高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白落叶松人工林有效冠高的确定及其影响因子

白东雪 刘强 董利虎 李凤日

白东雪, 刘强, 董利虎, 李凤日. 长白落叶松人工林有效冠高的确定及其影响因子[J]. 北京林业大学学报, 2019, 41(5): 76-87. doi: 10.13332/j.1000-1522.20190016
引用本文: 白东雪, 刘强, 董利虎, 李凤日. 长白落叶松人工林有效冠高的确定及其影响因子[J]. 北京林业大学学报, 2019, 41(5): 76-87. doi: 10.13332/j.1000-1522.20190016
Bai Dongxue, Liu Qiang, Dong Lihu, Li Fengri. Determination and analysis of height to effective crown for plantedLarix olgensis trees[J]. Journal of Beijing Forestry University, 2019, 41(5): 76-87. doi: 10.13332/j.1000-1522.20190016
Citation: Bai Dongxue, Liu Qiang, Dong Lihu, Li Fengri. Determination and analysis of height to effective crown for plantedLarix olgensis trees[J]. Journal of Beijing Forestry University, 2019, 41(5): 76-87. doi: 10.13332/j.1000-1522.20190016

长白落叶松人工林有效冠高的确定及其影响因子

doi: 10.13332/j.1000-1522.20190016
基金项目: 国家重点研发计划课题(2017YFD0600402),长白落叶松高效培育技术省级资助项目(GX18B041)
详细信息
    作者简介:

    白东雪。主要研究方向:林分生长模型。Email:bai_dongxue@163.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学

    责任作者:

    李凤日,教授。主要研究方向:林分生长模型。Email:fengrili@126.com 地址:同上

Determination and analysis of height to effective crown for plantedLarix olgensis trees

  • 摘要: 目的以黑龙江省长白落叶松人工林为研究对象,分别从光合作用机理角度以及树干断面积生长量与叶生物量垂直分布规律角度提出了有效冠高(HEC)的确定方法,并分析了影响有效冠高的主要因子。方法首先,根据3株光合作用测定样木不同轮层枝叶在生长季内光合累积碳量对树干的贡献量判定有效冠位置,并分析该位置与累积叶生物量垂直分布的关系,提出基于累积叶生物量垂直分布判定有效冠位置的标准。其次,采用传统方法,通过分析树干断面积增长量与叶生物量的实际垂直分布规律,判定有效冠高。最后,根据实测的19块标准地133株解析木数据,对比两种方法判定的有效冠高的差异,确定有效冠高的判断依据,并分析有效冠高与林木因子及林分因子的关系。结果树冠中各轮层枝叶对树干的净碳贡献量随相对着枝深度(RDINC)的增加表现为“单峰”形式的变化趋势,将净碳贡献量大于0的轮层及以上部分确定为有效冠。3株光合样木有效冠高存在一定差异,分别为2.84、4.73和4.38 m,但有效冠位置对应的相对累积叶生物量分别为87%、90%和86%,均接近于90%,因此,可以采用相对累积叶生物量为90%处的位置作为判定有效冠位置的依据。相较于该方法,采用分析断面积增长量和叶生物量垂直分布规律判定HEC位置的方法虽然存在一定差异,但二者的差异并不显著。林分年龄(Age)是与HEC相关性最高的林分因子,二者呈线性正相关,相关系数达到0.8;单木因子中,接触高(CH)和树高(H)与HEC呈显著的线性正相关关系,相关系数为0.9左右。林分密度(SD)和竞争指数(CI)与HEC呈负相关,但该现象主要是受Age、CH和H的影响。结论采用相对叶生物量累积达到总叶生物量90%所对应的位置作为判定有效冠的依据具有一定可行性,处于该位置之上的相邻轮枝的高度即为有效冠高。有效冠长占总冠长的比例平均为四分之三,最小值为二分之一,本研究结果为长白落叶松幼龄林的人工整枝提供了科学依据。

     

