高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油松人工林林隙天然更新及与环境相关性分析

罗桂生 马履一 贾忠奎 吴丹妮 迟明峰 张淑敏 赵贵娟

罗桂生, 马履一, 贾忠奎, 吴丹妮, 迟明峰, 张淑敏, 赵贵娟. 油松人工林林隙天然更新及与环境相关性分析[J]. 北京林业大学学报, 2019, 41(9): 59-68. doi: 10.13332/j.1000-1522.20180416
引用本文: 罗桂生, 马履一, 贾忠奎, 吴丹妮, 迟明峰, 张淑敏, 赵贵娟. 油松人工林林隙天然更新及与环境相关性分析[J]. 北京林业大学学报, 2019, 41(9): 59-68. doi: 10.13332/j.1000-1522.20180416
Luo Guisheng, Ma Lüyi, Jia Zhongkui, Wu Danni, Chi Mingfeng, Zhang Shumin, Zhao Guijuan. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59-68. doi: 10.13332/j.1000-1522.20180416
Citation: Luo Guisheng, Ma Lüyi, Jia Zhongkui, Wu Danni, Chi Mingfeng, Zhang Shumin, Zhao Guijuan. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59-68. doi: 10.13332/j.1000-1522.20180416

油松人工林林隙天然更新及与环境相关性分析

doi: 10.13332/j.1000-1522.20180416
基金项目: 国家重点研发计划(2017YFD0600501)
详细信息
    作者简介:

    罗桂生。主要研究方向:人工促进油松人工林天然更新。Email:469139476@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    马履一,教授,博士生导师。主要研究方向:森林培育。Email:maluyi@bjfu.edu.cn 地址:同上

Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation

  • 摘要: 目的油松为我国北方地区主要造林树种。通过探讨环境因子与油松更新苗生长的相关关系,阐明了油松人工林抚育间伐形成的林隙对其天然更新影响的内在机制。方法在油松人工纯林设置4种林隙等级,即林隙直径和冠层平均树高之比分别为L-I(0.75 H)、L-II(1.00 H)、L-III(1.25 H)(H为冠层均高)和对照(CK,林冠下),每种林隙等级设置3个重复,并根据边界木的平均冠幅将每个林隙分为林隙中心区域(B),林隙边缘区域(C)和林隙周边区域(D)。调查了油松更新状况,同时测量生长旺季的光合有效辐射、空气温度、空气湿度、土壤温度和土壤湿度等环境因子,在此基础上,分析了不同林隙等级下物种组成和生长状况的差异性,以及与环境因子的关系。结果结果表明:①所有林隙等级中油松更新苗数量均占绝大部分(> 82.6%),油松更新苗数量所占比例并没有显著差异(P > 0.05)。②林隙等级对总的更新苗平均密度、平均高度和平均当年高生长都有显著影响(P < 0.05),平均密度随着林隙面积的增大而减小,最大值为1.72株/m2;平均高度随林隙面积的增大而增大,最大值为120.41 cm;平均当年高生长最大值在L-II林隙中,为14.41 cm。③同一等级林隙内的不同区域对总的更新苗平均密度有显著影响(P < 0.05),且无论林隙大小,最大密度总是位于C区域,而更新苗当年高生长只有在L-II等级林隙内的不同区域间才有显著差异。④L-I和L-II等级林隙光合有效辐射与更新苗苗高和当年高生长均呈显著的正相关(P < 0.05),而总的更新苗密度与土壤温度只在L-I等级林隙达到了显著的负相关水平(P < 0.05),空气湿度和土壤含水量只在特定等级林隙中与部分更新特征显著相关。结论初步结论:油松人工林内,间伐产生的林隙对天然更新有明显的促进作用,而对植物物种组成影响不大;林隙的大小主要通过影响光合有效辐射对油松更新状况产生影响;所研究的5个环境因子中,林隙光合有效辐射和土壤温度是影响更新苗更新状况的主要因子。

     

  • 图  1  林隙分区示意图

    B代表林隙中心区域,C代表林隙边缘区域,D代表林隙周边区域,CR1代表朝林隙内冠幅半径,CR2代表朝林隙外冠幅半径,下同。B represents gap center area, C represents gap edge area, D represents gap surrounding area, CR1 represents crown radius inside gap, CR2 represents crown radius outside gap. Same as below.

