• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

大兴安岭北部不同降水梯度下兴安落叶松生长对升温的响应差异

孙振静, 赵慧颖, 朱良军, 李宗善, 张远东, 王晓春

孙振静, 赵慧颖, 朱良军, 李宗善, 张远东, 王晓春. 大兴安岭北部不同降水梯度下兴安落叶松生长对升温的响应差异[J]. 北京林业大学学报, 2019, 41(6): 1-14. DOI: 10.13332/j.1000-1522.20190007
引用本文: 孙振静, 赵慧颖, 朱良军, 李宗善, 张远东, 王晓春. 大兴安岭北部不同降水梯度下兴安落叶松生长对升温的响应差异[J]. 北京林业大学学报, 2019, 41(6): 1-14. DOI: 10.13332/j.1000-1522.20190007
Sun Zhenjing, Zhao Huiying, Zhu Liangjun, Li Zongshan, Zhang Yuandong, Wang Xiaochun. Differences in response of Larix gmelinii growth to rising temperature under different precipitation gradients in northern Daxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(6): 1-14. DOI: 10.13332/j.1000-1522.20190007
Citation: Sun Zhenjing, Zhao Huiying, Zhu Liangjun, Li Zongshan, Zhang Yuandong, Wang Xiaochun. Differences in response of Larix gmelinii growth to rising temperature under different precipitation gradients in northern Daxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(6): 1-14. DOI: 10.13332/j.1000-1522.20190007

大兴安岭北部不同降水梯度下兴安落叶松生长对升温的响应差异

基金项目: 国家自然科学基金项目(41877426、31770490),中央高校基本科研业务费高层次人才发展专项(2572017DG02),中国气象局东北地区生态气象创新开放实验室基金项目(stqx2018zd02)
详细信息
    作者简介:

    孙振静。主要研究方向:树木年轮生态学。Email:dlsunzj@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路51号东北林业大学林学院

    责任作者:

    王晓春,教授,博士生导师。主要研究方向:树轮与气候变化。Email:wangx@nefu.edu.cn 地址:同上

Differences in response of Larix gmelinii growth to rising temperature under different precipitation gradients in northern Daxing’an Mountains of northeastern China

  • 摘要:
    目的为了解大兴安岭北部不同降水梯度下,兴安落叶松径向生长与气候关系是否存在差异,尤其是对最近的升温是否存在不同的响应。
    方法本文在大兴安岭北部沿降水梯度选择3个采样点−莫尔道嘎(Moerdaoga,ME,年降水量363 mm)、图里河(Tulihe,TLH,454 mm)和阿里河国家森林公园(Alihe,ALH,525 mm)进行树轮取样。运用树轮气候学方法,分析了气候变暖背景下兴安落叶松生长−气候关系随降水梯度的时空变异规律,并探讨兴安落叶松生长应对极端气候的抵抗力、恢复力和弹性力。
    结果不同降水梯度下,降水对兴安落叶松径向生长影响差异较小,仅有TLH兴安落叶松生长与当年8月和上年秋季降水呈显著正相关。温度是兴安落叶松径向生长的主要限制因子,但在不同降水区存在显著差异。在低降水区域(ME),生长季最低温度是兴安落叶松生长的主要限制因子;在中降水区域(TLH),上年9月最低温度对兴安落叶松径向生长的影响最强;在高降水区域(ALH),均温和低温是影响兴安落叶松生长的主要气候因子,上年秋季和冬季温度升高不利于当年兴安落叶松生长增加。综合温度与降水的帕默尔干旱指数(Palmer Drought Severity Index,PDSI)表明,ME采样点兴安落叶松生长与PDSI关系不显著,TLH兴安落叶松生长与PDSI显著正相关,ALH兴安落叶松与PDSI显著负相关。20世纪80年代快速升温后,3个采样点兴安落叶松的径向生长出现与升温相反的趋势。ALH采样点相比其他两个采样点应对极端气候有较高的抵抗力,但恢复力较弱。
    结论我们的结果表明环境水分的多少会影响兴安落叶松对未来气候变暖的响应,尤其是在生长应对极端气候的抵抗力和恢复力上可能会存在较大差异。
    Abstract:
    ObjectiveThis paper aims to figure out the response differences of the radial growth of Larix gmelinii under different precipitation gradients in northern Daxing ’an Mountains of northeastern China to climate, especially to recent warming.
    MethodIn this paper, three sampling sites, including Moerdaoga (ME, annual total precipitation 363 mm), Tulihe (TLH, 454 mm) and Alihe (ALH, 525 mm), were selected along a precipitation gradient in the northern Daxing ’an Mountains of northeastern China. Under climate warming scenario, the spatial-temporal variations of radial growth of Larix gmelinii in different precipitation conditions and climate relationships were analyzed using the tree-ring climatology method, and the resistance, resilience and elasticity of Larix gmelinii to extreme climate were discussed.
    ResultResults showed that the effects of precipitation on the radial growth of Larix gmelinii were small under different precipitation conditions. Only in TLH site, the growth of Larix gmelinii was positively correlated with precipitation in August and autumn. Temperature is the main factor limiting radial growth of Larix gmelinii, its effects significantly differ with site precipitation conditions. In low precipitation area (ME), minimum temperature in growing season is the main limiting factor for the growth of Larix gmelinii. In the middle precipitation area (TLH), minimum temperature in September of previous year had the strongest effect on Larix gmelinii growth. In the high precipitation area (ALH), mean and minimum temperature are the key climatic factors affecting Larix gmelinii tree growth. The increase in temperature during autumn and winter of previous year was not conducive to the increase of Larix gmelinii growth. There was no significant relationship between ME chronology and PDSI. The TLH chronology was significant positively correlated with PDSI. The ALH chronology was significant negatively correlated with PDSI. After rapid warming since 1980s, the radial growth of Larix gmelinii at three sites showed an opposite trend with warming. Compared with the other two sampling sites, Larix gmelinii in ALH had higher resistance to extreme climate, but its resilience was weak.
    ConclusionOur results show that water conditions will affect the response of Larix gmelinii to future climate warming, especially in the resistance and resilience of growth to extreme climate.
  • 图  1   大兴安岭北部兴安落叶松采样点月平均气温、最高气温、最低气温和降水量变化(A、D、G);1980年前(1957—1980)、后(1981—2016)年平均气温(B、E、H)和年总降水量均值比较(C、F、L)

