高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白桦BpTCP2基因的克隆及表达特性分析

栾嘉豫 安琳君 任丽 李慧玉

栾嘉豫, 安琳君, 任丽, 李慧玉. 白桦BpTCP2基因的克隆及表达特性分析[J]. 北京林业大学学报, 2019, 41(8): 57-66. doi: 10.13332/j.1000-1522.20180430
引用本文: 栾嘉豫, 安琳君, 任丽, 李慧玉. 白桦BpTCP2基因的克隆及表达特性分析[J]. 北京林业大学学报, 2019, 41(8): 57-66. doi: 10.13332/j.1000-1522.20180430
Luan Jiayu, An Linjun, Ren Li, Li Huiyu. Cloning and expression characteristics analysis of BpTCP2 gene in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(8): 57-66. doi: 10.13332/j.1000-1522.20180430
Citation: Luan Jiayu, An Linjun, Ren Li, Li Huiyu. Cloning and expression characteristics analysis of BpTCP2 gene in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(8): 57-66. doi: 10.13332/j.1000-1522.20180430

白桦BpTCP2基因的克隆及表达特性分析

doi: 10.13332/j.1000-1522.20180430
基金项目: 国家重点研发计划(2017YFD0600603),中央高校基本科研服务专项资金项目(2572018BW03)
详细信息
    作者简介:

    栾嘉豫。主要研究方向:林木基因工程育种。Email:1004388016@qq.com 地址:150040哈尔滨市和兴路51号东北林业大学科技楼

    责任作者:

    李慧玉,副教授。主要研究方向:林木基因工程育种。Email:lihuiyu2017@126.com 地址:同上

Cloning and expression characteristics analysis of BpTCP2 gene in Betula platyphylla

  • 摘要: 目的通过克隆白桦BpTCP2基因,分析其序列特征,并检测该基因在不同组织部位、激素处理及非生物胁迫下的基因表达特性,为揭示BpTCP2在植物生长发育及逆境应答中的作用提供理论依据。方法通过PCR技术克隆BpTCP2基因的全长,并对得到的cDNA序列进行生物信息学分析;采用实时荧光定量PCR技术分析该基因的组织表达特性,以及在外源植物激素(ABA、IAA、BR、JA、SA)处理和非生物胁迫(CdCl2、NaCl、NaHCO3、PEG)下的响应模式。结果成功克隆了BpTCP2基因的cDNA序列;生物信息学分析发现BpTCP2含有高度保守的bHLH结构域,属于PCF亚类。qRT-PCR结果显示,BpTCP2基因在木质部、幼嫩的叶片和茎节中表达量较高;在CdCl2、NaCl、NaHCO3处理下,该基因持续上调表达;且5种外源激素均能诱导该基因表达。结论BpTCP2基因参与白桦木质部的形成,影响叶片及初期茎节的发育,并能在各激素、重金属、盐、碱的诱导下表达。

     

  • 图  1  BpTCP2基因PCR扩增片段

         M.DL2000 Marker.

    Figure  1.  PCR amplified fragment of BpTCP2 gene

    图  2  BpTCP2基因Topo菌液PCR片段

    M. DL2000 Marker;1.水对照;2 ~ 4菌液PCR。M, DL2000 Marker; 1, water control; 2−4, bacterial solution PCR.

    Figure  2.  PCR fragment of BpTCP2 gene

    图  3  BpTCP2基因编码区序列及推测的氨基酸序列

    Figure  3.  BpTCP2 gene coding sequence and predicted amino acid sequence

    图  4  白桦BpTCP2基因结构域

    Figure  4.  BpTCP2 gene domain from Betula platyphylla

    图  5  白桦BpTCP2与其他4个物种TCP蛋白的进化树

    Figure  5.  Phylogenetic tree of BpTCP2 and TCP proteins from other four species

    图  6  BpTCP2在不同组织部位下的相对表达量

    不同小写字母表示不同组织部位的基因表达差异显著性(P < 0.05)。Different lowercase letters indicate significant differences in gene expression at different tissue sites (P < 0.05).

    Figure  6.  Relative expression level of BpTCP2 at different tissues of birch

    图  7  不同发育时期的叶片

    图中叶片从左到右分别是从顶端数第1到第13片叶片。In the figure, the blades are from the left to the right, representing the first to thirteenth blades from the top.

    Figure  7.  Leaves at different developmental stages

    图  8  BpTCP2在不同叶片发育下的相对表达量

    不同小写字母表示不同发育时期叶片的基因表达差异显著性(P < 0.05)。Different lowercase letters indicate significant differences in gene expression between leaves at varied developmental stages (P < 0.05).

    Figure  8.  Relative expression level of BpTCP2 during leaf development

    图  9  不同发育时期的茎节

    Figure  9.  Stem segments at different developmental stages

    图  10  BpTCP2在不同茎节发育下的相对表达量

    不同小写字母表示不同发育时期的茎节基因表达差异显著性(P < 0.05)。Different lowercase letters show significant differences in gene expression between stem segments at different developmental stages (P < 0.05).

