高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

榫卯智能化加工代码生成系统的开发

汤琳 关惠元 王宁 代鹏飞

汤琳, 关惠元, 王宁, 代鹏飞. 榫卯智能化加工代码生成系统的开发[J]. 北京林业大学学报, 2019, 41(3): 134-142. doi: 10.13332/j.1000-1522.20180414
引用本文: 汤琳, 关惠元, 王宁, 代鹏飞. 榫卯智能化加工代码生成系统的开发[J]. 北京林业大学学报, 2019, 41(3): 134-142. doi: 10.13332/j.1000-1522.20180414
Tang Lin, Guan Huiyuan, Wang Ning, Dai Pengfei. Development of intelligent programming system for numerical controlled mortise and tenon joint[J]. Journal of Beijing Forestry University, 2019, 41(3): 134-142. doi: 10.13332/j.1000-1522.20180414
Citation: Tang Lin, Guan Huiyuan, Wang Ning, Dai Pengfei. Development of intelligent programming system for numerical controlled mortise and tenon joint[J]. Journal of Beijing Forestry University, 2019, 41(3): 134-142. doi: 10.13332/j.1000-1522.20180414

榫卯智能化加工代码生成系统的开发

doi: 10.13332/j.1000-1522.20180414
基金项目: 国家林业公益性行业科研专项(201204700202),江苏省高校优势学科建设工程资助项目PAPD
详细信息
    作者简介:

    汤琳,博士生。主要研究方向:家具设计与工程。Email:106330176@qq.com 地址:210037 江苏省南京市玄武区龙蟠路159号南京林业大学家居与工业设计学院

    责任作者:

    关惠元,教授,博士生导师。主要研究方向:家具设计及理论、人体工程学、家具生产制造。Email:guanhuiyuan@njfu.com.cn 地址:同上

  • 中图分类号: TS657

Development of intelligent programming system for numerical controlled mortise and tenon joint

  • 摘要: 目的榫卯加工代码的制作是实现榫卯数控加工的关键,但传统数控编程存在难度大、效率低、过度依赖CAM软件等问题,因此有必要开发一款高效的榫卯智能化加工代码生成系统。方法本研究首先利用成组技术对榫卯进行分组,提取各组榫卯的尺寸参数,建立参数化的工件数据库。然后,通过对大量工艺经验和已有榫卯配合相关研究成果的函数表达,实现了榫卯尺寸智能匹配。接着,利用模板技术建立了每一类榫卯零件的参数化加工代码模板,并组建了刀具路径代码模块。运用表达式驱动算法完成对代码模板的实例化,由加工参数的变化带动模板内数值的变动,进而自动生成NC代码,实现了榫卯加工数控程序的参数化、模块化设计。最后,基于后处理原理,通过外接程序的方式完成坐标补偿值的自动计算与添加,实现了加工代码后处理自动补偿。在此基础上,运用可视化的编程语言VB开发了一款榫卯智能化加工代码生成系统。结果结合改良型粽角榫零件加工代码的制作,验证了系统的可行性。通过实际加工以及对被加工零件尺寸的检验,验证了系统生成加工代码的准确性。结论本系统具有操作简单、质量稳定等特点,实现了榫卯加工编程工序的简化和代码的自动生成,极大地提高了编程效率,有助于推动榫卯加工由经验型向知识型的转变。

     

  • 图  1  榫卯尺寸参数关系

    Figure  1.  Dimension parameter relationship of mortise and tenon joint

    图  2  某榫孔加工NC代码模块划分示意图

    Figure  2.  Schematic diagram of NC code module division of one mortise

    图  3  切削运动模块加工点数值参数化

    W. 材料宽度/mm; D. 材料厚度/mm; W1. 边距/mm; W2. 榫偏置/mm; W4. 榫肩/mm; A1. 榫眼宽度/mm; B1. 榫眼高度/mm; d1. 刀号为1的铣刀的直径/mm; H01. 刀号为1的铣刀每次下刀深度/mm; H02. 刀号为2的铣刀每次下刀深度/mm; ΔA1. 榫眼宽度与榫头厚度方向配合量/mm; ΔB1. 榫眼高度与榫头宽度方向配合量/mm。W, material width/mm; D, material thickness/mm; W1, margin/mm; W2, offset of mortise/mm; W4, shoulder of mortise/mm; A1, width of mortise/mm; B1, height of mortise/mm; d1, diameter of the milling cutter with cutter No. 1/mm; H01, per cutting depth of milling cutter with cutter No. 1/mm; H02, per cutting depth of milling cutter with cutter No. 2/mm; ΔA1, fit between the width of mortise and the thickness of tenon/mm; ΔB1, fit between the height of mortise and the width of tenon/mm.

