高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

帽儿山天然次生林主要林分类型最优树种组成

陈莹 董灵波 刘兆刚

陈莹, 董灵波, 刘兆刚. 帽儿山天然次生林主要林分类型最优树种组成[J]. 北京林业大学学报, 2019, 41(5): 118-126. doi: 10.13332/j.1000-1522.20190013
引用本文: 陈莹, 董灵波, 刘兆刚. 帽儿山天然次生林主要林分类型最优树种组成[J]. 北京林业大学学报, 2019, 41(5): 118-126. doi: 10.13332/j.1000-1522.20190013
Chen Ying, Dong Lingbo, Liu Zhaogang. Optimal species composition for the main forest types of secondary forest in Maoershan Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 118-126. doi: 10.13332/j.1000-1522.20190013
Citation: Chen Ying, Dong Lingbo, Liu Zhaogang. Optimal species composition for the main forest types of secondary forest in Maoershan Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 118-126. doi: 10.13332/j.1000-1522.20190013

帽儿山天然次生林主要林分类型最优树种组成

doi: 10.13332/j.1000-1522.20190013
基金项目: 国家重点研发计划项目(2017YFC0504103),黑龙江省林业厅应用示范项目(201522-2)
详细信息
    作者简介:

    陈莹。主要研究方向:森林经理。Email:565464148@qq.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    刘兆刚,博士,教授。主要研究方向:森林经理。Email:lzg19700602@163.com 地址:同上

  • 中图分类号: S757.2

Optimal species composition for the main forest types of secondary forest in Maoershan Mountain, northeastern China

  • 摘要: 目的以帽儿山地区天然次生林为对象,通过对不同演替阶段林分特征状态的综合评价确定林分类型的最优树种组成,为构建该区合理的森林经营模式提供理论依据。方法以帽儿山实验林场2004和2016年共53块固定样地数据为基础,从林分结构特征、林分活力和树种多样性3个方面共选取12项指标:角尺度、大小比数、混交度、直径分布、林分密度、林分蓄积生长量、蓄积量、平均高、天然更新密度、林分潜在疏密度、Simpson多样性指数、Pielou均匀度指数,在熵值-AHP法基础上采用线性加权综合评价法探讨不同软硬阔混交比例对软阔混交林(硬软阔比:0:10、1:9、2:8、3:7)、软硬阔混交林(硬软阔比:4:6、5:5、6:4)和硬阔混交林(硬软阔比:7:3、8:2)林分结构的综合影响。结果3种林型中,除树种混交程度整体相对较高外(0.62 ~ 0.69),林木水平分布格局(0.53 ~ 0.56)、林木大小分化程度(0.47 ~ 0.51)、径阶分布q值(1.09 ~ 1.19)和更新数量(368 ~ 571 株/hm2)均相对较差;各项指标权重值最大为林分蓄积生长量(0.191),最小为大小比数(0.021);软阔混交林、软硬阔混交林、硬阔混交林3种林型中,综合评价值最大的硬软阔树种组成比例分别对应为2:8、6:4、8:2。结论帽儿山天然次生林的最优树种组成在不同林型内差异显著,软阔混交林、软硬阔混交林、硬阔混交林的最优树种组成比例分别对应为2硬8软、6硬4软、8硬2软,为该区阔叶次生林树种组成调整提供参考。

     

  • 图  1  最优树种组成评价指标体系

    Figure  1.  Evaluation index system of the optimal tree species composition

    表  1  样地概况

    Table  1.   General information of sample plots

    林型 Stand type硬:软 Hard:soft样地数 Total number of sample plot平均胸径 Mean DBH/cm海拔 Elevation/m
    软阔混交林
    Soft-broadleaved mixed forest
    0:10316.4 ± 3.8480 ~ 664
    1:9622.1 ± 3.2463 ~ 647
    2:8719.4 ± 2.4365 ~ 611
    软硬阔混交林
    Soft-hard broadleaved mixed forest
    3:7819.3 ± 1.7260 ~ 550
    4:6720.3 ± 3.7400 ~ 575
    5:5519.7 ± 4.5341 ~ 460
    硬阔混交林
    Hard-broadleaved mixed forest
    6:4521.8 ± 2.5410 ~ 596
    7:3619.8 ± 3.6320 ~ 445
    8:2621.6 ± 2.5290 ~ 444
    下载: 导出CSV

