高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抚育采伐对针阔混交林林分结构及物种多样性的影响

魏安然 张雨秋 谭凌照 何怀江 张春雨 赵秀海

魏安然, 张雨秋, 谭凌照, 何怀江, 张春雨, 赵秀海. 抚育采伐对针阔混交林林分结构及物种多样性的影响[J]. 北京林业大学学报, 2019, 41(5): 148-158. doi: 10.13332/j.1000-1522.20190018
引用本文: 魏安然, 张雨秋, 谭凌照, 何怀江, 张春雨, 赵秀海. 抚育采伐对针阔混交林林分结构及物种多样性的影响[J]. 北京林业大学学报, 2019, 41(5): 148-158. doi: 10.13332/j.1000-1522.20190018
Wei Anran, Zhang Yuqiu, Tan Lingzhao, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest[J]. Journal of Beijing Forestry University, 2019, 41(5): 148-158. doi: 10.13332/j.1000-1522.20190018
Citation: Wei Anran, Zhang Yuqiu, Tan Lingzhao, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest[J]. Journal of Beijing Forestry University, 2019, 41(5): 148-158. doi: 10.13332/j.1000-1522.20190018

抚育采伐对针阔混交林林分结构及物种多样性的影响

doi: 10.13332/j.1000-1522.20190018
基金项目: 国家重点研发计划项目(2017YFC0504104、2017YFC050410401),国家自然科学基金项目(31670643),吉林省科技发展计划项目(20180519020JH)
详细信息
    作者简介:

    魏安然。主要研究方向:森林生态学。Email:war3149@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    张春雨,教授。主要研究方向:森林经营理论与技术。Email:zcy0520_@163.com 地址:同上

  • 中图分类号: S753.7+5

Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest

  • 摘要: 目的本研究以吉林蛟河天然次生针阔混交林为研究对象,研究抚育采伐对林分生长的影响,以期为吉林蛟河针阔混交林的可持续经营提供理论依据。方法研究采用了蓄积量和生物量分别作为生产力的指标,通过相关关系分析从3个物种多样性和5个林分结构指标中筛选出与生产力显著相关的变量,进而应用结构方程模型分析采伐对林分结构、物种多样性、生产力的影响以及林分结构、物种多样性和生产力之间的因果关系。结果在蓄积生产力的结构方程模型中,采伐对林分密度和林分结构有负影响,路径系数分别为− 0.661、− 0.216;采伐通过林分密度和林分结构间接作用于生产力,通过林分密度间接作用于物种丰富度。林分密度对物种丰富度、林分结构、生产力有正影响,路径系数分别为0.330、0.599、0.473。林分结构对生产力有正影响,路径系数为0.310。物种丰富度对林分结构有正影响,路径系数为0.414。物种丰富度影响林分结构间接作用于生产力。在生物量生产力的结构方程模型中,除林分结构对生产力无影响外,其他变量间的作用方式和蓄积生产力的模型相同。结论研究认为抚育采伐能直接或间接改变林分结构、物种多样性及生产力,而林分结构对生产力的作用比物种多样性大,因此森林经营管理中,在保护物种多样性的前提下,应注重对林分结构的优化和调整。

     

  • 图  1  样地内基础变量信息及单因素方差分析结果

    a、b、c表示各变量在不同采伐处理下的差异。相同的字母表示没有显著差异,不同的字母表示差异显著。NT表示未采伐,LT表示轻度采伐,MT表示中度采伐,HT表示重度采伐。Use a, b, and c refer for the differences of each variable under different thinning treatments. The same letter indicates no significant difference, while different letters indicate significant difference. NT, not thinning; LT, light thinning; MT, moderate thinning; HT, high thinning.

    Figure  1.  Basic variables in the sampling plot and the results of single-factor analysis of variance

    图  2  结构方程模型中的变量间的线性回归关系

    Figure  2.  Linear regression relation of the path in the structural equation model

    图  3  以蓄积生产力为响应变量的结构方程模型

    椭圆形表示潜变量,方形表示显变量。图中实线表示作用路径显著,虚线表示作用路径不显著。***P < 0.001,**P < 0.01,*P < 0.05。图4同此。Ellipses represent latent variables and squares represent explicit variables. Solid line indicates significant path, while dashed line indicates insignificant path. *** means P < 0.001,** means P < 0.01,* means P < 0.05. Same as Fig.4.