    Figure  1.  Schematic of the partitioning of gap

    图  2  环境因子观测点示意图

    B代表林隙中心区域,C代表林隙边缘区域,D代表林隙周边区域,● 代表观测点。B represents gap center area, C represents gap edge area, D represents gap surrounding area, ● represents observation point.

    Figure  2.  Schematic of observation points of environmental factor

    表  1  各林隙样地的基本特征

    Table  1.   Basic characteristics of forest gap

    林隙号
    Forest gap No.
    扩展林隙面积
    Expanded gap area/m2
    坡度
    Slope degree/(°)
    坡向
    Slope aspect
    坡位
    Slope position
    海拔
    Altitude/m
    林隙形成方式
    Gap formation way
    林隙形成木
    Gap forming tree
    2 50.24 13 N 中上 Upper middle 800 间伐 Thinning 油松 Pinus tabuliformis
    3 63.62 14 N 中上 Upper middle 805 间伐 Thinning 油松 Pinus tabuliformis
    5 58.42 10 N 中上 Upper middle 794 间伐 Thinning 油松 Pinus tabuliformis
    1 110.00 8 N 中上 Upper middle 799 间伐 Thinning 油松 Pinus tabuliformis
    8 112.31 9 N 中上 Upper middle 798 间伐 Thinning 油松 Pinus tabuliformis
    9 100.00 9 N 中上 Upper middle 810 间伐 Thinning 油松 Pinus tabuliformis
    4 164.93 10 N 中上 Upper middle 796 间伐 Thinning 油松 Pinus tabuliformis
    6 175.93 11 N 中上 Upper middle 803 间伐 Thinning 油松 Pinus tabuliformis
    7 187.82 10 N 中上 Upper middle 800 间伐 Thinning 油松 Pinus tabuliformis
    郁闭林分
    Closed forest
    10 N 中上 Upper middle 800 间伐 Thinning 油松 Pinus tabuliformis
    下载: 导出CSV

    表  2  对照样方和不同等级林隙中更新植物树种组成及其数量

    Table  2.   Composition and number of plant species in different gap sizes and CK

    更新树种/株
    Regenerated tree species/plant
    样地类型 Forestland type
    ALLCKL-IL-IIL-III
    油松 Pinus tabuliformis 0.954 (1 652) 0.826 (119) 0.969 (371) 0.975 (597) 0.952 (565)
    白桦 Betula platyphylla 0.001 (2) 0.003 (2)
    山杏 Armeniaca sibirica 0.002 (3) 0.003 (1) 0.003 (2)
    榆树 Ulmus pumila 0.003 (6) 0.014 (2) 0.003 (1) 0.005 (3)
    蒙古栎 Quercus mongolica 0.007 (12) 0.007 (1) 0.008 (5) 0.010 (6)
    山楂 Crataegus pinnatifida 0.006 (11) 0.007 (1) 0.003 (1) 0.007 (4) 0.008 (5)
    毛榛 Corylus mandshurica 0.004 (7) 0.012 (7)
    鼠李 Rhamnus davurica 0.003 (6) 0.014 (2) 0.003 (1) 0.005 (3)
    Morus alba 0.001 (1) 0.003 (1)
    香薷 Elsholtzia ciliata 0.019 (32) 0.132 (19) 0.016 (6) 0.002 (1) 0.010 (6)
    注:ALL表示所有林隙和对照样地中植物的总和,CK、L-I、L-II和L-III分别为不同林隙等级。下同。括号内代表该等级林隙所对应的数量。Notes: ALL represents the species composition within all gap size classes and CK; CK, L-I, L-II and L-III indicate four different gap size classes, respectively. The same below. The parentheses represent the number of plants corresponding to the gap size.
    下载: 导出CSV

    表  3  不同林隙面积等级中油松更新苗(总的更新苗、幼苗和幼树)的平均密度、树高和当年高生长

    Table  3.   Mean density tree height and current height of Chinese pine regeneration (ALL, seedlings and saplings) in different forest gap size