    表  2  最优树种组成评价指标体系标准

    Table  2.   Evaluation index system standard of the optimal tree species composition

    指标 Index      标准 Standard 评价值 Evaluation value
    直径分布 Diameter distribution (C4) 近单峰分布 Approximate unimodal distribution 0
    其他情况 Other situation 0.5
    [1.2, 1.5] 1
    天然更新密度 Density of natural regeneration (C9) ≤ 500 株/hm 2 ≤ 500 plant/ha 0.333
    501 ~ 2 500 株/hm2 501 ~ 2 500 plant/ha 0.667
    ≥ 2 501 株/hm2 ≥ 2 501 plant/ha 1
    林分角尺度 Stand uniform angle (C1) 适度指标 Moderate index [0, 1]
    林分混交度 Stand mingling degree (C2) 正向指标 Positive index [0, 1]
    林分大小比数 Stand neighborhood comparison (C3) 逆向指标 Negative index [0, 1]
    林分密度 Stand density (C5) 正向指标 Positive index [0, 1]
    林分蓄积生长量 Stand volume growth (C6) 正向指标 Positive index [0, 1]
    林分蓄积量 Stand volume (C7) 正向指标 Positive index [0, 1]
    林分平均高 Stand mean height (C8) 正向指标 Positive index [0, 1]
    林分潜在疏密度 Stand potential density (C10) 正向指标 Positive index [0, 1]
    Simpson多样性指数 Simpson diversity index (C11) 正向指标 Positive index [0, 1]
    Pielou均匀度指数 Pielou evenness index (C12) 正向指标 Positive index [0, 1]
    下载: 导出CSV

    表  3  3种林型各指标值描述统计特征

    Table  3.   Descriptive statistics information of three stand types

    指标
    Index
    软阔混交林
    Soft-broadleaved
    mixed forest
    软硬阔混交林
    Soft-hard broadleaved
    mixed forest
    硬阔混交林
    Hard-broadleaved
    mixed forest
    0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2
    角尺度
    Uniform angle
    0.54 ± 0.03 0.56 ± 0.02 0.54 ± 0.04 0.54 ± 0.03 0.56 ± 0.03 0.55 ± 0.03 0.53 ± 0.04 0.54 ± 0.03 0.55 ± 0.04
    大小比数
    Neighborhood comparison
    0.47 ± 0.02 0.49 ± 0.04 0.51 ± 0.02 0.50 ± 0.02 0.48 ± 0.02 0.51 ± 0.03 0.50 ± 0.03 0.49 ± 0.03 0.49 ± 0.02
    混交度
    Mingling degree
    0.64 ± 0.11 0.62 ± 0.11 0.67 ± 0.08 0.68 ± 0.10 0.62 ± 0.06 0.62 ± 0.09 0.69 ± 0.05 0.69 ± 0.06 0.67 ± 0.09
    q
    q value
    1.19 ± 0.06 1.09 ± 0.05 1.16 ± 0.08 1.15 ± 0.08 1.11 ± 0.06 1.16 ± 0.14 1.12 ± 0.04 1.10 ± 0.12 1.09 ± 0.03
    株数密度/(株·hm− 2
    Stand density/(plant·ha− 1)
    1 033 ± 29 856 ± 350 869 ± 293 900 ± 226 1 000 ± 271 943 ± 253 947 ± 121 836 ± 279 819 ± 178
    蓄积生长量/(m3·hm− 2
    Stand volume growth/(m3·ha− 1)
    61.1 ± 18.4 60.0 ± 10.5 63.5 ± 8.4 60.6 ± 9.4 66.7 ± 9.2 69.7 ± 23.8 80.5 ± 17.6 66.8 ± 16.6 88.6 ± 16.6
    天然更新/(株·hm− 2
    Natural regeneration/(plant·ha− 1)
    547 ± 220 413 ± 140 571 ± 169 460 ± 258 446 ± 203 488 ± 289 368 ± 197 393 ± 237 453 ± 267
    林分潜在疏密度
    Stand potential density
    0.55 ± 0.10 0.59 ± 0.07 0.57 ± 0.03 0.59 ± 0.04 0.54 ± 0.12 0.66 ± 0.19 0.56 ± 0.05 0.67 ± 0.18 0.57 ± 0.02
    林分蓄积量/(m3·hm− 2
    Stand volume/(m3·ha− 1)
    181.5 ± 16.8 205.1 ± 34.5 170.7 ± 38.8 180.4 ± 47.5 219.5 ± 68.7 199.7 ± 83.9 260.5 ± 69.7 178.2 ± 53.5 218.8 ± 33.3
    林分平均高
    Mean stand height/m
    13.0 ± 2.0 14.8 ± 1.2 14.5 ± 0.5 13.5 ± 1.8 14.2 ± 1.0 14.1 ± 1.2 14.8 ± 1.2 13.5 ± 1.8 14.2 ± 1.8
    Simpson多样性指数
    Simpson diversity index
    0.66 ± 0.11 0.74 ± 0.08 0.70 ± 0.09 0.72 ± 0.08 0.72 ± 0.07 0.75 ± 0.06 0.76 ± 0.04 0.79 ± 0.04 0.74 ± 0.09
    Pielou均匀度
    Pielou evenness index
    0.69 ± 0.10 0.80 ± 0.09 0.76 ± 0.10 0.80 ± 0.09 0.79 ± 0.09 0.79 ± 0.06 0.84 ± 0.07 0.85 ± 0.07 0.83 ± 0.07
    注:数据为“平均值 ± 标准差”。Note:data is “mean ± standard deviation”.
    下载: 导出CSV