    Figure  10.  Relative expression level of BpTCP2 during stem development

    图  11  BpTCP2在植物激素信号下的相对表达量

    不同小写字母表示不同处理下不同时间点的基因表达差异显著性(P < 0.05),下同。Different lowercase letters mean significant difference in gene expression at different time points under varied treatments (P < 0.05). Same as below.

    Figure  11.  Relative expression level of BpTCP2 under hormone treatments

    图  12  BpTCP2在植物激素信号下的相对表达量

    Figure  12.  Relative expression level of BpTCP2 under abiotic stress

    表  1  实时荧光定量PCR引物序列

    Table  1.   Real-time PCR primer sequences

    引物名称 Primer name上游引物序列(5′→3′) Forward primer (5′→3′)下游引物序列(5′→3′) Reverse primer (5′→3′)
    BpTCP2     5′-GCTTGCATACAAAGATGGAAGG-3′     5′-GGAAAAGCTCAATGGACCCAG-3′
    α-Tubulin     5′-GCACTGGCCTCCAAGGAT-3′     5′-TGGGTCGCTCAATGTCAAGG-3′
    下载: 导出CSV
  • [1] Ma J, Liu F, Wang Q, et al. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypiumarboreum) fiber early development[J/OL]. Scientific Reports, 2016, 6(1): 21535 [2018−11−30]. https://doi.org/10.1038/srep21535.
    [2] 冯雅岚, 熊瑛, 张均, 等. TCP转录因子在植物发育和生物胁迫响应中的作用[J]. 植物生理学报, 2018, 54(5):22−30.

    Feng Y L, Xiong Y, Zhang J, et al. The role of TCP transcription factors inplant development and biotic stress response[J]. Chinese Journal of Plant Physiology, 2018, 54(5): 22−30.
    [3] Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 83: 794−799.
    [4] Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(4): 367−376. doi: 10.1016/S0092-8674(00)81523-8
    [5] Nath U. Genetic control of surface curvature[J]. Science, 2003, 299: 1404−1407. doi: 10.1126/science.1079354
    [6] Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425: 257−263. doi: 10.1038/nature01958
    [7] Ori N, Cohen A R, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J]. Nature Genetics, 2007, 39(6): 787−791. doi: 10.1038/ng2036
    [8] Schommer C, Palatnik J F, Aggarwal P, et al. Control of Jasmonate Biosynthesis and Senescence by miR319 Targets[J/OL]. PLoS Biology, 2008, 6(9): e230 [2018−11−30]. https://doi.org/10.1371/journal.pbio.0060230.
    [9] Mao C, Lu S, Lü B, et al. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiology, 2017, 174(3): 1747−1763. doi: 10.1104/pp.17.00542
    [10] Tatematsu K, Nakabayashi K, Kamiya Y, et al. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana[J]. The Plant Journal, 2008, 53(1): 42−52. doi: 10.1111/tpj.2008.53.issue-1
    [11] 安家兴. 拟南芥TCP11调控维管束的发育[D]. 兰州: 兰州大学, 2012.

    An J X. Arabidopsis thaliana TCP11 regulates the development of vascular bundles[D]. Lanzhou: Lanzhou University, 2012.
    [12] Cubas P, Lauter N, Doebley J, et al. The TCP domain: a motif found in proteins regulating plantgrowth and development[J]. The Plant Journal, 1999, 18(2): 215−222. doi: 10.1046/j.1365-313X.1999.00444.x
    [13] Herve C, Dabos P, Bardet C, et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development[J]. Plant Physiology, 2009, 149(3): 1462−1477. doi: 10.1104/pp.108.126136
    [14] 周瑜. TCP转录因子通过促进PIFs活性和生长素合成基因的表达调控避荫反应[D]. 兰州: 兰州大学, 2018.

    Zhou Y. TCP transcription factors regulate shade avoidance via promoting the activity of PIFs and the expression of auxin biosynthetic genes[D]. Lanzhou: Lanzhou University, 2018.
    [15] Ubertimanasero N G, Lucero L E, Viola I L, et al. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins[J]. Journal of Experimental Botany, 2012, 63(2): 809−823. doi: 10.1093/jxb/err305
    [16] Koyama T, Mitsuda N, Seki M, et al. TCP transcription factors regulatethe activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis[J]. Plant Cell, 2010, 22(11): 3574−3588. doi: 10.1105/tpc.110.075598
    [17] Danisman S, Van der Wal F, Dhondt S, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J]. Plant Physiology, 2012, 159(4): 1511−1523. doi: 10.1104/pp.112.200303
    [18] 刘伟娜, 韩建民, 董金皋, 等. 棉花TCP家族转录因子基因GhTCP1的克隆与表达分析[J]. 棉花学报, 2010, 22(5):409−414. doi: 10.3969/j.issn.1002-7807.2010.05.005

