高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杉木人工林近自然化改造对林下植被多样性和土壤理化性质的影响

姜俊 刘宪钊 贾宏炎 明安刚 陈贝贝 陆元昌

姜俊, 刘宪钊, 贾宏炎, 明安刚, 陈贝贝, 陆元昌. 杉木人工林近自然化改造对林下植被多样性和土壤理化性质的影响[J]. 北京林业大学学报, 2019, 41(5): 170-177. doi: 10.13332/j.1000-1522.20190022
引用本文: 姜俊, 刘宪钊, 贾宏炎, 明安刚, 陈贝贝, 陆元昌. 杉木人工林近自然化改造对林下植被多样性和土壤理化性质的影响[J]. 北京林业大学学报, 2019, 41(5): 170-177. doi: 10.13332/j.1000-1522.20190022
Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. doi: 10.13332/j.1000-1522.20190022
Citation: Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. doi: 10.13332/j.1000-1522.20190022

杉木人工林近自然化改造对林下植被多样性和土壤理化性质的影响

doi: 10.13332/j.1000-1522.20190022
基金项目: 中央高校基本科研业务费专项(2018ZY27),国家重点研发计划项目(2016YFD060020501)
详细信息
    作者简介:

    姜俊,助理研究员。主要研究方向:人工林经营及作业法设计。Email:jiang@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    陆元昌,研究员。主要研究方向:多功能森林经营。Email:ylu@caf.ac.cn 地址:100091 北京市海淀区东小府1号中国林业科学研究院

  • 中图分类号: S756.3;S791.27

Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation

  • 摘要: 目的研究近自然化改造下杉木人工林物种多样性和土壤理化性质的相关关系及其动态变化,探究改造后林下植被—土壤系统之间的相互影响关系,评估人工经营措施对杉木人工林群落的生态影响,为该区未来杉木人工林可持续经营提供科学依据。方法以中国林业科学研究院热带林业实验中心3种不同经营模式的杉木近自然改造林分和未经改造的杉木人工纯林作为对照,分析林下灌木和草本群落物种组成、植物多样性水平和土壤理化性质差异及其之间的相关性。结果改造后灌木层和草本层的丰富度、Shannon-Wiener指数、Simpson指数和均匀度指数均高于未改造纯林。土壤理化指标在不同经营模式下变化特征不同,土壤含水量、有机质、全氮、全钾和速效钾含量受采伐影响明显(P < 0.05),均为改造样地大于对照样地,其中有机质含量最高,达56.68 g/kg。土壤含水量、土壤密度与草本植物多样性表现出一定的相关性,而与灌木层多样性指数无显著相关性;有机质与灌木层的Shannon-Wiener指数和丰富度指数均呈现显著正相关(P < 0.05),与草本无显著相关性;pH值与灌草层多样性指数均无显著相关性。结论改造后杉木人工林土壤全氮、全磷、全钾、速效钾有机质和含水量与林下灌草多样性指数的相关性最为密切,建议采伐后保留450 ~ 600株/hm2配合林下30 ~ 40株阔叶树种补植作为该区域经营指标参考,并重视经营措施下的人工林林下植被多样性与土壤理化性质产生的相互关系。

     

  • 图  1  不同经营模式林下物种多样性指数

    S为丰富度指数;H为Shannon-Wiener指数;E为Simpson指数;D为Pielou指数。S, richness index; H, Shannon-Wiener index; E, Simpson index; D, Pielou index.