    表  4  各指标权重值表

    Table  4.   Weight of each index

    约束层 Limiting layer   指标层 Index layer    权重值 Weight value
    AHP 熵权 Entropy weight 熵-AHP Entropy-AHP
    结构特征 Structural feature (B1) C1 0.042 0.117 0.080
    C2 0.041 0.001 0.021
    C3 0.102 0.009 0.055
    C4 0.043 0.155 0.099
    C5 0.056 0.134 0.095
    林分活力 Stand vigor (B2) 林分蓄积生长量 Stand volume growth (C6) 0.208 0.175 0.191
    林分蓄积量 Stand volume (C7) 0.110 0.185 0.148
    林分平均高 Stand mean height (C8) 0.050 0.135 0.093
    天然更新密度 Natural regeneration density C9) 0.055 0.062 0.059
    林分潜在疏密度 Stand potential density (C10) 0.053 0.015 0.034
    树种多样性 Tree species diversity (B3) Simpson多样性指数 Simpson diversity index (C11) 0.164 0.006 0.085
    Pielou均匀度指数 Pielou evenness index (C12) 0.075 0.006 0.040
    下载: 导出CSV

    表  5  3种林型不同硬软阔比综合评价值特征

    Table  5.   Evaluation value information of three stand types of different hard-to-soft volume ratioS

    林型
    Stand type
    硬:软
    Hard to soft
    样地数
    Sample plot number
    综合评价值 Comprehensive evaluation value
    均值 Mean 标准差 Std 最小值 Min. 最大值 Max.
    软阔混交林
    Soft-broadleaved mixed forest
    0:10 3 0.514 0.042 0.480 0.560
    1:9 6 0.497 0.066 0.430 0.590
    2:8 7 0.525 0.073 0.420 0.640
    3:7 8 0.484 0.078 0.370 0.570
    软硬阔混交林
    Soft-hard broadleaved mixed forest
    4:6 7 0.522 0.086 0.350 0.590
    5:5 5 0.549 0.117 0.390 0.670
    6:4 5 0.616 0.049 0.540 0.680
    硬阔混交林
    Hard-broadleaved mixed forest
    7:3 6 0.503 0.114 0.360 0.660
    8:2 6 0.579 0.068 0.500 0.680
    下载: 导出CSV
  • [1] Grau H R, Arturi M F, Brown A D, et al. Floristic and structural patterns along a chronosequence of secondary forest succession in Argentinean subtropical montane forests[J]. Forest Ecology & Management, 1997, 95(2): 161−171.
    [2] 朱教君. 次生林经营基础研究进展[J]. 应用生态学报, 2002, 13(12):1689−1694. doi: 10.3321/j.issn:1001-9332.2002.12.040

