高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东北温带森林林分结构与生产力关系研究

吴兆飞 张雨秋 张忠辉 何怀江 张春雨 赵秀海

吴兆飞, 张雨秋, 张忠辉, 何怀江, 张春雨, 赵秀海. 东北温带森林林分结构与生产力关系研究[J]. 北京林业大学学报, 2019, 41(5): 48-55. doi: 10.13332/j.1000-1522.20190017
引用本文: 吴兆飞, 张雨秋, 张忠辉, 何怀江, 张春雨, 赵秀海. 东北温带森林林分结构与生产力关系研究[J]. 北京林业大学学报, 2019, 41(5): 48-55. doi: 10.13332/j.1000-1522.20190017
Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. doi: 10.13332/j.1000-1522.20190017
Citation: Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. doi: 10.13332/j.1000-1522.20190017

东北温带森林林分结构与生产力关系研究

doi: 10.13332/j.1000-1522.20190017
基金项目: 国家重点研发计划重点专项项目(2017YFC0504005),国家自然科学基金项目(31670643)
详细信息
    作者简介:

    吴兆飞。主要研究方向:森林生态学。Email:stwuzf@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学国家林业和草原局森林经营工程技术研究中心

    责任作者:

    张春雨,教授,博士生导师。主要研究方向:森林经营理论与技术。Email:zcy_0520@163.com 地址:同上

Study on the relationship between forest structure and productivity of temperate forests in Northeast China

  • 摘要: 目的探讨林分结构与森林生产力之间的关系及其驱动机制,为合理改善林分结构,优化森林生态系统功能,提高林分生产力提供科学依据。方法以东北地区温带森林为研究对象,采用机械布点的方式在东北地区7座温带森林分布的主要山脉上设置了327个调查取样点,调查面积共计32.7 hm2。研究以26 348株活立木的野外调查数据为基础,利用结构方程模型探讨了基于大尺度条件下物种多样性和结构多样性对森林生产力的作用路径和大小,分析了温度、降水和林分优势高与森林生产力之间的关系及其驱动机制。结果在结构方程模型中:(1)物种多样性和结构多样性与生产力之间的关系都呈显著正相关,且二者间有很强的相关性;(2)温度和降水对生产力没有直接影响,而是分别通过影响结构多样性和物种多样性作用于生产力;(3)林分优势高对生产力也无直接影响,通过影响林分结构作用于森林生产力,且影响比温度和降水更大。结论中国东北温带森林林分生产力的直接驱动因子是结构多样性和物种多样性,气候和林分优势高是通过作用于林分结构间接影响森林生产力。研究结果为东北地区温带森林的可持续经营和管理提供了理论依据,具有重要的现实意义。

     

  • 图  1  研究区各调查点的地理分布

    Figure  1.  Geographical distribution of survey plots within the study area

    图  2  327个调查点主要变量频数分布图与拟合趋势线

    Figure  2.  Frequency distributions of the main variables of the 327 survey plots with fitted trend lines

    图  3  蓄积增长图

    灰色区域代表2012年的蓄积量,橘色部分代表2012—2017年的蓄积生长量。Grey area represents the amount of accumulation in 2012, and the orange area represents the growth during 2012 to 2017.

    Figure  3.  Volume growth diagram

    图  4  年均温和年均降水对生产力的作用路径图

    实线表示作用路径显著,虚线表示作用路径不显著。*表示在P < 0.05水平上显著,**表示在P < 0.01水平上显著,***表示在P < 0.001水平上显著。Solid line indicates significant path, while dashed line indicates insignificant path. * indicates significant at P < 0.05 level; ** indicates significant at P < 0.01 level; *** indicates significant at P < 0.001 level.

    Figure  4.  Impact paths of mean annual temperature and mean annual precipitation on productivity

    表  1  林型划分标准

    Table  1.   Forest type classification standard

    森林类型 Forest type     划分标准 Classification standard
    纯林 Pure forest 某一树种蓄积量占总蓄积的65%以上
    Single tree species ≥ 65% of total volume
    针叶混交林 Coniferous mixed forest 针叶树种蓄积量占总蓄积的65%以上
    Coniferous species ≥ 65% of total volume
    阔叶混交林 Broadleaved mixed forest 阔叶树种蓄积量占总蓄积的65%以上
    Broadleaved species ≥ 65% of total volume
    针阔混交林 Coniferous and broadleaved mixed forest 针叶和阔叶树种蓄积量各占25% ~ 65%
    Broadleaved or coniferous species account for 25%–65%
    下载: 导出CSV

    表  2  物种多样性和结构多样性计算公式和统计

    Table  2.   Calculation formulas and statistics of species diversity and structure diversity