    生长指标 Growth indicatorL-IL-IIL-IIICKPP value
    总的更新苗密度/(株·m− 2
    Total regenerated density/(plant·m− 2)
    1.72 ± 0.37B 1.60 ± 0.44B 1.01 ± 0.22A 0.28 ± 0.04A 0.040
    幼苗密度/(株·m− 2
    Seedling density/(plant·m− 2)
    1.13 ± 0.31 0.80 ± 0.33 0.39 ± 0.12 0.10 ± 0.01 0.060
    幼树密度/(株·m− 2
    Sapling density/(plant·m− 2)
    0.61 ± 0.07 0.80 ± 0.21 0.63 ± 0.13 0.60 ± 0.15 0.051
    树高
    Tree height/cm
    84.94 ± 2.45A 112.21 ± 2.93B 120.41 ± 2.76B 125.71 ± 8.99B 0.000
    当年高生长
    Current height growth/cm
    11.63 ± 0.71B 14.41 ± 0.41C 11.69 ± 0.16B 8.95 ± 1.09A 0.004
    注:表中数值表示平均值 ± 标准误差;不同大写字母表示不同林隙面积等级之间差异显著(P < 0.01)。下同。Notes: values are presented as the mean ± standard error. Means followed by different uppercase (P < 0.01) letters indicate significant differences among gap size classes. The same below.
    下载: 导出CSV

    表  4  同一林隙面积等级不同林隙区域中油松更新苗的平均密度、高度和当年高生长

    Table  4.   Mean density, height and current height of Chinese pine regeneration by gap sections of same gap sizes

    生长指标  
    Growth indicator  
    林隙等级
    Gap size
    B 区域
    Section B
    C 区域
    Section C
    D 区域
    Section D
    对照
    CK
    P
    P value
    L-I 0.75 ± 0.19A 2.33 ± 0.38B 2.12 ± 0.43B 0.42 ± 0.17A 0.005
    密度/(株·m− 2
    Density/(plant·m− 2)
    L-II 0.58 ± 0.19A 2.68 ± 0.64B 1.52 ± 0.29A 0.42 ± 0.17A 0.009
    L-III 0.43 ± 0.08A 1.47 ± 0.42B 1.01 ± 0.04A 0.42 ± 0.17A 0.030
    L-I 88.64 ± 3.64A 91.81 ± 3.42A 85.63 ± 3.39A 216.14 ± 13.51B 0.000
    树高
    Tree height/cm
    L-II 132.27 ± 4.59B 107.74 ± 3.13A 114.60 ± 5.81A 216.14 ± 13.51C 0.000
    L-III 128.55 ± 3.68A 119.83 ± 3.89A 120.28 ± 4.36A 216.14 ± 13.51C 0.000
    L-I 10.98 ± 1.56 12.89 ± 0.71 11.00 ± 1.07 8.95 ± 0.43 0.130
    当年高生长
    Current height growth/cm
    L-II 15.71 ± 0.49C 14.53 ± 0.48C 13.03 ± 0.38B 8.95 ± 0.43A 0.000
    L-III 12.81 ± 1.23 11.27 ± 0.47 10.97 ± 0.85 8.95 ± 0.43 0.052
    下载: 导出CSV

    表  5  不同大小等级林隙环境因子与油松更新苗更新状况相关性

    Table  5.   Correlation between environmental factors and regeneration status of Chinese pine

    林隙等级
    Forest gap class
    环境因子
    Environmental factor
    更新苗苗高
    Height of regenerated seedling
    更新苗密度
    Density of regenerated seedling
    当年高生长
    Current height year
    L-I PAR 0.899** − 0.461 0.675*
    AT 0.202 − 0.076 0.128
    RH 0.541 − 0.051 0.572
    ST 0.452 − 0.822** 0.032
    SM 0.255 − 0.410 0.167
    L-II PAR 0.720* − 0.214 0.692*
    AT 0.677* − 0.076 0.222
    RH 0.392 − 0.202 0.354
    ST 0.371 − 0.612 0.444
    SM 0.199 − 0.303 0.284
    L-III PAR 0.403 − 0.488 0.598
    AT 0.378 − 0.100 0.631
    RH 0.354 − 0.429 0.668
    ST 0.170 − 0.493 0.023
    SM 0.613 − 0.256 0.670*
    注:缩写PAR、AT、RH、ST和SM分别表示光合有效辐射、空气温度、空气湿度、土壤温度和土壤湿度;*代表在0.05水平下的显差异显著,**代表在0.01水平下的差异显著。下同。Notes: the abbreviations PAR, AT, RH, ST and SM respectively represent the photosynthetic active radiation, air temperature, air humidity, soil temperature and soil humidity;* represents significant difference at the 0.05 level, ** represents significant difference at the 0.01 level. The same below.
    下载: 导出CSV

