高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平空间配置对南林-95杨人工林主要细根性状的影响

詹龙飞 于水强 王维枫 王琪 王静波

詹龙飞, 于水强, 王维枫, 王琪, 王静波. 水平空间配置对南林-95杨人工林主要细根性状的影响[J]. 北京林业大学学报, 2019, 41(10): 11-19. doi: 10.13332/j.1000-1522.20190011
引用本文: 詹龙飞, 于水强, 王维枫, 王琪, 王静波. 水平空间配置对南林-95杨人工林主要细根性状的影响[J]. 北京林业大学学报, 2019, 41(10): 11-19. doi: 10.13332/j.1000-1522.20190011
Zhan Longfei, Yu Shuiqiang, Wang Weifeng, Wang Qi, Wang Jingbo. Effects of horizontal spatial allocation on main fine root characters of Populus × euramericana cv. ‘Nanlin-95’ plantations[J]. Journal of Beijing Forestry University, 2019, 41(10): 11-19. doi: 10.13332/j.1000-1522.20190011
Citation: Zhan Longfei, Yu Shuiqiang, Wang Weifeng, Wang Qi, Wang Jingbo. Effects of horizontal spatial allocation on main fine root characters of Populus × euramericana cv. ‘Nanlin-95’ plantations[J]. Journal of Beijing Forestry University, 2019, 41(10): 11-19. doi: 10.13332/j.1000-1522.20190011

水平空间配置对南林-95杨人工林主要细根性状的影响

doi: 10.13332/j.1000-1522.20190011
基金项目: 国家自然科学基金项目(31700555、31270489),江苏省自然科学基金项目(BK20170927)
详细信息
    作者简介:

    詹龙飞。主要研究方向:森林生态。Email:1031171905@qq.com 地址:210037江苏省南京市南京林业大学生物与环境学院

    责任作者:

    于水强,副教授。主要研究方向:森林生态。Email:ysqiang_7@163.com 地址:同上

  • 中图分类号: S727;S718.59;S792.11

Effects of horizontal spatial allocation on main fine root characters of Populus × euramericana cv. ‘Nanlin-95’ plantations

  • 摘要: 目的本文主要研究杨树主要细根性状的空间分布规律与株行距配置间的关系。方法本文选取4种不同水平空间配置(株距 × 行距分别为3 m × 8 m、5 m × 5 m、6 m × 6 m、4.5 m × 8 m)的南林-95杨人工林为研究对象,采用根钻法对细根生物量、比根长和根长密度的空间分布特征进行研究。结果表明:水平空间配置对杨树人工林细根空间分布特征有显著影响。在垂直方向上,低密度(6 m × 6 m)林分表层细根生物量、比根长及根长密度比高密度(3 m × 8 m、5 m × 5 m)林分显著较高;在水平方向上,长方形配置(3 m × 8 m和4.5 m × 8 m)的林分细根生物量随距树干距离的增加而减少,正方形配置(5 m × 5 m和6 m × 6 m)林分的细根生物量以及4种林分的细根根长密度、比根长与取样距离关系不明显。6 m × 6 m林分在水平各距离处均高于其他林分。长方形配置林分,株距方向上的细根生物量、根长密度和比根长总是显著低于行距方向。结论株行距过小,细根生物量会显著减小,生长受限,株行距过大,在距树干较远处细根生物量会显著降低,造成空间浪费,低密度正方形配置(6 m × 6 m)杨树人工林主要细根生长特征在4种株行距配置林分中最优,更适合杨树人工林初值株行距。

     

  • 图  1  不同株行距配置林分细根生物量、根长密度、比根长垂直分布

    不同大写字母表示不同密度配置间差异显著,不同小写字母表示不同土层间差异显著(P < 0.05)。Significant differences between different density and plant spacing are indicated by different capital letters, significant differences between different soil layers are indicated by different lowercase letters.