    Figure  1.   Variations of monthly mean temperature, maximum temperature, minimum temperature and precipitation at sampling sites of Larix gmelinii in Daxing’an Mountains (A, D, G); average temperature before 1980 (1957−1980) and after (1981−2016) (B, E, H) and mean annual total precipitation comparison (C, F, L)

    图  2   大兴安岭北部3个地点兴安落叶松树木年轮指数变化比较

    EPS, total expressed population signal 样本总解释量

    Figure  2.   Comparison of annual ring index changes of Larix gmelinii in three sampling sites in the northern Daxing’an Mountains

    图  3   大兴安岭北部3个采样点兴安落叶松年轮指数与均温(A)、最低温(B)降水(C)和帕默尔干旱指数(D)的相关关系

    p6 ~ p12为上年6月到12月。*代表P < 0.05。 p6−p12, past June−December. * represents P < 0.05.

    Figure  3.   Correlations between tree ring width index of Larix gmelinii and temperature (A), the lowest temperature (B), precipitation (C) and Palmer drought severity index (D) at three sampling sites in the northern Daxing’an Mountains

    图  4   大兴安岭北部3个采样点兴安落叶松生长与5、6月温度和降水的滑动相关分析

    × 代表P < 0.05。 × represents P < 0.05

    Figure  4.   Moving correlation analysis of Larix gmelinii growth with temperature and precipitation in May and June at three sampling sites in northern Daxing’an Mountains

    图  5   大兴安岭北部3个采样点兴安落叶松年轮指数与生长季(5—9月)、非生长季(10—4月)温度和降水关系随时间的变化规律

    × 代表P < 0.05。 × represents P < 0.05

    Figure  5.   Correlations between the treering width index of Larix gmelinii and the growing season (May−September) and non-growing season (December−April) at three sampling sites in northern Daxing’an Mountains

    图  6   大兴安岭北部3个地点兴安落叶松年轮指数与季节降水关系随时间的变化

    × 代表P < 0.05。 A为上年秋季;B为当年生长季;C为生长季前;D为上年冬季。图7同此。× represents P < 0.05. A, last autumn;B, current growing season;C, before growing season;D, last winter. same as Fig. 7.