    Figure  1.  Species diversity index of understory vegetation under different management models

    表  1  样地设置与经营试验设计表

    Table  1.   General situation and management operation of each sample plot

    经营模式
    Management model
    样地
    Sample plot
    坡度
    Slope/(°)
    海拔
    Altitude/m
    改造前株数/
    (株·hm− 2
    Pre-thinning density/
    (tree·ha− 1)
    计划保留株数/
    (株·hm− 2
    Planed density/
    (tree·ha− 1)
    改造后株数/
    (株·hm− 2
    Post-thinning density/
    (tree·ha− 1)
    平均胸径
    (2016)
    Average DBH/cm
    平均树高
    (2016)
    Average tree height/m
    HT I-B1-B4 20 ~ 40 350 ~ 400 1 245 225 ~ 300 287 14.38 13.55
    MT Ⅱ-B1-B4 20 ~ 40 350 ~ 400 1 213 450 ~ 600 559 14.43 12.79
    LT Ⅲ-B1-B4 20 ~ 40 350 ~ 400 1 126 600 ~ 750 730 14.55 13.71
    CK CK-B1-B4 20 ~ 40 350 ~ 400 1 219 1 219 1 219 14.29 13.11
    注:HT代表间伐后保留225 ~ 300 株/hm2;MT代表采伐后保留450 ~ 600 株/hm2;LT代表采伐后保留600 ~ 750 株/hm2;未改造林分为CK;下同。Notes: HT, planed density is 225−300 tree/ha;MT, planed density is 450−600 tree/ha;LT, planed density is 600−750 tree/ha; CK, unthinned stand. The same below.
    下载: 导出CSV

    表  2  样地林下灌木种类与重要值

    Table  2.   Understorey shrub layer species and important values (IV) of sample plots

    物种 Species 重要值 IV
    CK HT MT LT
    合欢 Albizia julibrissin 26.67 11.39 12.50 19.87
    大青 Clerodendrum cyrtophyllum 33.70 21.55 81.28 62.09
    方叶五月茶 Antidesma ghaesembilla 5.43 35.22 33.21 12.88
    野漆 Toxicodendron succedaneum 18.36 8.70 10.4 13.33
    大叶算盘子 Glochidion lanceolarium 22.34 18.21 9.34
    猪肚木 Canthium horridum 9.23 12.98 2.71
    水东哥 Saurauia tristyla 1.11 21.01 3.12
    三叉苦 Melicope pteleifolia 21.04 27.88 23.21
    鸭脚木 Schefflera minutistellata 2.13 5.01 2.51
    水锦树 Wendlandia uvarufolia 2.22 2.28 3.14
    九节 Psychotria rubra 22.41 33.14 13.28
    粗叶榕 Ficus hirta 1.98 0.67
    山乌桕 Triadica cochinchinensis 1.51 0.86
    枫香 Liquidambar formosana 2.98 1.36
    毛黄肉楠 Actinodaphne pilosa 14.01
    黄毛榕 Ficus esquiroliana 10.48
    山苍子 Litsea cubeba 0.97
    簕党花椒 Zanthoxylum avicennae 1.34
    油茶 Camellia oleifera 1.26
    杜茎山 Maesa japonica 1.44
    下载: 导出CSV

    表  3  样地林下草本种类与重要值

    Table  3.   Understorey herb layer species and important values of sample plots

    物种 Species 重要值 IV
    CK HT MT LT
    铁芒箕 Dicranopteris dichotoma 22.35 32.38 12.79 13.08
    半边旗 Pteris semipinnata 97.08 22.13 24.87 38.12
    扇叶铁线蕨 Adiantum flabellulatum 37.88 26.74 12.34 20.01
    五节芒 Miscanthus floridulus 22.13 58.16 41.49 33.28
    蔓生莠竹 Microstegium vagans 12.31 62.61 53.76 62.98
    东方乌毛蕨 Blechnum orientale 11.31 15.88 23.11 21.98
    淡竹叶 Lophatherum gracile 1.23 0.96 1.71
    细圆藤 Pericampylus glaucus 2.21
    两面针 Zanthorμlum nitidum 2.11
    酸藤子 Embelia laeta 2.81 1.03
    蜈蚣草 Pteris vittata 1.81 1.22
    断肠草 Gelsemium elegans 1.51
    下载: 导出CSV

    表  4  样地林分土壤理化性质变化情况

    Table  4.   Change of soil physicochemical indicators (mean ± SE) in sample plot stand

