinated families and parental combining ability of Pinus koraiensis. Journal of Forestry Research. 2021(03): 1005-1011 . 必应学术
    3. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 . 百度学术
    4. 秦光华,宋玉民,乔玉玲,于振旭,彭琳. 旱柳苗高年生长与气象因子的灰色关联度. 东北林业大学学报. 2019(05): 42-45+51 . 百度学术
    5. 李峰卿,陈焕伟,周志春,楚秀丽,徐肇友,肖纪军. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选. 植物资源与环境学报. 2018(02): 57-65 . 百度学术
    6. 张素芳,张磊,赵佳丽,张莉,张含国. 长白落叶松小RNA测序和其靶基因预测. 北京林业大学学报. 2016(12): 64-72 . 本站查看

    其他类型引用(6)

图(3)  /  表(6)
计量
  • 文章访问数:  2045
  • HTML全文浏览量:  402
  • PDF下载量:  45
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-03-04
  • 网络出版日期:  2019-05-30
  • 发布日期:  2019-05-31

目录

    /

    返回文章
    返回