    Figure  6.   Relationship between treering width index of Larix gmelinii and seasonal precipitation changes with time in three sampling sites in northern Daxing’an Mountains

    图  7   大兴安岭北部3个地点兴安落叶松年轮指数与季节温度关系随时间的变化

    × 代表P < 0.05。 × represents P < 0.05

    Figure  7.   Relationship between treering width index of Larix gmelinii and seasonal temperature changes with time in three sampling sites in northern Daxing’an Mountains

    图  8   大兴安岭北部3个地点兴安落叶松生长对极端干旱和低温的抵抗力、恢复力和弹性力的比较

    A 代表莫尔道嘎抵抗力,B 代表莫尔道嘎恢复力,C 代表莫尔道嘎弹性力,D 代表图里河抵抗力,E 代表图里河恢复力,F 代表图里河弹性力,G 代表阿里河抵抗力,H 代表阿里河恢复力,K 代表阿里河弹性力。A represents Moerdaoga resistance, B represents the recovery of Moerdaoga, and C represents the resilience of Moerdaoga, D represents Tulihe resistance, E represents the recovery of Tulihe, and F represents the resilience of Tulihe, G represents Alihe resistance, H represents the recovery of Alihe, and K represents the resilience of Alihe.

    Figure  8.   Comparison of resistance, resilience and elastic force of Larix gmelinii growth to extreme drought and low temperature in three sampling sites in northern Daxing’an Mountains

    表  1   大兴安岭北部3个兴安落叶松树木年轮采样点信息

    Table  1   Sampling site information of three treering standard chronologies in northern Daxing’an Mountains

    采样点
    Sampling site
    纬度
    Latitude
    经度
    Longitude
    海拔
    Altitude/m
    年平均温度
    Annual mean temperature/℃
    年平均降水量
    Annual mean precipitation/mm
    莫尔道嘎 Moerdaoga (ME)51°32′33″N120°44′27″E 646− 2.45363
    图里河 Tulihe (TLH)50°15′12″N121°47′05″E1 060− 4.49454
    阿里河 Alihe (ALH)50°54′46″N123°45′07″E 507− 0.55525
    下载: 导出CSV

    表  2   大兴安岭北部3个采样点极端气候事件时段

    Table  2   Extreme climate event period at three sampling sites in the northern part of Daxing’an Mountains

    莫尔道嘎 ME图里河 TLH阿里河 ALH
    极端干旱事件
    Extreme drought
    event
    极端低温事件
    Extreme low temperature event
    极端干旱事件
    Extreme drought
    event
    极端低温事件
    Extreme low temperature event
    极端干旱事件
    Extreme drought
    event
    极端低温事件
    Extreme low temperature event
    191219601913196019131967—1977
    1918—1919 1966—1969 1918—1920 1964—1969 1918—1927 1980—1987
    192619721926197419681996—1999
    19451976—198120021976—19801974—19762006
    2007—200819872007—2008198720082012
    下载: 导出CSV

    表  3   大兴安岭北部3个地点兴安落叶松标准年表的主要统计特征

    Table  3   Major statistic characteristics for standard chronologies of Larix gmelinii in three sampling sites in the northern part of Daxing’an Mountains

    采样点
    Sampling site
    年份
    Year
    取样树
    (样芯)数量
    Sampling number
    (Sample core)
    子信号强度 >
    0.85年份
    Year of SSS > 0.85
    平均胸径
    Mean
    DBH /cm
    标准年表特征值
    Eigenvalue of standard chronology
    公共区间统计量
    Common interval analysis
    MSSDMCACSNREPSVFRbar
    莫尔道嘎 ME1823—201620 (40)182341.50.190.260.420.8522.10.9645.00.628
    图里河 TLH1896—201620 (40)189635.60.190.330.400.8221.60.9643.40.520
    阿里河 ALH1884—201620 (40)188443.90.290.390.480.5332.20.9751.20.691
    注:MS为平均敏感度;SD为标准差;MC为平均相关系数;AC为一阶自相关;SNR为信噪比;EPS为样本量的总体解释信号;VF为第一特征根解释量(%);Rbar为平均序列间相关系数。Notes: MS, mean sensitivity; SD, standard deviation; MC, mean correlation coefficient; AC, first order autocorrelation; SNR, signal-to-noise ratio; EPS, expressed population signal; VF, variance in first eigenvector (%); Rbar, mean inter-series correlation coefficient.
    下载: 导出CSV