    Figure  1.  Vertical distribution of fine root biomass and fine root length density and specific root length in poplar plantation with different plant spaces

    图  2  不同株行距配置林分细根生物量、根长密度、比根长的水平分布

    不同大写字母表示不同配置间差异显著,不同小写字母表示不同取样距离间差异显著(P < 0.05)。数据采用行距方向上各取样点处0 ~ 2 mm细根生物量、根长密度、比根长值作图,不包含株间数据,由于杨树生长了10年,导致实际株行距比数据资料上偏小,所以,行距为5、6、8 m的实际取样点个数分别为4、5、6。 Significant differences between different plant spaces are indicated by different capital letters, significant differences between different sampling distances are indicated by different lowercase letters. The data were plotted by 0−2 mm fine root biomass, root length density and specific root length at each sampling point in the direction of row spacing, which did not include inter-plant data. Because poplar had grown for 10 years, the actual row spacing was smaller than the data. Therefore, the actual number of sampling points with row spacing of 5, 6 and 8 m was 4, 5 and 6, respectively.

    Figure  2.  Horizontal distribution of fine root biomass and fine root length density and specific root length in poplar plantation with different plant spacing

    表  1  林分状况及土壤基本理化性状

    Table  1.   Stand condition and basic physical and chemical properties of soil

    株行距
    Row spacing
    平均树高
    Average tree height/m
    平均胸径
    Average DBH/cm
    林分郁闭度
    Forest canopy density
    土壤密度
    Soil density/
    (g·cm− 3)
    pH 硝态氮
    Nitrate nitrogen/
    (mg·kg− 1)
    铵态氮
    Ammonium nitrogen/
    (mg·kg− 1)
    全氮
    Total nitrogen/
    (mg·kg− 1)
    全磷
    Total phosphorus/
    (mg·kg− 1)
    3 m × 8 m 21.25 ± 0.72 20.05 ± 1.54 0.75 1.380 ± 0.051 6.71 ± 0.02 5.882 ± 0.153 23.37 ± 0.288a 715.383 ± 36.661a 17.534 ± 0.504a
    5 m × 5 m 21.00 ± 0.62 19.48 ± 1.33 0.70 1.389 ± 0.044 6.72 ± 0.03 6.159 ± 0.122 23.62 ± 0.374a 680.316 ± 29.074a 12.624 ± 0.317b
    6 m × 6 m 21.50 ± 0.58 22.70 ± 2.01 0.80 1.397 ± 0.052 6.84 ± 0.03 5.853 ± 0.201 21.57 ± 0.299ab 638.102 ± 31.347b 17.124 ± 0.222a
    4.5 m × 8 m 20.75 ± 0.77 22.16 ± 1.86 0.75 1.375 ± 0.043 6.63 ± 0.02 6.142 ± 0.184 18.88 ± 0.220b 562.369 ± 25.590c 16.623 ± 0.236a
    下载: 导出CSV

    表  2  不同株行距配置林分株距与行距生物量、根长密度、比根长对比

    Table  2.   Comparison of fine root biomass, root length density and specific root length between plant spacing and row spacing in different plant spacing forest