  • 图  1  优势木(A)、三级木(B)、劣势木(C)有效冠高的判断过程

    Figure  1.  Process of judging HEC of the dominant tree (A), third grade tree (B) and inferior tree (C)

    图  2  净光合速率的动态变化

    Figure  2.  Dynamic changes of net photosynthetic rate

    图  3  对树干贡献碳量和叶生物量的垂直分布

    Figure  3.  Vertical distribution of carbon contribution to trunk and leaf mass

    图  4  3株光合样木的相对叶生物量累积垂直分布

    Figure  4.  Cumulative vertical distribution of relative leaf mass in the three photosynthetic sample trees

    图  5  HEC-1和HEC-2两种方法确定有效冠高的差异

    Figure  5.  The difference of HEC that determined by HEC-1 and HEC-2

    图  6  HEC-1与HEC-2和树高的散点图

    Figure  6.  The scatter plot of HEC-1 and HEC-2

    图  7  ECR的频数分布规律

    Figure  7.  Frequency distribution of ECR

    图  8  有效冠高和各因子的散点图

    Figure  8.  Scatter plots of HEC and each factor

    表  1  长白落叶松人工林林分因子统计表

    Table  1.   Statistics of stand attributes for Larix olgensis plantation

    统计量 Statistics  最大值 Maximum最小值 Minimum平均值 Mean标准差 Standard deviation
    年龄/a Age/year3310206
    地位指数 Site index (SI)/m 25.09 15.57 20.98 2.34
    林分密度/(株·hm− 2) Stand density (SD)/(plant·ha− 1)3 200 763 1 992 688
    林分断面积/(m2·hm− 2) Stand basal area (BAS)/(m2·ha− 1) 34.35 4.60 20.28 7.28
    下载: 导出CSV

    表  2  长白落叶松枝解析样木因子统计表

    Table  2.   Variable statistics of branch analysis sample trees for Larix olgensis plantation

    统计量
    Statistics  
    最大值
    Maximum
    最小值
    Minimum
    平均值
    Mean
    标准差
    Standard deviation
    胸径 DBH/cm27.002.0012.725.28
    树高 Tree height(H)/m21.503.8012.883.92
    冠长 Crown length(CL)/m14.721.907.342.30
    冠幅 Crown width(CW)/m6.351.102.730.91
    接触高 Crown contact height(CH)/m15.351.757.773.39
    单木叶生物量 Leaf weight of sample tree/kg11.350.072.772.30
    单木枝生物量 Branch weight of sample tree/kg38.880.107.987.72
    注:孟家岗一块样地年龄为10年,树木较小,所以有2棵解析木胸径为2和3.8 cm。Notes: one stand in Mengjiagang was 10 years old and the trees were small, so there were two sample trees with DBH of 2 and 3.8 cm.
    下载: 导出CSV

    表  3  3株光合样木测树因子统计表

    Table  3.   Statistics of tree variables for three photosynthetic sample trees

    样木号 Tree No. DBH/cmH/mCL/mCW/m
    111.9010.338.891.65
    212.4010.528.521.53
    312.9010.817.911.58
    下载: 导出CSV

    表  4  3株光合样木叶生物量分布的参数估计结果

    Table  4.   Fitting results of leaf distribution for three photosynthetic sample trees

    树号 Tree No.参数 ParameterR2RMSE/g
    bc
    10.673.260.87118.05
    20.523.150.99 56.02
    30.673.410.97 53.10
    下载: 导出CSV

    表  5  累积叶生物量垂直分布的拟合结果

    Table  5.   Fitting results of cumulative leaf weight’s vertical distribution

    统计量
    Statistics
    最大值
    Maximum
    最小值
    Minimum
    平均值
    Mean
    标准差
    Standard deviation
    参数 b
    Parameter b
    0.770.450.610.06
    参数 c
    Parameter c
    4.391.893.200.54
    RMSE0.022.060.380.37
    R20.990.300.670.20
    下载: 导出CSV