    指数 Index 计算公式 Formula 范围 Range 平均值 Mean 标准偏差 Standard deviation
    物种多样性
    Species diversity
    物种丰富度
    Species richness
    $\scriptstyle S = N_{\rm{s}}$ 1 ~ 20 7.66 4.32
    物种香农指数
    Species Shannon index
    $\scriptstyle {H_{\rm{s}}} = - \mathop \sum \limits_{i = 1}^{N_{\rm{s}}} \frac{{{n_i}}}{N} \times \ln \left( {\frac{{{n_i}}}{N}} \right)$ 0 ~ 2.66 1.33 0.69
    物种辛普森指数
    Species Simpson index
    $\scriptstyle {D_{\rm{s}}} = 1 - \mathop \sum \limits_{i = 1}^{N_{\rm{s}}} {\left( {\frac{{{n_i}}}{N}} \right)^2}$ 0 ~ 0.92 0.59 0.26
    结构多样性
    Structure diversity
    胸径香农指数
    DBH Shannon index
    $\scriptstyle {H_{\rm{d}}} = - \mathop \sum \limits_{j = 1}^{{N_{\rm{d}}}} \frac{{{n_j}}}{N} \times \ln \left( {\frac{{{n_j}}}{N}} \right)$ 0 ~ 2.28 1.90 0.29
    胸径辛普森指数
    DBH Simpson index
    $\scriptstyle {D_{\rm{d}}} = 1 - \mathop \sum \limits_{j = 1}^{{N_{\rm{d}}}} {\left( {\frac{{{n_j}}}{N}} \right)^2}$ 0 ~ 0.90 0.82 0.09
    树高香农指数
    Tree height Shannon index
    $\scriptstyle {H_{\rm{h}}} = - \mathop \sum \limits_{k = 1}^{{N_{\rm{h}}}} \frac{{{n_k}}}{N} \times \ln \left( {\frac{{{n_k}}}{N}} \right)$ 0.53 ~ 2.30 2.24 0.42
    树高辛普森指数
    Tree height Simpson index
    $\scriptstyle {D_{\rm{h}}} = 1 - \mathop \sum \limits_{k = 1}^{{N_{\rm{h}}}} {\left( {\frac{{{n_k}}}{N}} \right)^2}$ 0.29 ~ 0.94 0.86 0.08
    注:N是样圆内总个体数;Ns是样圆内物种总数;ni是第i个物种的个体数;Nd是样圆内胸径级数;nj是第j个胸径级的个体数;Nh是样圆内树高级数;nk是第k个树高级的个体数。Notes: N is the total number of individual trees in each survey plots; Ns is the total number of species in each survey plots; ni is the number of individuals in the ith species; Nd is the total number of the diameter class in each survey plots; nj is the individual number of the jth diameter class; Nh is the total number of the height class in each survey plots; nk is the individual number of the kth height class.
    下载: 导出CSV
  • [1] Piao S, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J]. Global Change Biology, 2013, 19(7): 2117−2132. doi: 10.1111/gcb.12187
    [2] Ruiz-Benito P, Madrigal-Gonzalez J, Ratcliffe S, et al. Stand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomes[J]. Ecosystems, 2014, 17(8): 1439−1454. doi: 10.1007/s10021-014-9806-0
    [3] Spathelf P, Van Der Maaten E, Van Der Maaten-Theunissen M, et al. Climate change impacts in European forests: the expert views of local observers[J]. Annals of Forest Science, 2014, 71(2): 131−137. doi: 10.1007/s13595-013-0280-1
    [4] Charru M, Seynave I, Hervé J C, et al. Spatial patterns of historical growth changes in Norway spruce across western European mountains and the key effect of climate warming[J]. Trees, 2014, 28(1): 205−221. doi: 10.1007/s00468-013-0943-4
    [5] Bosela M, Štefančík I, Petráš R, et al. The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity[J]. Agricultural and Forest Meteorology, 2016, 222: 21−31. doi: 10.1016/j.agrformet.2016.03.005
    [6] Burkhart H E, Tomé M. Modeling forest trees and stands[M]. Berlin: Springer Science & Business Media, 2012.
    [7] Ratcliffe S, Liebergesell M, Ruiz-Benito P, et al. Modes of functional biodiversity control on tree productivity across the European continent[J]. Global Ecology and Biogeography, 2016, 25(3): 251−262. doi: 10.1111/geb.12406
    [8] Potter K M, Woodall C W. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests[J]. Forest Ecology and Management, 2014, 321: 117−129. doi: 10.1016/j.foreco.2013.06.026
    [9] Wu X, Wang X, Tang Z, et al. The relationship between species richness and biomass changes from boreal to subtropical forests in China[J]. Ecography, 2015, 38(6): 602−613. doi: 10.1111/ecog.2015.v38.i6
    [10] Liang J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests[J/OL]. Science, 2016, 354: aaf8957 [2018−12−23]. http://doi.org/10.1126/science.aaf8957.
    [11] Zhang Y, Chen H Y H, Taylor A R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees[J]. Functional Ecology, 2017, 31(2): 419−426. doi: 10.1111/fec.2017.31.issue-2
    [12] Zhang Y, Chen H Y H. Individual size inequality links forest diversity and above-ground biomass[J]. Journal of Ecology, 2015, 103(5): 1245−1252. doi: 10.1111/1365-2745.12425
    [13] Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100(3): 742−749. doi: 10.1111/j.1365-2745.2011.01944.x
    [14] Forrester D I. The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process[J]. Forest Ecology and Management, 2014, 312: 282−292. doi: 10.1016/j.foreco.2013.10.003
    [15] Jucker T, Avăcăriţei D, Bărnoaiea I, et al. Climate modulates the effects of tree diversity on forest productivity[J]. Journal of Ecology, 2016, 104(2): 388−398. doi: 10.1111/1365-2745.12522
    [16] Dănescu A, Albrecht A T, Bauhus J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany[J]. Oecologia, 2016, 182(2): 319−333. doi: 10.1007/s00442-016-3623-4
    [17] 谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149−1156.