    项目 Item 配置 Allocation
    3 m × 8 m 5 m × 5 m 6 m × 6 m 4.5 m × 8 m
    细根生物量
    Fine root biomass
    0.5 m 223±13Aa 169.5±10Bb 206±10.9a 192±12.13 242.09±13.15 208.5±11.7 230.24±17.41Aa 184.01±13B
    1 m 224±11Aa 163.4±11Bb 189.3±11ab 203±14.50 229.84±10.62 215.74±13 216.35±15.33ab 204.52±16
    1.5 m 218±11aA 223.95±11.4a 138±13BbB 186±11.62A 226.99±11.34A 233.11±15.4 196.34±13.38acAB 180.16±11.9
    2 m 186±10ab 165±1.22ab 177±10.71 194.84±9.46 208.08±12.6 186.12±14.63ac 192.62±13.8
    2.5 m 153±10b 202.26±9.04 195.60±11.5 164.84±11.69bc
    3 m 151±12b 148.87±15.50c
    根长
    密度
    Root length density
    0.5 m 1 857±55AaAB 1 512.3±40BB 1 411±41aB 1 507±50.5B 2 126.48±62.30aA 2 018.52±66A 1 764.29±44.25abA 1 518.2±50.0B
    1 m 1 878±63AaA 1 548±42BAB 1 438±39aB 1 466±35.9B 1 728.32±47.19bAB 1 876.71±60A 1 972.8±70.05AaA 1 664±54BAB
    1.5 m 1 793±49abA 1 687.56±5A 1 171±36bB 1 206±62.2B 1 882.5±55.33abA 1 800.5±52A 1 856.6±64.30abA 1 588±70AB
    2 m 1 905±70aA 1 338±36aB 1 289±53.5B 1 817.31±60.28abA 1 864.77±65A 1 639±52.09bcAB 1 605±62AB
    2.5 m 1 805±57 1 845.32±66.74ab 1 904.39±57 1 545±58.5bc
    3 m 1 358±44b 1 334±44.80c
    比根长
    Specific root length
    0.5 m 8.31±0.9AAB 6.10±0.66B 6.84±0.62B 7.11±0.59 8.78±1.20A 8.12±0.84ab 7.66±0.6AB 7.15±0.66
    1 m 8.38±0.88A 6.25±0.42B 7.59±0.89 7.87±0.90 8.52±1.04A 6.01±0.6Bb 9.12±0.91 7.92±0.71
    1.5 m 8.20±1.01 7.78±0.81 8.47±0.83 8.47±1.10 8.29±0.80 8.11±0.77ab 9.46±0.85 8.31±1.06
    2 m 8.24 ±1.20 8.11±0.90 8.36±0.83 9.33± 1.23 8.46±0.81ab 8.80±0.78 8.08±0.74
    2.5 m 8.75±1.41 9.12± 1.18 9.00±0.88a 9.37±0.94
    3 m 8.99±0.82 8.96±0.88
    注:不同大写字母表示方向间差异显著,不同小写字母表示同密度不同距离处差异显著,不同斜体大写字母表示不同密度相同距离处差异显著(P < 0.05),奇数列代表行间,偶数列代表株间。Notes: significant differences between different directions are indicated by different capital letters,different lowercase letters show significant differences at different distances of the same density, and different Italic capital letters show significant differences at the same distance of different densities, odd sequence represents inter-row, even sequence represents inter-plant.
    下载: 导出CSV

    表  3  杨树种植密度、采样深度及距中心水平距离对细根生物量、根长密度、比根长的方差分析结果

    Table  3.   Results of multi-factor analysis of variance for fine root biomass, root length density, and specific root length on the poplar planting density, sampling depth, sampling distance to stem

    因子
    Factor
    自由度
    Freedom degree (df )
    细根生物量
    Fine root biomass
    根长密度
    Root length density
    比根长
    Specific root length
    F P F P F P
    密度 Density 3 6.059 < 0.001 7.046 < 0.001 0.445 0.721
    深度 Depth 4 120.670 < 0.001 85.450 < 0.001 1.861 0.116
    距离 Distance 5 7.641 < 0.001 2.912 0.013 1.215 0.300
    密度 × 深度 Density × depth 12 1.124 0.337 0.761 0.691 0.440 0.947
    密度 × 距离 Density × distance 12 0.553 0.880 1.056 0.395 0.783 0.669
    深度 × 距离 Depth × distance 20 0.767 0.755 0.817 0.694 1.633 0.040
    密度 × 深度 × 距离 Density × depth × distance 48 0.633 0.975 0.913 0.642 0.646 0.970
    下载: 导出CSV
  • [1] 王政权, 郭大立. 根系生态学[J]. 植物生态学报, 2008, 32(6):1213−1216. doi: 10.3773/j.issn.1005-264x.2008.06.001

    Wang Z Q, Guo D L. Root ecology[J]. Journal of Plant Ecology, 2008, 32(6): 1213−1216. doi: 10.3773/j.issn.1005-264x.2008.06.001
    [2] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2010, 147(1): 13−31.
    [3] Lin B, Zongming H E, Gao S, et al. Short-term effects of root exclusion and litter removal on sandy soil carbon and nitrogen pools in three coastal plantation forests[J]. Acta Ecologica Sinica, 2017, 37(12): 15−36.
    [4] 闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美108杨幼林表土层细根形态及分布的影响[J]. 生态学报, 2017, 37(12):15−36.