    表  4   大兴安岭北部3个采样点兴安落叶松年轮指数与季节性平均温度和最低温的相关关系

    Table  4   Correlations between tree ring width index of Larix gmelinii and seasonal average temperature and the lowest temperature in three sampling sites in the northern Daxing’an Mountains

    项目 Item平均温度 Mean temperature最低温度 Minimum temperature
    莫尔道嘎 ME图里河 TLH阿里河 ALH莫尔道嘎 ME图里河 TLH阿里河 ALH
    上年生长季 Growing season in last year0.05− 0.33*− 0.280.180.01− 0.33*
    上年秋季 Last autumn0.12− 0.16− 0.39**0.12− 0.09− 0.37*
    上年冬季 Last winter− 0.14− 0.14− 0.37**− 0.150.02− 0.39**
    生长季前 Before growing season0.07− 0.05 − 0.090.08− 0.15− 0.26
    当年生长季 Currrent growing season0.22− 0.22− 0.220.29*− 0.10− 0.28*
    注:*代表P < 0.05,**代表P < 0.01。下同。Notes: * represents P < 0.05, **represents P < 0.01. Same as below.
    下载: 导出CSV

    表  5   大兴安岭北部3个采样点兴安落叶松年轮指数与季节性降水和PDSI的相关关系

    Table  5   Correlations between tree ring width index of Larix gmelinii and seasonal precipitation and Palmer drought severity index (PDSI) in three sampling sites in the northern Daxing’an Mountains

    项目 Item降水 Precipitation帕默尔干旱指数 PDSI
    莫尔道嘎 ME图里河 TLH阿里河 ALH莫尔道嘎 ME图里河 TLH阿里河 ALH
    上年生长季 Growing season in last year0.090.23− 0.11− 0.120.25− 0.46**
    上年秋季 Last autumn− 0.120.28*− 0.19− 0.220.27*− 0.48**
    上年冬季 Last winter0.21− 0.17− 0.14− 0.020.32*− 0.28*
    生长季前 Before growing season0.15− 0.17− 0.090.010.29*− 0.24
    当年生长季 Currrent growing season0.110.24− 0.060.070.40**− 0.14
    下载: 导出CSV

    表  6   大兴安岭北部3个采样点兴安落叶松对极端气候抵抗力、恢复力和弹性比较

    Table  6   Comparison of Larix gmelinii to extreme climate resistance, resilience index and elastic force in three sampling sites of northern Daxing’an Mountains

    采样点
    Sampling site
    抵抗力 Resistance 恢复力 Recovery弹性力 Resilience
    最低温
    Minimum temperature
    PDSI最低温
    Minimum temperature
    PDSI

    最低温
    Minimum temperature
    PDSI

    ME1.12 ± 0.25a1.06 ± 0.19a0.95 ± 0.14a1.21 ± 0.16a1.04 ± 0.15a1.25 ± 0.15a
    TLH1.08 ± 0.38b0.88 ± 0.08b1.03 ± 0.27b1.16 ± 0.20b1.01 ± 0.27b0.99 ± 0.17b
    ALH1.02 ± 0.29c1.02 ± 0.33c1.11 ± 0.41c1.27 ± 0.72c1.10 ± 0.45c1.09 ± 0.18c
    注:不同小写字母表示不同采样点间差异显著。Notes: different lowercase letters indicate significant differences between different sampling points.
    下载: 导出CSV
  • [1]

    Stocker T F, Qin D, Plattner G K, et al. Climate change 2013: the physical science basis[M]//Working group Ⅰ contribution to the fifth assessment report to the intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.

    [2]

    Jacoby G C, D’Arrigo R D. Tree ring width and density evidence of climatic and potential forest change in Alaska[J]. Global Biogeochemical Cycles, 1995, 9(2): 227−234. doi: 10.1029/95GB00321

    [3]

    Woodward F I. Climate and plant distribution[J]. Quarterly Review of Biology, 1988, 69(154): 189−197.