    Tan L Z, Fan C Y, Fan X H. Relationships between species diversity or community structure and productivity of woody-plants in a broadleaved Korean pine forest in Jiaohe, Jilin, China[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1149−1156.
    [18] 王春晶. 东北森林植物多样性分析及保护建议[D]. 哈尔滨: 东北林业大学, 2014.

    Wang C J. The analysis and conservation suggestion for plant diversity of northeastern China[D]. Harbin: Northeast Forestry University, 2014.
    [19] 刘琪璟, 孟盛旺, 周华, 等. 中国立木材积表[M]. 北京: 中国林业出版社, 2017.

    Liu Q J, Meng S W, Zhou H, et al. Chinese timber table[M]. Beijing: China Forestry Publishing House, 2017.
    [20] 吉林省立木材积、出材率表[S]. 吉林: 吉林省林业厅, 2015.

    Jilin Province standing volume, out-put table[S]. Jilin: Jilin Provincial Forestry Department, 2015.
    [21] 黑龙江省立木材积表[S]. 哈尔滨: 黑龙江省营林局, 1981.

    Heilongjiang provincial standing volume table[S]. Harbin: Heilongjiang Forestry Administration, 1981.
    [22] Clutter J L. Compatible growth and yield models for loblolly pine[J]. Forest Science, 1963, 9(3): 354−371.
    [23] Skovsgaard J P, Vanclay J K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands[J]. Forestry: an International Journal of Forest Research, 2008, 81(1): 13−31. doi: 10.1093/forestry/cpm041
    [24] Fox J. Applied regression analysis and generalized linear models[M]. London: Sage Publications, 2015.
    [25] Fahey R T, Fotis A T, Woods K D. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests[J]. Ecological Applications, 2015, 25(3): 834−847. doi: 10.1890/14-1012.1
    [26] Wright I J, Reich P B, Atkin O K, et al. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites[J]. New Phytologist, 2006, 169(2): 309−319. doi: 10.1111/nph.2006.169.issue-2
    [27] Schaphoff S, Reyer C P O, Schepaschenko D, et al. Tamm Review: observed and projected climate change impacts on Russia ’s forests and its carbon balance[J]. Forest Ecology and Management, 2016, 361: 432−444. doi: 10.1016/j.foreco.2015.11.043
    [28] Forrester D I, Ammer C, Annighöfer P J, et al. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe[J]. Journal of Ecology, 2018, 106(2): 746−760. doi: 10.1111/1365-2745.12803
    [29] 郭艳荣, 吴保国, 刘洋, 等. 立地质量评价研究进展[J]. 世界林业研究, 2012, 25(5):47−52.

    Guo Y R, Wu B G, Liu Y, et al. Research progress of site quality evaluation[J]. World Forestry Research, 2012, 25(5): 47−52.
    [30] 唐诚, 王春胜, 曾杰, 等. 立地指数−环境因子模型评价森林立地生产力研究进展[J]. 世界林业研究, 2018, 31(4):48−53.

    Tang C, Wang C S, Zeng J, et al. Advances in forest site productivity evaluation with relationship model of site index and environmental factors[J]. World Forestry Research, 2018, 31(4): 48−53.
    [31] Gonzalez-Benecke C A, Teskey R O, Dinon-Aldridge H, et al. Pinus taeda forest growth predictions in the 21st century vary with site mean annual temperature and site quality[J]. Global Change Biology, 2017, 23(11): 4689−4705. doi: 10.1111/gcb.2017.23.issue-11
    [32] Palahí M, Pukkala T, Kasimiadis D, et al. Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in north-east Greece[J]. Annals of Forest Science, 2008, 65(5): 501.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  3596
  • HTML全文浏览量:  483
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-03-15
  • 网络出版日期:  2019-05-01
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回