    Liu W N, Han J M, Dong J G, et al. Cloning and expression analysis of cotton TCP family transcription factor gene GhTCP1[J]. Journal of Cotton, 2010, 22(5): 409−414. doi: 10.3969/j.issn.1002-7807.2010.05.005
    [19] Steiner E, Efroni I, Gopalraj M, et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers[J]. Plant Cell, 2012, 24(1): 96−108. doi: 10.1105/tpc.111.093518
    [20] Daviere J M, Wild M, Regnaul T, et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height[J]. Current Biology, 2014, 24(16): 1923−1928. doi: 10.1016/j.cub.2014.07.012
    [21] 宁坤, 杨洋, 马述山, 等. 11条白桦BpSPL家族基因的生物信息学和表达分析[J]. 林业科学研究, 2016, 29(5):646−653. doi: 10.3969/j.issn.1001-1498.2016.05.004

    Ning K, Yang Y, Ma S S, et al. Bioinformatics and expression analysis of 11 BpSPL family genes in Betula platyphylla[J]. Forest Research, 2016, 29(5): 646−653. doi: 10.3969/j.issn.1001-1498.2016.05.004
    [22] 董京祥, 任丽, 张园, 等. 白桦BpTCPs基因家族生物信息学及时空表达分析[J]. 南京林业大学报, 2018, 42(4):113−118.

    Dong J X, Ren L, Zhang Y, et al. Analysis of temporal and spatial expression of BpTCPs gene family bioinformatics in Betula platensis[J]. Journal of Nanjing Forestry University, 2018, 42(4): 113−118.
    [23] 王勇江, 陈克平, 姚勤. bHLH转录因子家族研究进展[J]. 遗传, 2008, 30(7):821−830. doi: 10.3321/j.issn:0253-9772.2008.07.004

    Wang Y J, Chen K P, Yao Q. Research progress of bHLH transcription factor family[J]. Genetics, 2008, 30(7): 821−830. doi: 10.3321/j.issn:0253-9772.2008.07.004
    [24] 刘文文, 李文学. 植物bHLH转录因子研究进展[J]. 生物技术进展, 2013, 3(1):7−11.

    Liu W W, Li W X. Research progress of plant bHLH transcription factors[J]. Progress in Biotechnology, 2013, 3(1): 7−11.
    [25] Manassero N G, Viola I L, Welchen E, et al. TCP transcription factors: architectures of plant form[J]. Biomolecular Concepts, 2013, 4(2): 111−127.
    [26] De Paolo S, Gaudio L, Aceto S. Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica[J/OL]. Scientific Reports, 2015, 5(1): 16265[2018−11−30]. https://doi.org/10.1038/srep16265.
    [27] Kieffer M, Master V, Waites R, et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis[J]. The Plant Journal for Cell & Molecular Biology, 2011, 68(1): 147−158.
    [28] 张春雷. 拟南芥TCP15、TCP22基因功能的研究[D]. 兰州: 兰州大学, 2012.

    Zhang C L. Study on the function of TCP15 and TCP22 genes in Arabidopsis thaliana[D]. Lanzhou: Lanzhou University, 2012.
    [29] 冯志娟, 徐盛春, 刘娜, 等. 植物TCP转录因子的作用机理及其应用研究进展[J]. 植物遗传资源学报, 2018, 19(1):112−121.

    Feng Z J, Xu S C, Liu N, et al. Molecular mechanisms and applications of TCP transcription factors in plants[J]. Journal of Plant Genetic Resources, 2018, 19(1): 112−121.
    [30] Mukhopadhyay P, Tyagi A K, Tyagi A K. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways[J/OL]. Scientific Reports, 2015, 5: 9998 [2018−11−30]. https://doi.org/10.1038/srep09998.
    [31] Li S, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana[J]. The Plant Journal, 2013, 76(6): 901−913. doi: 10.1111/tpj.2013.76.issue-6
    [32] Xiaoyan W, Jiong G, Zheng Z, et al. TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana[J]. The Plant Journal, 2015, 82(1): 151−162. doi: 10.1111/tpj.2015.82.issue-1
    [33] 刘春浩, 梁楠松, 于磊, 等. 水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J]. 北京林业大学学报, 2017, 39(6):22−31.

    Liu C H, Liang N S, Yu L, et al. Cloning of TCP4 transcription factor from ash and expression analysis under stress and hormone[J]. Journal of Beijing Forestry University, 2017, 39(6): 22−31.
    [34] Lei N, Yu X, Li S, et al. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress[J]. Scientific Reports, 2017, 7(1): 10016. doi: 10.1038/s41598-017-09398-5
    [35] 杨洋. 白桦BpTCP7基因的功能研究[D]. 哈尔滨: 东北林业大学, 2016.

    Yang Y. Function analysis of BpTCP7 gene in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2016.
    [36] Viola I L, Camoirano A, Gonzalez D H. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis[J]. Plant Physiology, 2015, 34(1): 35−40.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1274
  • HTML全文浏览量:  1026
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 修回日期:  2019-04-16
  • 网络出版日期:  2019-07-03
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回