    [4]

    Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52−58. doi: 10.1038/nclimate1633

    [5]

    Zhu L, Cooper D J, Yang J, et al. Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China[J]. Dendroc- hronologia, 2018, 50: 52−63. doi: 10.1016/j.dendro.2018.05.002

    [6] 卢爱刚, 庞德谦, 何元庆, 等. 全球升温对中国区域温度纬向梯度的影响[J]. 地理科学, 2006, 26(3):345−350. doi: 10.3969/j.issn.1000-0690.2006.03.015

    Lu A G, Pang D Q, He Y Q, et al. Progress in the study on the relationship between global warming and wetland ecological system[J]. Geographical Research, 2006, 26(3): 345−350. doi: 10.3969/j.issn.1000-0690.2006.03.015

    [7] 王绍武, 叶瑾琳, 龚道溢, 等. 近百年中国年气温序列的建立[J]. 应用气象学报, 1998, 9(4):9−18.

    Wang S W, Ye J L, Gong D Y, et al. Construction of mean annual temperature series for the last one hundred years in China[J]. Qu Arterly Journal of Applied Meteorology, 1998, 9(4): 9−18.

    [8] 贺伟, 布仁仓, 熊在平, 等. 1961—2005年东北地区气温和降水变化趋势[J]. 生态学报, 2013, 33(2):519−531.

    He W, Bu R C, Xiong Z P, et al. Characteristics of temperature and precipitation in Northeastern China from 1961 to 2005[J]. Acta Ecologica Sinica, 2013, 33(2): 519−531.

    [9]

    Briffa K R, Schweingruber F H, Jones P D, et al. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes[J]. Nature, 1998, 391: 678−682. doi: 10.1038/35596

    [10]

    Sano M, Furuta F, Sweda T. Tree-ring-width chronology of Larix gmelinii as an indicator of changes in early summer temperature in east-central Kamchatka[J]. Journal of Forest Research, 2009, 14(3): 147−154. doi: 10.1007/s10310-009-0123-y

    [11]

    Andreu L, GUTIÉRRE Z E, Macias M, et al. Climate increases regional tree-growth variability in Iberian pine forests[J]. Global Change Biology, 2007, 13(4): 804−815.

    [12]

    Frank D, Esper J, Cook E R. Adjustment for proxy number and coherence in a large-scale temperature reconstruction[J]. Geophysical Research Letters, 2007, 34(16): 1−5.

    [13]

    Koprowski M. Long-term increase of March temperature has no negative impact on tree rings of European larch (Larix decidua) in lowland Poland[J]. Trees, 2012, 26(6): 1895−1903. doi: 10.1007/s00468-012-0758-8

    [14]

    Youngblut D, Luckman B. Maximum June−July temperatures in the southwest Yukon over the last 300 years reconstructed from tree rings[J]. Dendrochronologia, 2008, 25(3): 153−166. doi: 10.1016/j.dendro.2006.11.004

    [15]

    D'Arrigo R, Wilson R, Jacoby G. On the long-term context for late twentieth century warming[J]. Journal of Geophysical Research, 2006, 111: 1−12.

    [16]

    Wang X, Zhang Y, Mcrae D J. Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China[J]. Trees Structure & Function, 2009, 23(4): 875−885.

    [17] 张朋磊, 刘滨辉. 气候变化对不同纬度兴安落叶松径向生长的影响[J]. 东北林业大学学报, 2015, 43(3):10−13. doi: 10.3969/j.issn.1000-5382.2015.03.003

    Zhang P L, Liu H B. Effects of climate change on Larix gmelinii growth in different latitudes[J]. Journal of Northeast Forestry University, 2015, 43(3): 10−13. doi: 10.3969/j.issn.1000-5382.2015.03.003

    [18] 常永兴, 陈振举, 张先亮, 等. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3):279−289. doi: 10.17521/cjpe.2016.0222

    Chang Y X, Chen Z J, Zhang X L, et al. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming[J]. Chinese Journal of Plant Ecology, 2017, 41(3): 279−289. doi: 10.17521/cjpe.2016.0222

    [19] 周广胜, 王玉辉, 张新时. 中国植被及生态系统对全球变化反应的研究与展望[J]. 中国科学院院刊, 1999, 14(1):28−32.

    Zhou G S, Wang Y H, Zhang X S. Research and prospects of Chinese vegetation and ecosystem response to global change[J]. Bulletin of Chinese Academy of Sciences, 1999, 14(1): 28−32.