    改造处理 Improved treatment    HT MT LT CK
    pH 3.87 ± 0.13a 3.96 ± 0.11a 4.11 ± 0.21a 4.26 ± 0.15a
    含水量 Moisture content 18.34 ± 0.18b 27.13 ± 0.31a 22.33 ± 0.72a 20.62 ± 0.47a
    土壤密度 Soil density/(g·cm− 3) 1.77 ± 0.02a 1.52 ± 0.09a 1.42 ± 0.03a 1.48 ± 0.02a
    有机质 Organic matter/(g·kg− 1) 29.83 ± 8.9c 56.68 ± 6.7a 47.57 ± 5.9b 26.62 ± 9.3c
    全氮 Total nitrogen/(g·kg− 1) 1.54 ± 0.11b 1.69 ± 0.20a 1.59 ± 0.13b 1.53 ± 0.29b
    全磷 Total phosphorus/(g·kg− 1) 0.19 ± 0.02a 0.22 ± 0.01a 0.24 ± 0.08a 0.28 ± 0.02a
    速效磷 Available phosphorous/(mg·kg− 1) 2.18 ± 1.1a 2.26 ± 1.2a 2.45 ± 1.3a 2.49 ± 0.4a
    全钾 Total potassium/(g·kg− 1) 5.04 ± 1.63b 5.81 ± 1.34b 4.97 ± 1.73b 6.18 ± 2.79a
    速效钾 Available potassium/(mg·kg− 1) 68.57 ± 21.48b 76.57± 3.1b 74.13 ± 21.4b 88.59 ± 35.2a
    注:不同小写字母代表差异显著(P < 0.05)。下同。Notes: different small letters in the same column indicate significant difference. The same below.
    下载: 导出CSV

    表  5  灌木和草本层多样性指数与土壤理化性质相关分析

    Table  5.   Correlation analysis between diversity indices of shrub and herb layers and soil physicochemical properties

    多样性指数
    Diversity index
    pH 含水量
    Moisture
    content
    土壤密度
    Soil density
    有机质
    Organic
    matter
    全氮
    Total
    nitrogen
    全磷
    Total
    phosphorus
    速效磷
    Available
    phosphorus
    全钾
    Total
    potassium
    速效钾
    Available
    potassium
    灌木层
    Shrub layer
    S − 0.15 0.15 − 0.19 0.58* 0.73** 0.75* 0.45 0.84** 0.81*
    H − 0.18 − 0.11 − 0.36 0.64* 0.85* 0.54 0.58 0.76* 0.74**
    D − 0.12 0.33 0.05 0.51 0.62** 0.68* 0.14 0.69* 0.81
    E − 0.06 − 0.60 0.41 0.22 0.26 0.39 − 0.27 0.73 0.63
    草本层
    Herb layer
    S 0.28 0.76* − 0.73** 0.32 0.83* 0.79* 0.47 0.52* 0.61
    H 0.53 0.18 − 0.10 0.21 0.46 0.48 0.49* 0.44 0.55
    D 0.17 0.26 − 0.03 − 0.23 0.32 0.39 0.34 0.30 0.41
    E 0.32 0.16 0.02 0.31 0.47 0.69 0.57 0.29 0.36
    注:*代表相关性达到显著水平,P < 0.05;**代表相关性达到极显著水平,P < 0.01。Notes: * represents significant correlation at P < 0.05 level, ** represents significant correlation at P < 0.01 level.
    下载: 导出CSV
  • [1] 盛炜彤. 中国人工林及其育林体系[M]. 北京: 中国林业出版社, 2014.

    Sheng W T. Plantation forest and their silvicature systems in China[M]. Beijing: China Forestry Publishing House, 2014
    [2] 刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策:从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1):1−10. doi: 10.3969/j.issn.1673-1182.2018.01.001

    Liu S R, Yang Y J, Wang H. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 2018, 38(1): 1−10. doi: 10.3969/j.issn.1673-1182.2018.01.001
    [3] 夏丽丹, 于姣妲, 邓玲玲, 等. 杉木人工林地力衰退研究进展[J]. 世界林业研究, 2018, 31(2):37−42.