    表  6  各枝解析样木有效冠高(HEC)统计

    Table  6.   Statistics of HEC for branch analysis sample trees

    统计量
    Statistics
    最大值
    Maximum
    最小值
    Minimum
    平均值
    Mean
    标准差
    Standard deviation
    有效冠高-1
    HEC-1/m
    14.151.187.392.97
    有效冠高-2
    HEC-2/m
    14.091.187.392.84
    下载: 导出CSV

    表  7  133株枝解析样木有效冠高与主要影响因子之间的关系

    Table  7.   Correlation analysis between HEC with stand and tree variables for 133 sample trees

    因子 FactorH/mDBH/cmCL/mCW/cmCH/m
    Pearson相关系数
    Pearson correlation coefficient
    0.89**0.67** 0.21*0.21* 0.93**
    因子
    Factor
    林分年龄/a
    Stand age/year
    SI/mSD/(株·hm− 2) SD/(plant·ha− 1)BAS/(m2·hm− 2) BAS/(m2·ha− 1)竞争指数
    Competition index (CI)
    Pearson相关系数
    Pearson correlation coefficient
    0.80**0.40**− 0.58**0.59**− 0.48**
    注:*代表在P < 0.05水平下显著,**代表在P < 0.01水平下显著。Notes: * means the result is significant at the level of P < 0.05 and ** means the result is significant at the level of P < 0.01.
    下载: 导出CSV
  • [1] Moller C M. The influence of pruning on the growth of conifers[J]. Forestry an International Journal of Forest Research, 1960, 33(1): 37−53. doi: 10.1093/forestry/33.1.37
    [2] Woodman J N. Variation of net photosynthesis within the crown of a large forest-grown conifer[J]. Journal of Parasitology, 1971, 5(1): 50−54.
    [3] Oliver, Larson C D, Bruce C. Forest stand dynamics: updated edition[J/OL]. Forest Stand Dynamics Updated Edition, 1996 [2019-03-02]. http://xueshu.baidu.com/usercenter/paper/show?paperid=ef7a66579e5d888f1b7b9f0bec083cb2&site=xueshu_se&hitarticle=1.
    [4] 王迪生, 宋新民. 一个新的单木竞争指标−相对有效冠幅比[J]. 林业科学研究, 1994, 7(3):337−341. doi: 10.3321/j.issn:1001-1498.1994.03.021

    Wang D X, Song X M. A new single-tree competition measure: relative effective crown ratio[J]. Forest Research, 1994, 7(3): 337−341. doi: 10.3321/j.issn:1001-1498.1994.03.021
    [5] 李凤日, 王治富, 王保森. 落叶松人工林有效冠动态研究(Ⅰ):有效冠的确定[J]. 东北林业大学学报, 1996, 24(1):1−8.

    Li F R, Wang Z F, Wand B S. Studies on the effective crown development of Larix Olgensis(Ⅰ), determination of the effective crown[J]. Journal of Northeast Forestry University, 1996, 24(1): 1−8.
    [6] Raulier F, Ung C H, Ouellet D. Influence of social status on crown geometry and volume increment in regular and irregular black spruce stands[J]. Canadian Journal of Forest Research, 1996, 26(10): 1742−1753. doi: 10.1139/x26-198
    [7] Hann D W. An adjustable predictor of crown profile for stand-grown Douglas-fir trees[J]. Forest Science, 1999, 45(2): 217−225.
    [8] 李露. 基于节子属性的落叶松人工林有效冠高及整枝技术的研究[D]. 哈尔滨: 东北林业大学,2013.

    Li L. Study on effective crown height and pruning technology of Larix olgensis Based on knot properties[D]. Harbin: Northeast Forestry University, 2013.
    [9] Utsugi H, Araki M, Kawaski T, et al. Vertical distributions of leaf area and inclination angle, and their relationship in a 46-year-old Chamaecyparis obtusa stand[J]. Forest Ecology & Management, 2006, 225(1-3): 104−112.
    [10] 卢军, 李凤日, 张会儒, 等. 帽儿山天然次生林主要阔叶树种叶生物量分布模拟[J]. 林业科学, 2011, 47(6):70−76.