    Figure  3.  Structural equation model of volume productivity as the response variable

    图  4  以生物量生产力为响应变量的结构方程模型

    Figure  4.  Structural equation model of biomass productivity as the response variable

    表  1  样地内基础变量信息统计

    Table  1.   Statistical information of basic variables in the sample plot

    采伐强度
    Thinning intensity
    项目
    Item
    范围
    Range
    平均值
    Mean
    标准偏差
    Standard deviation
    未采伐
    Not thinning
    蓄积生产力/(m3·hm− 2·a− 1) Volume productivity/(m3·ha− 1·year− 1) 1.477 ~ 6.410 3.502 1.264
    生物量生产力/(kg·hm− 2·a− 1) Biomass productivity/(kg·ha− 1·year− 1) 1 017.847 ~ 3 898.115 2 249.782 811.671
    林分密度 Stand density/(cm2·m− 2) 12.944 ~ 47.757 27.382 8.763
    物种丰富度 Species richness 6.000 ~ 12.000 9.560 1.745
    物种均匀度指数 Species eveness index 0.725 ~ 0.925 0.851 0.047
    物种香农指数 Species Shannon index 1.507 ~ 2.298 1.906 0.207
    胸径香农指数 DBH Shannon index 2.572 ~ 3.113 2.864 0.163
    胸径均匀度指数 DBH eveness index 0.874 ~ 0.974 0.951 0.022
    胸径基尼指数 DBH Gini index 0.532 ~ 0.787 0.648 0.057
    树高香农指数 Tree height Shannon index 2.153 ~ 2.866 2.610 0.147
    树高基尼指数 Tree height Gini index 0.220 ~ 0.370 0.295 0.038
    轻度采伐
    Light thinning
    蓄积生产力/(m3·hm− 2·a− 1) Volume productivity/(m3·ha− 1·year− 1) 1.156 ~ 5.379 2.712 1.164
    生物量生产力/(kg·hm− 2·a− 1) Biomass productivity/(kg·ha− 1·year− 1) 906.037 ~ 7 435.245 2 179.624 1 253.433
    林分密度 Stand density/(cm2·m− 2) 9.533 ~ 39.825 22.227 6.866
    物种丰富度 Species richness 6.000 ~ 14.000 9.120 1.946
    物种均匀度指数 Species eveness index 0.810 ~ 0.941 0.890 0.036
    物种香农指数 Species Shannon index 1.586 ~ 2.270 1.946 0.187
    胸径香农指数 DBH Shannon index 2.138 ~ 3.008 2.711 0.206
    胸径均匀度指数 DBH eveness index 0.904 ~ 0.991 0.957 0.021
    胸径基尼指数 DBH Gini index 0.433 ~ 0.823 0.674 0.094
    树高香农指数 Tree height Shannon index 2.138 ~ 2.735 2.510 0.160
    树高基尼指数 Tree height Gini index 0.158 ~ 0.387 0.290 0.060
    中度采伐
    Medium thinning
    蓄积生产力/(m3·hm− 2·a− 1) Volume productivity/(m3·ha− 1·year− 1) 1.202 ~ 6.107 2.945 1.271
    生物量生产力/(kg·hm− 2·a− 1) Biomass productivity/(kg·ha− 1·year− 1) 773.959 ~ 4 486.552 1 938.298 1 004.553
    林分密度 Stand density/(cm2·m− 2) 6.942 ~ 35.407 21.993 6.929
    物种丰富度 Species richness 6.000 ~ 12.000 9.480 1.700
    物种均匀度指数 Species eveness index 0.802 ~ 0.956 0.904 0.037
    物种香农指数 Species Shannon index 1.657 ~ 2.326 2.017 0.189
    胸径香农指数 DBH Shannon index 2.211 ~ 2.987 2.668 0.171
    胸径均匀度指数 DBH eveness index 0.920 ~ 0.981 0.960 0.014
    胸径基尼指数 DBH Gini index 0.488 ~ 0.812 0.656 0.077
    胸径均匀度指数 DBH eveness index 0.920 ~ 0.981 0.960 0.014
    胸径基尼指数 DBH Gini index 0.488 ~ 0.812 0.656 0.077
    树高香农指数 Tree height Shannon index 2.154 ~ 2.731 2.475 0.154
    树高基尼指数 Tree height Gini index 0.227 ~ 0.364 0.295 0.032
    重度采伐
    Heavy thinning
    蓄积生产力/(m3·hm− 2·a− 1) Volume productivity/(m3·ha− 1·year− 1) 0.793 ~ 4.384 2.269 0.999
    生物量生产力/(kg·hm− 2·a− 1) Biomass productivity/(kg·ha− 1·year− 1) 556.265 ~ 4 322.080 1 715.165 883.052
    林分密度 Stand density/(cm2·m− 2) 4.270 ~ 26.402 14.001 5.851
    物种丰富度 Species richness 4.000 ~ 13.000 8.840 1.912
    物种均匀度指数 Species eveness index 0.792 ~ 0.961 0.891 0.044
    物种香农指数 Species Shannon index 1.330 ~ 2.321 1.918 0.237
    胸径香农指数 DBH Shannon index 1.792 ~ 3.007 2.556 0.274
    胸径均匀度指数 DBH eveness index 0.855 ~ 1.000 0.959 0.029
    胸径基尼指数 DBH Gini index 0.422 ~ 0.780 0.649 0.083
    树高香农指数 Tree height Shannon index 1.561 ~ 2.810 2.356 0.251
    树高基尼指数 Tree height Gini index 0.226 ~ 0.405 0.317 0.043
    下载: 导出CSV