    Zhu J J. A review on fundamental studies of secondary forest management[J]. Chinese Journal of Applied Ecology, 2002, 13(12): 1689−1694. doi: 10.3321/j.issn:1001-9332.2002.12.040
    [3] Chua S C, Ramage B S, Ngo K M, et al. Slow recovery of a secondary tropical forest in Southeast Asia[J]. Forest Ecology and Management, 2013, 308: 153−160.
    [4] 沈国舫. 中国林业可持续发展及其关键科学问题[J]. 地球科学进展, 2000, 15(1):10−18. doi: 10.3321/j.issn:1001-8166.2000.01.002

    Shen G F. Sustainable development of forestry in China and its key scientific problems[J]. Advances in Earth Science, 2000, 15(1): 10−18. doi: 10.3321/j.issn:1001-8166.2000.01.002
    [5] Zhang P, Shao G, Zhao G, et al. China’s forest policy for the 21st century[J]. Science, 2000, 288: 2135−2136. doi: 10.1126/science.288.5474.2135
    [6] 于立忠, 刘利芳, 王绪高, 等. 东北次生林生态系统保护与恢复技术探讨[J]. 生态学杂志, 2017, 36(11):3243−3248.

    Yu L Z, Liu L F, Wang X G, et al. Discussion on the protection and restoration technology of secondary forest ecosystems in Northeast China[J]. Chinese Journal of Ecology, 2017, 36(11): 3243−3248.
    [7] Chen X, Li B L, Lin Z S. The acceleration of succession for the restoration of the mixed-broadleaved Korean pine forests in Northeast China[J]. Forest Ecology & Management, 2003, 177(1): 503−514.
    [8] 张悦, 易雪梅, 王远遐, 等. 采伐对红松种群结构与动态的影响[J]. 生态学报, 2015, 35(1):38−45. doi: 10.3969/j.issn.1673-1182.2015.01.008

    Zhang Y, Yi X M, Wang Y X, et al. Impact of tree harvesting on the population structure and dynamics of Pinus koraiensis (Pinaceae)[J]. Acta Ecologica Sinica, 2015, 35(1): 38−45. doi: 10.3969/j.issn.1673-1182.2015.01.008
    [9] Yu D, Zhou L, Zhou W, et al. Forest management in Northeast China: history, problems, and challenges[J]. Environmental Management, 2011, 48(6): 1122−1135. doi: 10.1007/s00267-011-9633-4
    [10] Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivity experiments in European grasslands[J]. Science, 1999, 286: 1123−1127. doi: 10.1126/science.286.5442.1123
    [11] 董灵波, 刘兆刚, 李凤日, 等. 大兴安岭主要森林类型林分空间结构及最优树种组成[J]. 林业科学研究, 2014, 27(6):734−740.

    Dong L B, Liu Z G, Li F R, et al. Quantitative analysis of forest spatial structure and optimal species composition for the main forest types in Daxing ’anling, Northeast China[J]. Forest Research, 2014, 27(6): 734−740.
    [12] Burrascano S, Blasi F M S. Testing indicators of sustainable forest management on understorey composition and diversity in southern Italy through variation partitioning[J]. Plant Ecology, 2011, 212(5): 829−841. doi: 10.1007/s11258-010-9866-y
    [13] 李法胜, 于政中, 刘建国. 矩阵模型在最优树种组成研究中的应用[J]. 北京林业大学学报, 1992, 14(2):23−30.

    Li F S, Yu Z Z, Liu J G. Application of matrix model in species composition[J]. Journal of Beijing Forestry University, 1992, 14(2): 23−30.
    [14] 张士增, 曹禹田. 天然落叶松林树种组成的优化[J]. 东北林业大学学报, 1997, 25(1):65−66.

    Zhang S Z, Cao Y T. The optimization of tree species composition of nature Dahurian Larch[J]. Journal of Northeast Forestry University, 1997, 25(1): 65−66.
    [15] 吕康梅. 长白山过伐林区云冷杉针阔混交林最优林分结构和最优生长动态的研究[D]. 北京: 北京林业大学, 2006.