    表  6  更新苗生长状况与环境因子间逐步回归分析结果

    Table  6.   Results of stepwise regression analysis between regeneration status of Chinese pine and environmental factors

    更新状况
    Regenerated seedling status
    环境因子
    Environmental
    factor
    标准化回归系数
    Standardized regression
    coefficient
    P
    P value
    t
    t value
    模型 P
    Model P value
    调整系数 R2
    Adjusted coefficient R2
    更新苗苗高
    Regenerated seedling height
    PAR 0.619 0.001 3.940 0.01 0.358
    AT 0.087 0.591 0.545
    RH 0.214 0.273 1.123
    ST − 0.099 0.591 − 0.545
    SM − 0.092 0.577 − 0.565
    更新苗密度
    Regenerated seedling density
    PAR − 0.626 0.000 − 4.011 0.01 0.367
    AT 0.087 0.591 0.545
    RH 0.214 0.273 1.123
    ST − 0.099 0.591 − 0.545
    SM − 0.092 0.577 − 0.565
    当年生长量
    Current growth
    PAR 0.067 0.001 3.823 0.01 0.344
    AT 0.087 0.591 0.545
    RH 0.269 0.170 1.414
    ST − 0.122 0.512 − 0.666
    SM 0.256 0.117 1.628
    下载: 导出CSV

    表  7  油松更新苗更新状况与保留环境因子的拟合方程

    Table  7.   Fitting equations for regeneration status of Chinese pine and retaining environmental factors

    更新状况
    Regenerated seedling status (y)
    保留环境因子
    Retain environmental factor (x)
    拟合方程式
    Fitting equation
    调整系数 R2
    Adjusted coefficient R2
    更新苗苗高 Regenerated seedling height PAR y = 75.934 + 0.156x 0.358
    更新苗密度 Regenerated seedling density ST y = 266.267− 21.856x + 0.449x2 0.467
    当年生长量 Current height growth PAR y = 10.071 + 0.011x 0.344
    下载: 导出CSV
  • [1] Watt A S. Patten and process in the plant community[J]. Journal of Ecology, 1947, 35(1/2): 1−22. doi: 10.2307/2256497
    [2] Canham C D. Different responses to gaps among shade-tolerant tree species[J]. Ecology, 1989, 70(3): 548−550. doi: 10.2307/1940200
    [3] Zerbe S. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations[J]. Forest Ecology and Management, 2002, 167(1−3): 1−42.
    [4] 陈圣宾, 宋爱琴, 李振基. 森林幼苗更新对光环境异质性的响应研究进展[J]. 应用生态学报, 2005, 16(2):365−370. doi: 10.3321/j.issn:1001-9332.2005.02.034

    Chen S B, Song A Q, Li Z J. Research advance in response of forest seedling regeneration to light environmental heterogeneity[J]. Chinese Journal of Applied Ecology, 2005, 16(2): 365−370. doi: 10.3321/j.issn:1001-9332.2005.02.034
    [5] 刘庆, 吴彦. 滇西北亚高山针叶林林窗大小与更新的初步分析[J]. 应用与环境生物学报, 2002, 8(5):453−459. doi: 10.3321/j.issn:1006-687X.2002.05.002

    Liu Q, Wu Y. Effects of gap size on regeneration of subalpine coniferous forests in northwest Yunnan[J]. Chinese Journal Applied Environmental Biology, 2002, 8(5): 453−459. doi: 10.3321/j.issn:1006-687X.2002.05.002
    [6] Malcom D C, Mason W L, Clarke G C. The transformation of conifer forests in Britain regeneration, gap size and silvicultural systems[J]. Forest Ecology and Management, 2001, 151(1): 7−23.
    [7] Muscolo A, Bagnato S, Sidari M, et al. A review of the roles of forest canopy gaps[J]. Journal of Forestry Research, 2014, 25(4): 725−736. doi: 10.1007/s11676-014-0521-7
    [8] Vilhar U, Roženbergar D, Simončič P, et al. Variation in irradiance, soil features and regeneration patterns in experimental forest canopy gaps[J]. Annals of Forest Science, 2015, 72(2): 253−266. doi: 10.1007/s13595-014-0424-y
    [9] Beatty S W. Influence of microtopography and canopy species on spatial patterns of forest understory plants[J]. Ecology, 1984, 65: 1406−1419. doi: 10.2307/1939121
    [10] 宋新章, 肖文发. 林隙微生境及更新研究进展[J]. 林业科学, 2006, 42(5):114−119. doi: 10.3321/j.issn:1001-7488.2006.05.021