    Lu J, Li F R, Zhang H R, et al. A crown ratio model for dominant species in secondary forests in Mao ’er Mountain[J]. Scientia Silvae Sinicae, 2011, 47(6): 70−76.
    [11] Olive C D, Larson B C. Forest stand dynamics[J/OL]. Quarterly Review of Biology, 1990 [2019-02-20]. https://www.researchgate.net/publication/285030458_Forest_Stand_Dynamics.
    [12] Xu M, Harrington T B. Foliage biomass distribution of loblolly pine as affected by tree dominance, crown size, and stand characteristics[J]. Revue Canadienne De Recherche Forestière, 1998, 28(6): 887−892. doi: 10.1139/x98-060
    [13] Maguire D A, Bennett W S. Patterns in vertical distribution of foliage in young coastal Douglas-fir[J]. Canadian Journal of Forest Research, 1996, 26(11): 1991−2005. doi: 10.1139/x26-225
    [14] 闫明淮, 刘兆刚. 樟子松人工林单木叶生物量垂直分布规律[J]. 东北林业大学学报, 2009, 37(7):16−24. doi: 10.3969/j.issn.1000-5382.2009.07.006

    Yan M H, Liu Z G. Foliage vertical distribution of mongolian pine plantations[J]. Journal of Northeast Forestry University, 2009, 37(7): 16−24. doi: 10.3969/j.issn.1000-5382.2009.07.006
    [15] Jerez M, Dean, T J, Cao Q V, et al. Describing leaf area distribution in loblolly pine trees with Johnson ’s SB function[J]. Forest Science, 2005, 4(2): 93−101.
    [16] Massman WJ. Foliage distribution in old-growth coniferous tree canopies[J]. Canadian Journal of Forest Research, 1982, 12(1): 10−17. doi: 10.1139/x82-002
    [17] Yang X, Miller D R, Montgomery M E. Vertical distributions of canopy foliage and biologically active radiation in a defoliated/refoliated hardwood forest[J]. Agricultural & Forest Meteorology, 1993, 67(1−2): 129−146.
    [18] Čermák J, Roberto T, Nadezhda N, et al. Stand structure and foliage distribution in Quercus pubescens and Quercus cerris forests in Tuscany (central Italy)[J]. Forest Ecology & Management, 2008, 255(5):1810−1819.
    [19] Nelson A S, Weiskittel A R, Wagner R G. Development of branch, crown, and vertical distribution leaf area models for contrasting hardwood species in Maine, USA[J]. Trees, 2014, 28(1): 1−14. doi: 10.1007/s00468-013-0925-6
    [20] 马钦彦, 刘志刚, 潘向丽, 等. 华北落叶松人工林生长季内的林冠结构和光分布[J]. 北京林业大学学报, 2000, 22(4):18−21. doi: 10.3321/j.issn:1000-1522.2000.04.004

    Ma Q Y, Liu Z G, Pan X L, et al. A study on the canopy structure and light distribution of Larix principis-ruppurechtii during the growing season[J]. Journal of Beijing Forestry University, 2000, 22(4): 18−21. doi: 10.3321/j.issn:1000-1522.2000.04.004
    [21] Wang Y P, Jarvis P G. Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO)[J]. Tree Physiology, 1990, 7(1−4): 297−316.
    [22] Saito S, Sato T and Kominami Y, et al. Modeling the vertical foliage distribution of an individual Castanopsis cuspidata (Thunb.) Schottky, a dominant broad-leaved tree in Japanese warm-temperate forest[J]. Trees, 2004, 18(4): 486−491.
    [23] 张小全, 赵茂盛, 徐德应. 杉木中龄林树冠叶面积密度空间分布及季节变化[J]. 林业科学研究, 1999, 12(6):612−619.