    Lü K M. Study on ideal stand structure and development of spruce-fir mixed stands in over cutting area in Changbai Mountains[D]. Beijing: Beijing Forestry University, 2006.
    [16] Condés S, Rio M D, Sterba H. Mixing effect on volume growth of Fagus sylvatica, and Pinus sylvestris, is modulated by stand density[J]. Forest Ecology & Management, 2013, 292: 86−95.
    [17] Légaré S, Paré D, Bergeron Y. The responses of black spruce growth to an increased proportion of aspen in mixed stands[J]. Canadian Journal of Forest Research, 2004, 34(2): 405−416. doi: 10.1139/x03-251
    [18] Reyes-Hernandez V J, Comeau P G. The influence of stocking and stand composition on productivity of boreal trembling aspen-white spruce stands[J]. Forests, 2015, 6(12): 4573−4587. doi: 10.3390/f6124387
    [19] Sterba H, Rio M D, Brunner A, et al. Effect of species proportion definition on the evaluation of growth in pure vs. mixed stands[J]. Forest Systems, 2014, 23(3): 547−559. doi: 10.5424/fs/2014233-06051
    [20] 李菁, 骆有庆, 石娟. 基于生物多样性保护的兴安落叶松与白桦最佳混交比例: 以阿尔山林区为例[J]. 生态学报, 2012, 32(16):4943−4949.

    Li J, Luo Y Q, Shi J. The optimum mixture ratio of larch and birch in terms of biodiversity conservation: a case study in Aershan forest area[J]. Acta Ecologica Sinica, 2012, 32(16): 4943−4949.
    [21] 贺燕. 金沟岭林场两种林型混交结构的研究[D]. 北京: 北京林业大学, 2015.

    He Y. Study on mixed structure of two forest type of Jingouling Forestry Station[D]. Beijing: Beijing Forestry University, 2015.
    [22] 陈贝贝, 王凯, 倪瑞强, 等. 长白山针阔混交林乔木幼苗组成与空间分布[J]. 北京林业大学学报, 2018, 40(2):68−75.

    Chen B B, Wang K, Ni R Q, et al. Composition and spatial pattern of tree seedlings in a coniferous and broadleaved mixed forest in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 68−75.
    [23] 林思祖, 黄宝龙, 洪伟, 等. 杉阔混交林混交比例确定的新途径[J]. 林业科学, 2004, 40(1):158−161. doi: 10.3321/j.issn:1001-7488.2004.01.026

    Lin S Z. Huang B L, Hong W, et al. New approach to decide the mixed proportion for establishing Chinese fir and broadleaved mixed forest[J]. Scientia Silvae Sinicae, 2004, 40(1): 158−161. doi: 10.3321/j.issn:1001-7488.2004.01.026
    [24] 王蕾, 刘浪, 王玮玮, 等. 滇中地区华山松不同树种组成混交林林分空间结构研究[J]. 四川林业科技, 2015, 36(6):57−61. doi: 10.3969/j.issn.1003-5508.2015.06.010

    Wang L, Liu L, Wang W W, et al. Research on the stand spatial structure of mixed Pinus armandii forest of different tree species composition in central Yunnan areas[J]. Journal of Sichuan Forestry Science and Technology, 2015, 36(6): 57−61. doi: 10.3969/j.issn.1003-5508.2015.06.010
    [25] 乌吉斯古楞. 长白山过伐林区云冷杉针叶混交林经营模式研究[D]. 北京: 北京林业大学, 2010.

    Wujisiguleng. Study on the management mode of spruce-fir mixed coniferous forest on over-cutting forest region of Changbai Mountain[D]. Beijing: Beijing Forestry University, 2010.
    [26] Kato J, Hayashi I. Quantitative analysis of a stand of Pinus densiflora undergoing succession to Quercus mongolica ssp. crispula (II): growth and population dynamics of Q. mongolica ssp. crispula under the P. densiflora canopy[J]. Ecological Research, 2007, 22(3): 527−533. doi: 10.1007/s11284-006-0046-4
    [27] 郭韦韦, 张青, 亢新刚, 等. 长白山云冷杉林不同演替阶段树种组成及林下更新研究[J]. 南京林业大学学报(自然科学版), 2017, 41(1):109−116.

    Guo W W, Zhang Q, Kang X G, et al. Species composition and characteristics of saplings for spruce-fir forest at different succession stages in Changbai Mountain[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(1): 109−116.
    [28] 惠刚盈, 张弓乔, 赵中华, 等. 天然混交林最优林分状态的π值法则[J]. 林业科学, 2016, 52(5):1−8.