    Song X Z, Xiao W F. Research advance of microsite and regeneration within canopy gap[J]. Scientia Silvae Sinicae, 2006, 42(5): 114−119. doi: 10.3321/j.issn:1001-7488.2006.05.021
    [11] 韩文娟, 袁晓青, 张文辉. 油松人工林林窗对幼苗天然更新的影响[J]. 应用生态学报, 2012, 23(11):2940−2948.

    Han W J, Yuan X Q, Zhang W H. Effects of gap size on seedling natural regeneration in artificial Pinus tabulaeformis plantation[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 2940−2948.
    [12] 杨君珑, 王辉, 王彬. 子午岭油松林林窗生态更新研究[J]. 青海农林科技, 2008(4):6−9, 45. doi: 10.3969/j.issn.1004-9967.2008.04.003

    Yang J L, Wang H, Wang B. Ecological regeneration of Pinus tabulaeformis forest in gap in Ziwu Mountains[J]. Science and Technology of Qinghai Agriculture and Forestry, 2008(4): 6−9, 45. doi: 10.3969/j.issn.1004-9967.2008.04.003
    [13] 李兵兵, 秦琰, 刘亚茜, 等. 燕山山地油松人工林林隙大小对更新的影响[J]. 林业科学, 2012, 48(6):147−151. doi: 10.11707/j.1001-7488.20120622

    Li B B, Qin Y, Liu Y X, et al. Effects of gap size on regeneration of Pinus tabulaeformis plantation in the Yanshan Mountain[J]. Scientia Silvae Sinicae, 2012, 48(6): 147−151. doi: 10.11707/j.1001-7488.20120622
    [14] Wang Z, Yang H, Dong B, et al. Effects of canopy gap size on growth and spatial patterns of Chinese pine (Pinus tabulaeformis) regeneration[J]. Forest Ecology and Management, 2017, 385: 46−56. doi: 10.1016/j.foreco.2016.11.022
    [15] 王彬. 子午岭油松林林隙更新特征研究[D]. 兰州: 甘肃农业大学, 2007.

    Wang B. Study on regeneration of Pinus tabulaeformis forest gaps in Ziwu Mountains[D]. Lanzhou: Gansu Agriculture University,2007.
    [16] 韩文娟, 何景峰, 张文辉, 等. 黄龙山林区油松人工林林窗对幼苗根系生长及土壤理化性质的影响[J]. 林业科学, 2013, 49(11):16−23.

    Han W J, He J F, Zhang W H, et al. Effects of gap size on root growth of seedlings and soil physical and chemical properties in Pinus tabulaeformis plantation in the Huanglong Forest[J]. Scientia Silvae Sinicae, 2013, 49(11): 16−23.
    [17] 周红娟, 耿玉清, 王玲, 等. 油松人工林不同林窗位置凋落物酶活性的变化[J]. 生态环境学报, 2016, 25(10):1621−1628.

    Zhou H J, Geng Y Q, Wang L, et al. Variation in forest floor enzyme activities among different forest gap positions in Pinus tabulaeformis plantations[J]. Ecology and Environmental Sciences, 2016, 25(10): 1621−1628.
    [18] 李猛, 高志强, 韩晓增, 等. 红松阔叶混交林林隙0cm地温的地统计学分析[J]. 安徽农业科学, 2017, 45(12):149−151. doi: 10.3969/j.issn.0517-6611.2017.12.050

    Li M, Gao Z Q, Han X Z, et al. 0 cm soil temperature of forest gap in Pinus koraiensis-dominated broadleaved mixed forest based on geostatistical analysis[J]. Journal of Anhui Agriculture Sciences, 2017, 45(12): 149−151. doi: 10.3969/j.issn.0517-6611.2017.12.050
    [19] 朱教君, 谭辉, 李凤芹, 等. 辽东山区次生林3种大小林窗夏季近地面气温及土壤温度比较[J]. 林业科学, 2009, 45(8):161−165. doi: 10.3321/j.issn:1001-7488.2009.08.028

    Zhu J J, Tan H, Li F Q, et al. Comparison of near-ground air temperature and soil temperature of summer within three gaps of different sizes at secondary forests in eastern montane regions of Liaoning Province[J]. Scientia Silvae Sinicae, 2009, 45(8): 161−165. doi: 10.3321/j.issn:1001-7488.2009.08.028
    [20] Buajan S, Liu J F, He Z S, et al. The effect of light on micro-environment and specific leaf area within the gap, subtropical forest[J]. China Pak J Bot, 2017, 49(1): 273−282.
    [21] 王智斌. 冠层林隙面积对油松和华北落叶松更新苗生长和空间分布的影响[D]. 北京: 北京林业大学, 2017.