    [20]

    Zhang X, Liu C, Nepal S, et al. A hybrid approach for scalable sub-tree anonymization over big data using MapReduce on cloud[J]. Journal of Computer and System Sciences, 2014, 80(5): 1008−1020. doi: 10.1016/j.jcss.2014.02.007

    [21]

    Loehle C. A mathematical analysis of the divergence problem in dendroclimatology[J]. Climatic Change, 2009, 94: 233−245. doi: 10.1007/s10584-008-9488-8

    [22]

    Ulf B, David F, Rob W, et al. Testing for tree-ring divergence in the European Alps[J]. Global Change Biology, 2008, 14(10): 2443−2453. doi: 10.1111/gcb.2008.14.issue-10

    [23]

    Biondi F. Evolutionary and moving response functions in dendroclimatology[J]. Dendrochr-Onologia, 1997, 15(1): 139−150.

    [24]

    Bonan G B, Sirois L. Air temperature, tree growth, and the northern and southern range limits to Picea mariana[J]. Journal of Vegetation Science, 2010, 3(4): 495−506.

    [25]

    Vaganov E A, Hughes M K, Kirdyanov A V, et al. Influence of snowfall and melt timing on tree growth in subarctic Eurasia[J]. Nature, 1999, 400: 149−151. doi: 10.1038/22087

    [26] 彭剑峰, 刘玉振, 王婷. 神农山白皮松不同龄组年轮−气候关系及PDSI重建[J]. 生态学报, 2014, 34(13):3509−3518.

    Peng J F, Liu Y Z, Wang T. A tree-ring record of 1920’s−1940’s droughts and mechanism analyes in Henan Province[J]. Acta Ecologica Sinica, 2014, 34(13): 3509−3518.

    [27] 孙毓, 王丽丽, 陈津, 等. 中国落叶松属树木年轮生长特性及其对气候变化的响应[J]. 中国科学(地球科学), 2010, 40(5):645−653.

    Sun Y, Wang L L, Chen J, et al. Ring growth characteristics of Larix gmelinii in China and its response to climate change[J]. Science in China: Scientia Geographica Sinica, 2010, 40(5): 645−653.

    [28] 尚华明, 魏文寿, 袁玉江, 等. 阿尔泰山南坡树轮宽度对气候变暖的响应[J]. 生态学报, 2010, 30(9):2246−2253.

    Shang H M, Wei W S, Yuan Y J, et al. Response of tree ring width to climate warming on the southern slope of Altai Mountains[J]. Acta Ecologica Sinica, 2010, 30(9): 2246−2253.

    [29]

    Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements[J]. Nature, 1996, 382: 146−161. doi: 10.1038/382146a0

    [30]

    Saxe H, Cannell M G R, Johnsen Q, et al. Tree and forest functioning in response to global warming[J]. New Phytologist, 2001, 149(3): 369−399.

    [31]

    Lavergne A, Daux V, Villalba R, et al. Temporal changes in climatic limitation of tree-growth at upper treeline forests: Contrasted responses along the west-to-east humidity gradient in Northern Patagonia[J]. Dendrochronologia, 2015, 36: 49−59. doi: 10.1016/j.dendro.2015.09.001

    [32] 张先亮, 崔明星, 马艳军, 等. 大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系[J]. 应用生态学报, 2010, 21(10):2501−2507.

    Zhang X L, Cui M X, Ma Y J, et al. Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer, Great Xing ’an Mountains[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2501−2507.

    [33] 孙广友, 于少鹏, 王海霞. 大小兴安岭多年冻土的主导成因及分布模式[J]. 地理科学, 2007, 27(1):68−74. doi: 10.3969/j.issn.1000-0690.2007.01.011

    Sun G Y, Yu S P, Wang H X. Causes, south borderline and subareas of permafrost in Da Hinggan Mountains and Xiao Hinggan Mountains[J]. Geographical Research, 2007, 27(1): 68−74. doi: 10.3969/j.issn.1000-0690.2007.01.011

    [34]

    Toromani E, Sanxhaku M, Pasho E. Growth responses to climate and drought in silver fir (Abies alba) along an altitudinal gradient in southern Kosovo[J]. Canadian Journal of Forest Research, 2011, 41(9): 1795−1807. doi: 10.1139/x11-096

    [35]

    Wang T, Peng S, Lin X, et al. Declining snow cover may affect spring phenological trend on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): 2854−2855. doi: 10.1073/pnas.1306157110

    [36]

    Ren P, Rossi S, Gricar J, et al. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau?[J]. Annals of Botany, 2015, 115(4): 629−639. doi: 10.1093/aob/mcu259

    [37]