    表  2  物种多样性和林分结构指标的计算公式

    Table  2.   Formulas of species diversity and stand structure in the studied forest

    项目 Item     指标 Index     计算公式 Formula
    物种多样性 Species diversity 物种丰富度 Species richness $\scriptstyle S=N_{\rm{s}}$
    物种均匀度指数 Species eveness index $\scriptstyle E_{\rm{s}}=H_{\rm{s}} / \ln N_{\rm{s}}$
    物种香农指数 Species Shannon index $\scriptstyle {H_{\rm{s}}} = - \sum\limits_{i = 1}^{{N_{\rm{s}}}} {\frac{{{n_i}}}{N}} \times \ln \frac{{{n_i}}}{N}$
    林分结构 Stand structure 胸径香农指数 DBH Shannon index $\scriptstyle {H_{\rm{d}}} = - \sum\limits_{j = 1}^{{N_{\rm{d}}}} {\frac{{{n_j}}}{N}} \times \ln \frac{{{n_j}}}{N}$
    胸径均匀度指数 DBH eveness index $\scriptstyle E_{\rm{d}}=H_{\rm{d}} / \ln N_{\rm{d}}$
    胸径基尼指数 DBH Gini index $\scriptstyle G_{\rm{d}}=\sum\limits_{k=1}^{N_{\rm{d}}}\left[b a_{k}(2 k-N-1)\right] / \sum\limits_{k=1}^{N_{\rm{d}}} b a_{k}(N-1)$
    树高香农指数 Tree height Shannon index $\scriptstyle H_{\rm{h}}=-\sum\limits_{g=1}^{N_{\rm{h}}} \frac{n_{g}}{N} \times \ln \frac{n_{g}}{N}$
    树高基尼指数 Tree height Gini index $\scriptstyle G_{\rm{h}}=\sum\limits_{m=1}^{N_{\rm{h}}}\left[h_{m}(2 m-N-1)\right] / \sum\limits_{m=1}^{N_{\rm{h}}} h_{m}(N-1)$
    注:Ns为样方内物种总数;N为样方内总个体数;ni为样方内第i个物种的个体数;nj为样方内第j个胸径等级的个体数;bak为样方内按大小升序第k个个体的胸高断面积;Nd为样方内胸径等级总数;Nh为样方内树高等级总数;ng为样方内第g个树高等级的个体数;hm为样方内按大小升序第m个个体的树高。
    Notes: Ns is the total number of species in a subplot; N is the total number of individuals in a subplot; ni is the individual number of the ith species; nj is the individual number of the jth diameter class; bak is the basal area of the kth individual which was ranked according to the ascending order of diameter values; Nd is the total number of the diameter class; Nh is the total number of the tree height class; ng is the individual number of the gth tree height class; hm is the tree height of the mth individual which was ranked according to the ascending order of height values.
    下载: 导出CSV

    表  3  物种多样性、林分结构与生产力的相关关系

    Table  3.   Correlation coefficients between the species diversity, stand structure and productivity

    指标 Index    估计值 Estimate
    蓄积生产力/(m3·hm− 2·a− 1
    Volume productivity/(m3·ha− 1·year− 1)
    生物量生产力/(kg·hm− 2·a− 1
    Biomass productivity/(kg·ha− 1·year− 1)
    物种丰富度 Species richness 0.033** 0.334***
    物种均匀度 Species eveness − 0.708 − 0.103
    物种香农指数 Species Shannon index 0.185 0.235
    胸径香农指数 DBH Shannon index 0.498*** 0.433***
    胸径均匀度指数 DBH eveness index − 0.622 − 0.082
    胸径基尼指数 DBH Gini index 0.053 0.177
    树高香农指数 Tree height Shannon index 0.445*** 0.390***
    树高基尼指数 Tree height Gini index − 0.311 0.052
    注:*** P < 0.001极显著,**P < 0.01极显著,*P < 0.05显著。
    Notes: *** means P < 0.001, extremely significant; ** means P < 0.01, extremely significant; * means P < 0.05, significant.
    下载: 导出CSV
  • [1] 李俊清, 牛树奎, 刘艳红, 等. 森林生态学[M]. 北京: 高等教育出版社, 2010.