    Figure  3.  Numerical parameterization of working points in cutting movement module

    图  4  榫卯自动化加工代码生成系统功能模块

    Figure  4.  Functional modules of automatic programming system for numerical controlled mortise and tenon joint

    图  5  榫卯智能化加工代码生成系统流程图

    ① 榫卯管理子系统Subsystem of mortise and tenon joint management;② 刀具管理子系统Subsystem of tool management;③ 机床管理子系统Subsystem of machine tool management;④ 代码输出模块File output module

    Figure  5.  Flow chart of intelligent programming system for numerical controlled mortise and tenon joint

    图  6  榫卯参数输入功能界面的弹窗效果

    Figure  6.  Popups on interface of parameters input functional modules

    图  7  系统文件输出功能模块界面

    Figure  7.  System interface of file output functional modules

    图  8  部分参数输入界面和NC代码

    Figure  8.  Part NC codes and parameter input interfaces

    图  9  改良型粽角榫大边模型和尺寸图

    a为上边距,b为榫头厚度,L为榫头宽度,D为榫头长度,E为榫眼宽度,F为边距,G为榫眼高度,H为榫眼深度。a is top margin,b is joint thickness, L is joint width, D is joint length,E is mortise width, F is margin, G is mortise height, and H is mortise depth.

    Figure  9.  Model and dimensional drawing of improved three-way mitered joint’s long edge

    图  10  实际加工的改良型粽角榫大边试件

    Figure  10.  Actual machining specimen of improved three-way mitered joint’s long edge

    表  1  部分榫卯尺寸的工艺要求和函数表达

    Table  1.   Technological requirements and function expressions of mortise and tenon joint

    工艺经验
    Process experience
    函数表达
    Function expression
    备注
    Remarks
    榫眼宽度约为卯材厚的1/3.5 ~ 1/4
    Thickness of mortise is about 1/3.5−1/4 of material
     D/4 ≤ AD/3.5 A为榫眼宽度,D为卯材厚
    A is mortise width, and D is material thickness
    榫眼宽度不小于铣刀直径
    Mortise width is not less than milling cutter diameter
     Ad d为铣刀直径
    d is milling cutter diameter
    双直榫榫间距不小于铣刀直径
    Spacing between two tenons is not less than the diameter of the milling cutter
     W3d W3为双榫榫间距
    W3 is spacing between two tenons
    粽角榫立料上两榫头间最小距离不小于铣刀直径
    Spacing between two tenons on vertical material of three-way mitered joint is not less than the diameter of the milling cutter
     a ≤ 1.414 2 × (WW4
    W5W6b) − d
    W4为左边距,W5为右边距,W6为榫偏置,a为榫头厚度,b为榫头宽度
    W4 is left margin, W5 is right margin, W6 is joint offset, a is joint thickness, and b is joint width
    下载: 导出CSV

    表  2  榫卯加工切削运动模块的一般流程和固定格式

    Table  2.   General workflow and fixed format for cutting motion module of mortise and tenon joint processing

            流程 Flow 固定格式 Fixed format
    刀具定位 Cutter positioning G00 G90 X(…)/Y(…)
    刀轴旋转 Cutter shaft rotation A(…)/B(…)/C(…)
    主轴转速确定 Spindle speed determination S(…) M03
    快进至工件表面 Fast forward to workpiece surface X(…)/Y(…)/Z(…)
    加工 Processing G01/G02/G03 X(…)/Y(…)/Z(…) F(…)
    抬刀 Cutter lifting G00 X(…)/Y(…)/Z(…)
    退刀 Tool retracting G00 X(…)/Y(…)/Z(…)
    注:(…)表示需要参数化的数值。Note: (…) means value that needs to be parameterized.
    下载: 导出CSV

    表  3  实际加工大边试件各尺寸与模型尺寸对比

    Table  3.   Size contrasts of actual value of the long side and model value mm

    尺寸编号 Size No. a b L D E F G H
    模型尺寸值 Model size value 8.00 8.10 22.20 13.00 8.10 6.00 22.00 13.00
    实际加工尺寸值 Actual size value 8.04 8.03 22.16 13.09 8.04 6.01 22.05 13.08
    误差 Error 0.04 − 0.07 − 0.04 0.09 − 0.06 0.01 0.05 0.08
    注:误差为实际加工尺寸值减去模型尺寸值。Note: actual size value minus model size value is error.
    下载: 导出CSV
  • [1] 薛坤. 传统家具榫卯结构的性能与设计进化研究[D]. 南京: 南京林业大学, 2013: 44−45.

    Xue K. Analysis on the structural performance of traditional Chinese furniture and the design improvement of mortise and tenon joint[D]. Nanjing: Nanjing Forestry University, 2013: 44−45.
    [2] 赵凯, 王晓兵, 李耀华. 基于PowerMILL平台智能化数控自动编程技术研究[J]. CAD/CAM与制造业信息化, 2014(9):35−38. doi: 10.3969/j.issn.1671-8186.2014.09.027

    Zhao K, Wang X B, Li Y H. Study on intelligent automatic programming technology based on the PowerMILL[J]. Digital Manufacturing Industry, 2014(9): 35−38. doi: 10.3969/j.issn.1671-8186.2014.09.027
    [3] 张端, 王双永. 木构件模块化加工参数化设计[J]. 木材加工机械, 2015, 26(5):27−29.