    Yan X L, Dai T F, Xing C S, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus euramericana plantation[J]. Acta Ecologica Sinica, 2017, 37(12): 15−36.
    [5] Vormstein S, Kaiser M, Piepho H P, et al. Effects of fine root characteristics of beech on carbon turnover in the topsoil and subsoil of a sandy Cambisol[J]. European Journal of Soil Science, 2017, 68(2): 19−25.
    [6] Litton C M, Ryan M G, Knight D H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine[J]. Ecological Applications, 2004, 14(2): 460−475. doi: 10.1890/02-5291
    [7] Wang P, Mommer L, Ruijven J V, et al. Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site[J]. Plant & Soil, 2016, 407(1−2): 1−11.
    [8] Kummerow J, Krause D, Jow W. Seasonal changes of fine root density in the Southern Californian chaparral[J]. Oecologia, 1978, 37(2): 201−212. doi: 10.1007/BF00344991
    [9] Olsthoorn A F M, Klap J M, Voshaar J H O. The relation between fine root density and proximity of stems in closed Douglas-fir plantations on homogenous sand soil: implications for sampling design[J]. Plant and Soil, 1999, 211(2): 215−221. doi: 10.1023/A:1004624707774
    [10] Chen G S, Yang Y S, He Z M, et al. Effects of proximity of stems and tree diameters on fine root density in plantations[J]. Acta Ecologica Sinica, 2005, 25(5): 1007−1011.
    [11] 李盼盼. 杨树人工林细根的空间分布特征及其季节动态[D]. 泰安: 山东农业大学, 2012.

    Li P P. Spatial distribution characteristics and seasonal dynamics of fine roots in poplar plantations[D]. Taian: Shandong Agricultural University, 2012.
    [12] 陈晓林, 陈亚鹏, 李卫红. 干旱区不同地下水埋深下胡杨细根空间分布特征[J]. 植物科学学报, 2018, 36(1):45−53. doi: 10.11913/PSJ.2095-0837.2018.10045

    Chen X L, Chen Y P, Li W H. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions[J]. Plant Science Journal, 2018, 36(1): 45−53. doi: 10.11913/PSJ.2095-0837.2018.10045
    [13] 杨秀云, 韩有志, 张芸香. 距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化[J]. 植物生态学报, 2008, 32(6):1277−1284. doi: 10.3773/j.issn.1005-264x.2008.06.008

    Yang X Y, Han Y Z, Zhang Y X. Effects of horizontal distance on fine root biomass and seasonal dynamics in Larix principis-rupprechtii plantation[J]. Journal of Plant Ecology, 2008, 32(6): 1277−1284. doi: 10.3773/j.issn.1005-264x.2008.06.008
    [14] 燕亚飞, 方升佐, 田野, 等. 林下植物多样性及养分积累量对杨树林分结构的响应[J]. 生态学杂志, 2014, 33(5):1170−1177.

    Yan Y F, Fang S Z, Tian Y, et al. The response of understory plant diversity and nutrient accumulation to stand structure of poplar plantation[J]. Acta Ecologica Sinica, 2014, 33(5): 1170−1177.
    [15] 王树堂, 韩士杰, 张军辉, 等. 长白山阔叶红松林表层土壤木本植物细根生物量及其空间分布[J]. 应用生态学报, 2010, 21(3):583−589.

    Wang S T, Han S J, Zhang J H, et al. Woody plant fine root biomass and its spatial distribution in top soil of broad-leaved Korean pine forest in Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2010, 21(3): 583−589.
    [16] Tron S, Perona P, Gorla L, et al. The signature of randomness in riparian plant root distributions[J]. Geophysical Research Letters, 2015, 42(17): 7098−7106. doi: 10.1002/2015GL064857
    [17] 杜虎, 曾馥平, 宋同清, 等. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4):282−291. doi: 10.17521/cjpe.2015.0199

    Du H, Zeng F P, Song T Q, et al. Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China[J]. Chinese Journal of Plant Ecology, 2016, 40(4): 282−291. doi: 10.17521/cjpe.2015.0199
    [18] 张艳杰, 温佐吾. 不同造林密度马尾松人工林的根系生物量[J]. 林业科学, 2011, 47(3):75−81. doi: 10.11707/j.1001-7488.20110312

    Zhang Y J, Wen Z W. Root biomass of Pinus massoniana plantations under different planting densities[J]. Scientia Silvae Sinicae, 2011, 47(3): 75−81. doi: 10.11707/j.1001-7488.20110312
    [19] 高祥, 丁贵杰, 翟帅帅, 等. 不同林分密度马尾松人工林根系生物量及空间分布研究[J]. 中南林业科技大学学报, 2014, 34(6):71−75. doi: 10.3969/j.issn.1673-923X.2014.06.014