    Li J Q, Niu S K, Liu Y H, et al. Forest ecology[M]. Beijing: Higher Education Press, 2010.
    [2] Dagley C M, Berrill J P, Leonard L P, et al. Restoration thinning enhances growth and diversity in mixed redwood/Douglas-fir stands in northern California, U.S.A[J]. Restoration Ecology, 2018, 26(6): 1170−1179. doi: 10.1111/rec.2018.26.issue-6
    [3] 常伟. 秦岭主要天然次生林抚育经营效果评价[D]. 杨凌: 西北农林科技大学, 2015.

    Chang W. Assessment of thinning effects on natural secondary forests in the Qinling Mountains[D]. Yangling: Northwest A&F University, 2015.
    [4] 孙宇瑞, 张文娟, 李云成, 等. 抚育改造是森林生态系统经营的关键性措施[J]. 北京林业大学学报, 2006, 28(1):121−124. doi: 10.3321/j.issn:1000-1522.2006.01.025

    Sun Y R, Zhang W J, Li Y C, et al. Tending thinning improvement of stands is a crucial measure in forest ecosystem management[J]. Journal of Beijing Forestry University, 2006, 28(1): 121−124. doi: 10.3321/j.issn:1000-1522.2006.01.025
    [5] 冉然, 张文辉, 周建云, 等. 间伐强度对秦岭南坡栓皮栎林结实数量和品质的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(1):85−91.

    Ran R, Zhang W H, Zhou J Y, et al. Effects of thinning intensity on fruiting quantity and quality of Quercus variabilis forest on the south slope of Qinling Mountains[J]. Journal of Northwest A&F University(Nat Sci Ed), 2015, 43(1): 85−91.
    [6] 李建, 彭鹏, 何怀江, 等. 采伐对吉林蛟河针阔混交林空间结构的影响[J]. 北京林业大学学报, 2017, 39(9):48−57.

    Li J, Peng P, He H J, et al. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 48−57.
    [7] 郝珉辉, 李晓宇, 夏梦洁, 等. 抚育采伐对蛟河次生针阔混交林功能结构和谱系结构的影响[J]. 林业科学, 2018, 54(5):1−9.

    Hao M H, Li X Y, Xia M J, et al. Effects of tending felling on functional and phylogenetic structures in a multi-species temperate secondary forest at Jiaohe in Jilin Province[J]. Scientia Silvae Sinicae, 2018, 54(5): 1−9.
    [8] 惠刚盈, 赵中华, 张弓乔. 基于林分状态的天然林经营措施优先性研究[J]. 北京林业大学学报, 2016, 38(1):1−10.

    Hui G Y, Zhao Z H, Zhang G Q. Priority of management measures for natural forests based on the stand state[J]. Journal of Beijing Forestry University, 2016, 38(1): 1−10.
    [9] 马志远, 石玲, 吴相菊, 等. 长白山次生针阔混交林乔木多样性维持机制研究[J]. 北京林业大学学报, 2014, 36(6):93−98.

    Ma Z Y, Shi L, Wu X J, et al. Maintaining mechanism of tree diversity in a secondary conifer and broadleaf mixed forest in Changbai Mountains[J]. Journal of Beijing Forestry University, 2014, 36(6): 93−98.
    [10] Dănescu A, Albrecht A T, Bauhus J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany[J]. Oecologia, 2016, 182(2): 1−15.
    [11] 雷相东. 东北过伐林区几种典型森林类型的物种和林分结构多样性及采伐的影响研究[D]. 北京: 北京林业大学, 2000.

    Lei X D. Studies on plant species diversity and stand structural diversity of typical forest types and cutting effects on them in over-logged forests in northeastern China[D]. Beijing: Beijing Forestry University, 2000.
    [12] 何列艳, 亢新刚, 赵俊卉, 等. 长白山云冷杉针阔混交林径阶多样性指数对比[J]. 浙江农林大学学报, 2011, 28(3):432−438. doi: 10.3969/j.issn.2095-0756.2011.03.013

    He L Y, Kang X G, Zhao J H, et al. Diameter class diversity indices for spruce-fir conifer and broadleaf mixed stands in the Changbai Mountains[J]. Journal of Zhejiang A&F University, 2011, 28(3): 432−438. doi: 10.3969/j.issn.2095-0756.2011.03.013
    [13] Fox J, Monette G. Generalized collinearity diagnostics[J]. Publications of the American Statistical Association, 1992, 87: 178−183. doi: 10.1080/01621459.1992.10475190
    [14] Fox J. Applied regression analysis and generalized linear models[M]. London: SAGE Publications, 2017.
    [15] 谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149−1156.