    Hui G Y, Zhang G Q, Zhao Z H, et al. A new rule of π value of natural mixed forest optimal stand state[J]. Scientia Silvae Sinicae, 2016, 52(5): 1−8.
    [29] Hart S A, Chen H Y H. Understory vegetation dynamics of North American boreal forests[J]. Critical Reviews in Plant Sciences, 2006, 25(4): 381−397. doi: 10.1080/07352680600819286
    [30] 梁会民, 彭世揆, 石小平. 基于熵AHP的子午岭林区可持续经营评价[J]. 南京林业大学学报(自然科学版), 2010, 34(3):93−96. doi: 10.3969/j.issn.1000-2006.2010.03.019

    Liang H M, Peng S K, Shi X P. The evaluation of sustainable forest management based on the method of entropy AHP in Ziwuling[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(3): 93−96. doi: 10.3969/j.issn.1000-2006.2010.03.019
    [31] 闫妍. 帽儿山地区天然次生林主要林分类型结构的研究[D]. 哈尔滨: 东北林业大学, 2009.

    Yan Y. Study on structure of main forest types for secondary forest in Mao ’er Mountain[D]. Harbin: Northeast Forestry University, 2009.
    [32] 周隽. 帽儿山地区天然次生林更新格局研究[D]. 哈尔滨: 东北林业大学, 2007.

    Zhou J. Study on regeneration pattern in secondary forest in Maoershan Region[D]. Harbin: Northeast Forestry University, 2007.
    [33] 于亦彤, 王新杰, 刘雨, 等. 金沟岭林场云冷杉天然次生林空间结构[J]. 东北林业大学学报, 2018, 46(9):7−10. doi: 10.3969/j.issn.1000-5382.2018.09.002

    Yu Y T, Wang X J, Liu Y, et al. Stand spatial structure of natural mixed spruce-fir secondary forests in Jingouling Forest[J]. Journal of Northeast Forestry University, 2018, 46(9): 7−10. doi: 10.3969/j.issn.1000-5382.2018.09.002
    [34] Zhu J, Mao Z, Hu L, et al. Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China[J]. Journal of Forest Research, 2007, 12(6): 403−416. doi: 10.1007/s10310-007-0033-9
    [35] 董灵波, 刘兆刚, 李凤日, 等. 凉水自然保护区阔叶红松林林分空间结构特征及其与影响因子关系[J]. 植物研究, 2014, 34(1): 114−120, 130.

    Dong L B, Liu Z G, Li F R, et al. Relationships between stand spatial structure characteristics and influencing factors of broad-leaved Korean pine (Pinus koraiensis) forest in Liangshui Nature Reserve, Northeast China[J]. Bulletin of Botanical Research, 2014, 34(1): 114−120, 130.
    [36] 侯红亚, 王立海. 小兴安岭阔叶红松林物种组成及主要种群的空间分布格局[J]. 应用生态学报, 2013, 24(11):3043−3049.

    Hou H Y, Wang L H. Species composition and main populations spatial distribution pattern in Korean pine broadleaved forest in Xiaoxing ’an Mountains of Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3043−3049.
    [37] 赵中华, 惠刚盈. 基于林分状态特征的森林自然度评价: 以甘肃小陇山林区为例[J]. 林业科学, 2011, 47(12):9−16. doi: 10.11707/j.1001-7488.20111202

    Zhao Z H, Hui G Y. Forest naturalness evaluation method based on stand state characters: a case study of Gansu Xiaolongshan Forests[J]. Scientia Silvae Sinicae, 2011, 47(12): 9−16. doi: 10.11707/j.1001-7488.20111202
    [38] Perot T, Picard N. Mixture enhances productivity in a two-species forest: evidence from a modeling approach[J]. Ecological Research, 2012, 27(1): 83−94. doi: 10.1007/s11284-011-0873-9
    [39] He Y, Qin L, Li Z, et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecology & Management, 2013, 295(5): 193−198.
    [40] 罗佳, 田育新, 周小玲, 等. 不同造林模式水源涵养功能研究[J]. 中南林业科技大学学报, 2017, 37(3):79−85.

    Luo J, Tian Y X, Zhou X L, et al. Research on water conservation function exploration of different afforestation models[J]. Journal of Central South University of Forestry & Technology, 2017, 37(3): 79−85.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  1634
  • HTML全文浏览量:  553
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-03-03
  • 网络出版日期:  2019-04-30
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回