    Gao X, Ding G J, Zhai S S, et al. Spatial distribution of root biomass of Pinus massoniana plantations under different planting densities[J]. Journal of Central South University of Forestry & Technology, 2014, 34(6): 71−75. doi: 10.3969/j.issn.1673-923X.2014.06.014
    [20] 陈硕芃, 王韶仲, 王政权, 等. 密度结构对大青川红松人工林细根生物量与根长密度的影响[J]. 森林工程, 2013, 29(4):1−7. doi: 10.3969/j.issn.1001-005X.2013.04.001

    Chen S P, Wang S Z, Wang Z Q, et al. Influence of stand density on fine root standing biomass and length density in Korean Pine (Pinus koraiensis) plantation in Daqingchuan Forest Farm, Xiaoxing ’an Mountain, China[J]. Forest Engineering, 2013, 29(4): 1−7. doi: 10.3969/j.issn.1001-005X.2013.04.001
    [21] 闫美芳, 王璐, 郭楠, 等. 黄土高原杨树人工林的细根生物量与碳储量研究[J]. 中国农学通报, 2015, 31(35):146−151. doi: 10.11924/j.issn.1000-6850.casb15080071

    Yan M F, Wang L, Guo N, et al. Study on fine root biomass and C stock in a poplar plantation in Loess Plateau[J]. Chinese Agricultural Science Bulletin, 2015, 31(35): 146−151. doi: 10.11924/j.issn.1000-6850.casb15080071
    [22] Chang R Y, Yao X L, Wang S. Effects of soil physicochemical properties and stand age on fine root biomass and vertical distribution of plantation forests in the Loess Plateau of China[J]. Ecological Research, 2012, 27(4): 827−836. doi: 10.1007/s11284-012-0958-0
    [23] 燕亚飞, 田野, 方升佐, 等. 不同密度杨树人工林的外源无机氮输入及土壤无机氮库研究[J]. 南京林业大学学报(自然科学版), 2015, 58(4):69−74.

    Yan Y F, Tian Y, Fang S Z, et al. External nitrogen input and soil inorganic nitrogen pool in different stands of poplar plantations[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 58(4): 69−74.
    [24] 谷加存, 王政权, 韩有志, 等. 采伐干扰对帽儿山地区天然次生林土壤表层温度空间异质性的影响[J]. 应用生态学报, 2006, 17(12):2248−2254. doi: 10.3321/j.issn:1001-9332.2006.12.004

    Gu J C, Wang Z Q, Han Y Z, et al. Effects of cutting intensity on spatial heterogeneity of topsoil temperature in secondary forest in Maoershan region of Heilongjiang Province[J]. Chinese Journal of Applied Ecology, 2006, 17(12): 2248−2254. doi: 10.3321/j.issn:1001-9332.2006.12.004
    [25] Wang L, Long H L, Guo H Y, et al. Spatial distribution and accumulation of nutrients in Eucalyptus grandis under different stand densities[J]. Agricultural Science & Technology, 2017, 6: 112−116.
    [26] Iorio A D, Montagnoli A, Scippa G S, et al. Fine root growth of Quercus pubescens seedlings after drought stress and fire disturbance[J]. Environmental & Experimental Botany, 2011, 74(1): 272−279.
    [27] Mao Y E, Hai-Liang X U, Wang X F, et al. Spatial distribution characteristics of root system of Populus euphratica in the algan transection of the lower tarim river[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(4): 801−807.
    [28] Persson H. Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden[J]. Oikos, 1980, 34(1): 77−87. doi: 10.2307/3544552
    [29] Ayoupu M, Chen Y N, Li W H, et al. Fine root distribution of Populus euphratica Oliv. and its relations with soil factors under extremely arid environment[J]. Journal of Desert Research, 2011, 31(6): 1449−1458.
    [30] Song X, Gao X, Zhao X, et al. Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China[J]. Agricultural Water Management, 2017, 184: 170−177. doi: 10.1016/j.agwat.2017.02.005
    [31] Geng Y Q, Shan H C, Tan X, et al. Soils in forest gaps in artificial coniferous forests[J]. Journal of Beijing Forestry University, 2002, 24(4): 16−19.
    [32] Hendrick R L, Pregitzer K S. Patterns of fine root mortality in two sugar maple forests[J]. Nature, 1993, 361: 59−61. doi: 10.1038/361059a0
    [33] Xu H, Bi H, Gao L, et al. Distribution and morphological variation of fine root in a walnut-soybean intercropping system in the Loess Plateau of China[J]. International Journal of Agriculture and Biology, 2013, 15(5): 998−1002.
    [34] Wang P, Shu M, Mou P, et al. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies[J]. Ecology & Evolution, 2018, 8(6): 3367.
    [35] 李洪波, 薛慕瑶, 林雅茹, 等. 土壤养分空间异质性与根系觅食作用: 从个体到群落[J]. 植物营养与肥料学报, 2013, 19(4):995−1004. doi: 10.11674/zwyf.2013.0428