    Tan L Z, Fan C Y, Fan X H. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1149−1156.
    [16] Fahey R T, Fotis A T, Woods K D. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests[J]. Ecological Applications, 2015, 25(3): 834−847. doi: 10.1890/14-1012.1
    [17] 管惠文, 董希斌. 间伐强度对落叶松次生林冠层结构和林内光环境的影响[J]. 北京林业大学学报, 2018, 40(10):13−23.

    Guan H W, Dong X B. Influence of thinning intensity on canopy structure and light environment inside Larix gmelinii secondary forest[J]. Journal of Beijing Forestry University, 2018, 40(10): 13−23.
    [18] 雷相东, 陆元昌, 张会儒, 等. 抚育间伐对落叶松云冷杉混交林的影响[J]. 林业科学, 2005, 41(4):78−85. doi: 10.3321/j.issn:1001-7488.2005.04.014

    Lei X D, Lu Y C, Zhang H R, et al. Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis[J]. Scinetia Silvae Sinicae, 2005, 41(4): 78−85. doi: 10.3321/j.issn:1001-7488.2005.04.014
    [19] Parker G G, Davis M M, Chapotin S M. Canopy light transmittance in Douglas-fir-western hemlock stands[J]. Tree Physiology, 2002, 22(2−3): 147−157. doi: 10.1093/treephys/22.2-3.147
    [20] Parker G G, Harmon M E, Lefsky M A, et al. Three-dimensional structure of an old-growth Pseudotsuga-Tsuga canopy and its implications for radiation balance, microclimate, and gas exchange[J]. Ecosystems, 2004, 7(5): 440−453.
    [21] Gough C M, Vogel C S, Hardiman B, et al. Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession[J]. Forest Ecology and Management, 2010, 260(1): 36−41. doi: 10.1016/j.foreco.2010.03.027
    [22] 胡胜华, 袁怀文, 颜绍馗, 等. 干扰对人工诱导的阔叶红松林群落结构及高等植物多样性的影响[J]. 北京林业大学学报, 2007, 29(6):72−78. doi: 10.3321/j.issn:1000-1522.2007.06.012

    Hu S H, Yuan H W, Yan S K, et al. Effects of disturbance on community structure and higher plant diversity of artificially inducing broad-leaved Pinus koraiensis forests[J]. Journal of Beijing Forestry University, 2007, 29(6): 72−78. doi: 10.3321/j.issn:1000-1522.2007.06.012
    [23] 马履一, 李春义, 王希群, 等. 不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J]. 林业科学, 2007, 43(5):1−9. doi: 10.3321/j.issn:1001-7488.2007.05.001

    Ma L Y, Li C Y, Wang X Q, et al. Effects of thinning on the growth and the diversity of undergrowth of Pinus tabulaeformis plantation in Beijing mountainous areas[J]. Scientia Silvae Sinicae, 2007, 43(5): 1−9. doi: 10.3321/j.issn:1001-7488.2007.05.001
    [24] Dalerum F, Cameron E Z, Kunkel K, et al. Interactive effects of species richness and species traits on functional diversity and redundancy[J]. Theoretical Ecology, 2012, 5(1): 129−139. doi: 10.1007/s12080-010-0104-y
    [25] Yachi S, Loreau M. Does complementary resource use enhance ecosystem functioning: a model of light competition in plant communities[J]. Ecology Letters, 2007, 10(1): 54−62. doi: 10.1111/j.1461-0248.2006.00994.x
    [26] 林敦梅, 庞梅, 赖江山, 等. 亚热带常绿阔叶林不同林层物种多样性与地上生物量的多变量关系[J]. 科学通报, 2017, 62(17):1861−1868.

    Lin D M, Pang M, Lai J S, et al. Multivariate relationship between tree diversity and aboveground biomass across tree strata in a subtropical evergreen broad-leaved forest[J]. Chinese Science Bulletion, 2017, 62(17): 1861−1868.
    [27] Hao M, Zhang C, Zhao X, et al. Functional and phylogenetic diversity determine woody productivity in a temperate forest[J]. Ecology and Evolution, 2018, 8(5): 2395−2406. doi: 10.1002/ece3.2018.8.issue-5
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  2008
  • HTML全文浏览量:  690
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-02-25
  • 网络出版日期:  2019-04-30
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回