    Wang Z B. Effects of canopy gap size on growth and spatial patterns of regeneration of Pinus tabulaeformis and Larix principis-rupprechtii[D]. Beijing: Beijing Forestry University,2017.
    [22] 董伯骞. 油松人工林天然更新特征对林隙和皆伐年限的响应[D]. 北京: 北京林业大学, 2014.

    Dong B Q. Response of natural recruitment characteristics to gap and clear cutting fixed number of year in Pinus tabulaeformis plantation[D]. Beijing: Beijing Forestry University, 2014.
    [23] Runkle J R. Gap regeneration in some old-growth forests of the eastern United States[J]. Ecology, 1981, 62: 1041−1051. doi: 10.2307/1937003
    [24] Van Couwenberghe R, Collet C, Lacombe E, et al. Gap partitioning among temperate tree species across a regional soil gradient in windstorm-disturbed forests[J]. Forest Ecology and Management, 2010, 260: 146−154. doi: 10.1016/j.foreco.2010.04.013
    [25] Wang G, Liu F. The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management[J]. Forest Ecology and Management, 2011, 262(3): 413−423.
    [26] Gray A N, Spies T A, Pabst R J. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest[J]. Forest Ecology and Management, 2012, 281: 111−120. doi: 10.1016/j.foreco.2012.06.035
    [27] Wolf A. Fifty year record of change in tree spatial patterns within a mixed deciduous forest[J]. Forest Ecology and Management, 2005, 215(1−3): 212−223.
    [28] Coates K D. Tree recruitment in gaps of various size, clearcuts and undisturbed mixed forest of interior British Columbia, Canada[J]. Forest Ecology and Management, 2002, 155(1): 387−398.
    [29] 徐化成. 油松[M]. 北京: 中国林业出版社, 1993.

    Xu H C. Chinese pine (Pinus tabulaeformis)[M]. Beijing: China Forestry Publishing House,1993.
    [30] Dupuy J M, Chazdon R L. Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests[J]. Forest Ecology and Management, 2008, 255(11): 3716−3725. doi: 10.1016/j.foreco.2008.03.021
    [31] 胡蓉, 林波, 刘庆. 林窗与凋落物对人工云杉林早期更新的影响[J]. 林业科学, 2011, 47(6):23−28. doi: 10.11707/j.1001-7488.20110604

    Hu R, Lin B, Liu Q. Effects of forest gaps and litter on the early regeneration of Picea asperata plantations[J]. Scientia Silvae Sinicae, 2011, 47(6): 23−28. doi: 10.11707/j.1001-7488.20110604
    [32] Zhu J, Matsuzaki T, Lee F, et al. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest[J]. Forest Ecology and Management, 2003, 182(1): 339−354.
    [33] Van Der Meer P J, Dignan P, Saveneh A G. Effect of gap size on seedling establishment, growth and survival at three years in mountain ash (Eucalyptus regnans F. Muell.) forest in Victoria, Australia[J]. Forest Ecology and Management, 1999, 117(1−3): 33−42. doi: 10.1016/S0378-1127(98)00471-X
    [34] Nagel T A, Svoboda M, Rugani T, et al. Gap regeneration and replacement patterns in an old-growth Fagus-Abies forest of Bosnia-Herzegovina[J]. Plant Ecology, 2010, 208(2): 307−318. doi: 10.1007/s11258-009-9707-z
    [35] Downey M, Valkonen S, Heikkinen J. Natural tree regeneration and vegetation dynamics across harvest gaps in Norway spruce–dominated forests in Southern Finland[J]. Canadian Journal of Forest Research, 2018, 48(5): 524−534.
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  962
  • HTML全文浏览量:  396
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-05-19
  • 网络出版日期:  2019-09-05
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回