    Zhang R, Wang S Y. Parametric design on modular machining of wood components[J]. Wood Processing Machinery, 2015, 26(5): 27−29.
    [4] 项前. 可重构的纺织品智能工艺设计与虚拟加工方法及应用研究[D]. 上海: 东华大学, 2011: 16−17.

    Xiang Q. Research and application on method of reconfigurable textile intelligent process planning and virtual machining[D]. Shanghai: Donghua University, 2011: 16−17.
    [5] 严婕, 林彬彬, 朱礼智, 等. 数控加工机床与加工中心在家具制造业中的应用[J]. 林业机械与木工设备, 2014, 24(6):56−57. doi: 10.3969/j.issn.2095-2953.2014.06.023

    Yan J, Lin B B, Zhu L Z, et al. Application of CNC machining lathes and machining centers in the furniture manufacturing industry[J]. Forestry Machinery & Woodworking Equipment, 2014, 24(6): 56−57. doi: 10.3969/j.issn.2095-2953.2014.06.023
    [6] 马岩. 我国数控木工机械的发展现状及自动化技术的研发方向[J]. 林业机械与木工设备, 2012, 40(1):4−9. doi: 10.3969/j.issn.2095-2953.2012.01.001

    Ma Y. Development status of China ’s CNC woodworking machinery and the development direction of automation technology[J]. Forestry Machinery & Woodworking Equipment, 2012, 40(1): 4−9. doi: 10.3969/j.issn.2095-2953.2012.01.001
    [7] 胡文刚, 白珏, 关惠元. 一种速生材榫接合节点增强方法[J]. 北京林业大学学报, 2017, 39(4):101−107.

    Hu W G, Bai J, Guan H Y. Investigation on a method of increasing mortise and tenon joint strength of a fast growing wood[J]. Journal of Beijing Forestry University, 2017, 39(4): 101−107.
    [8] 张远群, 王文宁. 小径材家具榫卯结构的强度研究[J]. 林产工业, 2013, 43(4):24−27. doi: 10.3969/j.issn.1001-5299.2013.04.006

    Zhang Y Q, Wang W N. Strength investigation of mortise and tenon joint in small-diameter logs furniture[J]. China Forest Products Industry, 2013, 43(4): 24−27. doi: 10.3969/j.issn.1001-5299.2013.04.006
    [9] Efe H, Zhang J L, Erdil Y Z, et al. Moment capacity of traditional and alternative T-type end to side grain furniture joints[J]. Forest Products Journal, 2005, 55(5): 45−52.
    [10] 钟世禄, 关惠元. 椭圆榫过盈配合量与木材密度的关系[J]. 林业科技开发, 2007(2):57−59. doi: 10.3969/j.issn.1000-8101.2007.02.018

    Zhong S L, Guan H Y. Relationship between optmial value of interference fit and wood density in oval tenon joint[J]. Journal of Forestry Engineering, 2007(2): 57−59. doi: 10.3969/j.issn.1000-8101.2007.02.018
    [11] 蒋占四. 基于Modelica模型的参数优化及推理求解研究[D]. 武汉: 华中科技大学, 2008.

    Jiang Z S. Parameter optimization and inference solving for models based on Modelica[D]. Wuhan: Huazhong University of Science and Technology, 2008.
    [12] 曹卫东, 阎春平, 郭奉民. 基于成组技术和标准模板的滚齿CNC自动编程[J]. 计算机集成制造系统, 2015, 21(1):195−203.

    Cao W D, Yan C P, Guo F M. CNC gear bobbing automatic programming based on group technology and standard template[J]. Computer Integrated Manufacturing Systems, 2015, 21(1): 195−203.
    [13] Sakamoto S, Inasaki I. Analysis of generating motion for five-axis machining centers[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1993, 59: 1553−1559.
    [14] Cheng H Y, She C H. Studies on the combination of the forward and reverse postprocessor for multi-axis machine tools[C]//Proceeding of the institution of mechanical engineers, part B. England: IME, 2002: 77.
    [15] 郑飂默. 基于通用运动模型的五轴机床后置处理[J]. 计算机集成制造系统, 2010, 16(5):1006−1011.

    Zheng L M. Postprocessor based on generalized kinematics model of five-axis machine tools[J]. Computer Integrated Manufacturing Systems, 2010, 16(5): 1006−1011.
    [16] 李庄. 五轴机床运动学通用建模理论研究及应用[D]. 成都: 西南交通大学, 2013.

    Li Z. Kinematic generic modeling theory for five-axis machine tool[D]. Chengdu: Southwest Jiaotong University, 2013.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  4770
  • HTML全文浏览量:  367
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-01-02
  • 网络出版日期:  2019-03-28
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回