    Li H B, Xue M Y, Lin Y R, et al. Spatial heterogeneity of soil nutrients and root foraging: from individual to community[J]. Plant Nutrition and Fertilizer Science, 2013, 19(4): 995−1004. doi: 10.11674/zwyf.2013.0428
    [36] 张国盛, 吴国玺, 王林和, 等. 毛乌素沙地臭柏(Sabina vulgaris)和油蒿(Artemisia ordosica)群落的细根分布特征[J]. 生态学报, 2009, 29(1):18−27. doi: 10.3321/j.issn:1000-0933.2009.01.003

    Zhang G S, Wu G X, Wang L H, et al. Fine root distribution characteristics of Sabina vulgaris and Artemisia ordosica communities in the Mu Us Sandland of Inner Mongolia, China[J]. Acta Ecologica Sinica, 2009, 29(1): 18−27. doi: 10.3321/j.issn:1000-0933.2009.01.003
    [37] Lai Z, Zhang Y, Liu J, et al. Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China[J]. Forest Ecology & Management, 2016, 359(14): 381−388.
    [38] Noh N J, Kim C, Sang W B, et al. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities[J]. Journal of Plant Ecology, 2013, 6(5): 368−379. doi: 10.1093/jpe/rtt007
    [39] Teskey R O, Hinckley T M. Influence of temperature and water potential on root growth of white oak[J]. Physiologia Plantarum, 2010, 52(3): 363−369.
    [40] Pregitzer K S, Zak D R, Curtis P S, et al. Atmospheric CO2, soil nitrogen and turnover of fine roots[J]. New Phytologist, 2010, 129(4): 579−585.
    [41] Mccormack M L, Guo D. Impacts of environmental factors on fine root lifespan[J]. Frontiers in Plant Science, 2014, 5(5): 205.
    [42] Joslin J D, Wolfe M H, Hanson P J. Factors controlling the timing of root elongation intensity in a mature upland oak stand[J]. Plant & Soil, 2001, 228(2): 201−212.
    [43] 王韦韦, 黄锦学, 陈锋, 等. 树种多样性对亚热带米槠林细根生物量和形态特征的影响[J]. 应用生态学报, 2014, 25(2):318−324.

    Wang W W, Huang J X, Chen F, et al. Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 318−324.
    [44] 王祖华, 李瑞霞, 郝俊鹏, 等. 间伐对杉木人工林不同根序细根形态的影响[J]. 东北林业大学学报, 2011, 39(6):13−15. doi: 10.3969/j.issn.1000-5382.2011.06.005

    Wang Z H, Li R X, Hao J P, et al. Effects of thinning on fine root morphology in Chinese fir plantations[J]. Journal of Northeast Forestry University, 2011, 39(6): 13−15. doi: 10.3969/j.issn.1000-5382.2011.06.005
    [45] 贺志龙, 张芸香, 郭跃东, 等. 不同密度华北落叶松林天然林土壤养分特征研究[J]. 生态环境学报, 2017, 26(1):47−52.

    He Z L, Zhang Y X, Guo Y D, et al. Soil nutrient characteristics of natural Larix gmelinii forests with different densities[J]. Journal of Ecological Environment, 2017, 26(1): 47−52.
    [46] Curt T, Coll L, Prévosto B, et al. Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition[J]. Annals of Forest Science, 2005, 62(1): 51−60. doi: 10.1051/forest:2004092
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  1355
  • HTML全文浏览量:  592
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-06-24
  • 网络出版日期:  2019-09-28
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回