    Andreassen K, Solberg S, Tveito O E, et al. Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway[J]. Forest Ecology and Management, 2006, 222(1−3): 211−221. doi: 10.1016/j.foreco.2005.10.029

    [38] 于大炮, 王顺忠, 唐立娜, 等. 长白山北坡落叶松年轮年表及其与气候变化的关系[J]. 应用生态学报, 2005, 16(1):14−20. doi: 10.3321/j.issn:1001-9332.2005.01.003

    Yu D P, Wang S Z, Tang L N, et al. Relationship between tree-ring chronology of Larix olgensis in Changbai Mountains and the climae change[J]. Chinese Journal of Applied Ecology, 2005, 16(1): 14−20. doi: 10.3321/j.issn:1001-9332.2005.01.003

    [39] 李宝, 程雪寒, 吕利新. 西藏朗县地区不同龄级高山松林木径向生长对火干扰的响应[J]. 植物生态学报, 2016, 40(5):436−446. doi: 10.17521/cjpe.2015.0440

    Li B, Cheng X H, Lü L X. Responses of radial growth to fire disturbance in alpine pine (Pinus densata) of different age classes in Nang County, Xizang, China[J]. Chinese Journal of Plant Ecology, 2016, 40(5): 436−446. doi: 10.17521/cjpe.2015.0440

    [40]

    Büntgen U, Frank D C, Schmidhalter M, et al. Growth/climate response shift in a long subalpine spruce chronology[J]. Trees, 2006, 20(1): 99−110. doi: 10.1007/s00468-005-0017-3

    [41]

    Zhu H F, Fang X Q, Shao X M, et al. Tree ring-based February−April temperature reconstruction for Changbai Mountain in Northeast China and its implication for East Asian winter monsoon[J]. Climate of the Past Discussions, 2009, 5(2): 661−666.

    [42]

    Branning A. Dendroclimatological potential of drought-sensitive tree stands in southern Tibet for the reconstruction of monsoonal activity[J]. Iawa Journal, 1999, 20(3): 325−338. doi: 10.1163/22941932-90000695

    [43] 邵雪梅, 刘洪滨. 利用树轮重建秦岭地区历史时期初春温度变化[J]. 地理学报, 2003, 58(6):879−884. doi: 10.3321/j.issn:0375-5444.2003.06.011

    Shao X M, Liu H B. Reconstruction of early-spring temperature of Qinling Mountains using tree-ring chronologies[J]. Geographical Research, 2003, 58(6): 879−884. doi: 10.3321/j.issn:0375-5444.2003.06.011

    [44] 李宗善, 刘国华, 傅伯杰, 等. 川西卧龙国家级自然保护区树木生长对气候响应的时间稳定性评估[J]. 植物生态学报, 2010, 34(9):1045−1057. doi: 10.3773/j.issn.1005-264x.2010.09.005

    Li Z S, Liu G H, Fu B J, et al. Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China[J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1045−1057. doi: 10.3773/j.issn.1005-264x.2010.09.005

    [45] 赵志江, 谭留夷, 康东伟, 等. 云南小中甸地区丽江云杉径向生长对气候变化的响应[J]. 应用生态学报, 2012, 23(3):603−609.

    Zhao Z J, Tan L Y, Kang D W, et al. Response of Picea likiangensis radial growth to climate change in the Small Zhongdian area of Yunnan Province, Southwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 603−609.

    [46]

    Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation[J]. Plant Biology, 2013, 15(3): 483−495. doi: 10.1111/plb.2013.15.issue-3

    [47]

    Merlin M, Perot T, Perret S, et al. Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine[J]. Forest Ecology and Management, 2015, 339: 22−33. doi: 10.1016/j.foreco.2014.11.032

    [48]

    Morin X, Fahse L, Scherer-Lorenzen M, et al. Tree species richness promotes productivity in temperate forests through strong complementarity between species[J]. Ecology Letters, 2011, 14(12): 1211−1219. doi: 10.1111/ele.2011.14.issue-12

  • 期刊类型引用(0)

    其他类型引用(4)

图(8)  /  表(6)
计量
  • 文章访问数:  5189
  • HTML全文浏览量:  873
  • PDF下载量:  113
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-01-19
  • 修回日期:  2019-03-19
  • 网络出版日期:  2019-06-09
  • 发布日期:  2019-05-31

目录

    /

    返回文章
    返回