    Zhang X Q, Zhao M S, Xu D Y. Spatial Distribution and seasonal changes of needle-leaf area density within 17-year-old Chinese fir crown[J]. Forest Research, 1999, 12(6): 612−619.
    [24] 高慧淋, 董利虎, 李凤日. 基于混合效应的人工落叶松树冠轮廓模型[J]. 林业科学, 2017, 53(3):84−93.

    Gao H L, Dong L H, Li F R. Crown shape model for Larix olgensis plantation based on mixed effect[J]. Scientia Silvae Sinicae, 2017, 53(3): 84−93.
    [25] 刘强, 董利虎, 李凤日, 等. 长白落叶松冠层光合作用的空间异质性[J]. 应用生态学报, 2016, 27(9):2789−2796.

    Liu Q, Dong L H, Li F R, et al. Spatial heterogeneity of canopy photosynthesis for Larix olgensis[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2789−2796.
    [26] Liu Q, Li F R. Spatial and seasonal variations of standardized photosynthetic parameters under different environmental conditions for young planted Larix olgensis Henry trees[J/OL]. Forests, 2018, 9(9): 522[2019−01−05]. https://doi.org/10.3390/f9090522.
    [27] Q. Liu, L.H. Dong, F.R. Li. Modeling net CO2 assimilation (AΝ) within the crown of young planted Larix olgensis trees[J]. Canadian Journal of Forest Research, 2018, 48: 1085−1098. doi: 10.1139/cjfr-2018-0151
    [28] Hegyi F. A simulation model for managing jack-pine stands[C]//Fries J. Growth models for tree and stand simulation. Stoekholm: Royal College of Forestry, 1974: 74−90.
    [29] 邹春静, 韩士杰, 张军辉. 阔叶红松林树种间竞争关系及其营林意义[J]. 生态学杂志, 2001, 20(4):35−38. doi: 10.3321/j.issn:1000-4890.2001.04.010

    Zou C J, Han S J, Zhang J H. Competition relationship among tree species in broadleaved Korean pine mixed forest and its significance for managing the forest[J]. Chinese Journal of Ecology, 2001, 20(4): 35−38. doi: 10.3321/j.issn:1000-4890.2001.04.010
    [30] 邱学清, 陈善治. 杉木人工林竞争指数及单木生长模型的研究[J]. 森林与环境学报, 1992(3):309−316.

    Qiu X Q, Chen S Z. Study of competitive index and individual growing model of Chinese fir plant population[J]. Journal of Forestry and Environment, 1992(3): 309−316.
    [31] Springmann S, Rogers R, Spiecker H. Impact of artificial pruning on growth and secondary shoot development of wild cherry (Prunus avlum L.)[J]. Forest Ecology & Management, 2011, 261(3): 764−769.
    [32] Xu P. Estimating the influence of knots on the local longitudinal stiffness in radiata pine structural timber[J]. Wood Science and Technology, 2002, 36(6): 501−509. doi: 10.1007/s00226-002-0156-2
    [33] Lam F, Barrett J D, Nakajima S. Influence of knot area ratio on the bending strength of Canadian Douglas fir timber used in Japanese post and beam housing[J]. Journal of Wood Science, 2005, 51(1): 18−25. doi: 10.1007/s10086-003-0619-6
    [34] 贾炜玮. 樟子松人工林枝条生长及节子大小预测模型的研究[D]. 哈尔滨: 东北林业大学, 2006.

    Jia W W. Prediction model of branch growth and knot size of mongolian pine plantation[D]. Harbin: Northeast Forestry University, 2006.
    [35] 李焱龙, 李凤日, 贾炜玮, 等. 落叶松人工林整枝研究[J]. 森林工程, 2011, 27(2):1−4. doi: 10.3969/j.issn.1001-005X.2011.02.001

    Li Y L, Li F R, Jia W W, et al. Pruning of Larix olgensis plantations[J]. Forest Engineering, 2011, 27(2): 1−4. doi: 10.3969/j.issn.1001-005X.2011.02.001
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  1035
  • HTML全文浏览量:  461
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-03-11
  • 网络出版日期:  2019-05-07
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回