    Xia L D, Yu J D, Deng L L, et al. Researches on soil decline of Chinese fir plantation[J]. World Forestry Research, 2018, 31(2): 37−42.
    [4] 李婷婷, 陆元昌, 庞丽峰, 等. 杉木人工林近自然经营的初步效果[J]. 林业科学, 2014, 50(5):90−100.

    Li T T, Lu Y C, Pang L F, et al. Initial effect of close-to-nature management of Chinese fir plantation[J]. Scientia Silvae Sinicae, 2014, 50(5): 90−100.
    [5] 耿丹, 夏朝宗, 张国斌, 等. 杉木人工林灌木层生物量模型构建[J]. 北京林业大学学报, 2018, 40(3):34−41.

    Geng D, Xia C Z, Zhang G B, et al. Biomass model construction of shrub layer of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2018, 40(3): 34−41.
    [6] 陆元昌, 张守攻, 雷相东, 等. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 2009, 22(1):20−27.

    Lu Y C, Zhang S G, Lei X D, et al. Theoretical basis and implementation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 2009, 22(1): 20−27.
    [7] 姜俊. 热带山地人工针阔混交林结构动态及作业法应用研究[D]. 北京: 中国林业科学研究院, 2015.

    Jiang J. Study on structural dynamic and silvicultural system of conifer-broadleaved mixed plantation in southern tropical montane region[D]. Beijing: Chinese Academy of forestry, 2015.
    [8] 明安刚, 刘世荣, 李华, 等. 近自然化改造对马尾松和杉木人工林生物量及其分配的影响[J]. 生态学报, 2017, 37(23):7833−7842.

    Ming A G, Liu S R, Li H, et al. Effects of close-to-nature transformation on biomass and its allocation in Pinus massoniana and Cunninghamia lanceolata plantations[J]. Acta Ecologica Sinica, 2017, 37(23): 7833−7842.
    [9] Zuo X A, Knops J M H, Zhao X Y, et al. Indirect drivers of plant diversity-productivity relationship in semiarid sandy grasslands[J]. Biogeosciences, 2012, 9: 1277−1289. doi: 10.5194/bg-9-1277-2012
    [10] 孙千惠, 吴霞, 王媚臻, 等. 林分密度对马尾松林林下物种多样性和土壤理化性质的影响[J]. 应用生态学报, 2018, 29(3):732−738.

    Sun Q H, Wu X, Wang M Z, et al. Effects of stand density on understory species diversity and soil physicochemical properties of Pinus massoniana plantation[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 732−738.
    [11] Pohl M, Alig D, Krner C, et al. Higher plant diversity enhances soil stability in disturbed alpine ecosystems[J]. Plant and Soil, 2009, 324: 91−102. doi: 10.1007/s11104-009-9906-3
    [12] Bi J, Blanco J A, Seely B, et al. Yield decline in Chinese fir plantations: a simulation investigation with implications for model complexity[J]. Canadian Journal of Forest Research, 2007, 37(9): 1615−1630. doi: 10.1139/X07-018
    [13] He Z M, Fan S H, Lu J M, et al. Effects of site management treatments on growth of six-year-old, second-rotation Chinese fir (Cunninghamia lanceolata) plantations[J]. Frontiers of Forestry in China, 2007, 2(4): 396−400. doi: 10.1007/s11461-007-0063-7
    [14] 赵朝辉, 方晰, 田大伦, 等. 间伐对杉木林林下地被物生物量及土壤理化性质的影响[J]. 中南林业科技大学学报, 2012, 32(5):102−107. doi: 10.3969/j.issn.1673-923X.2012.05.022

    Zhao C H, Fang X, Tian D L, et al. Effects of thinning on biomass of under-story, soil physical and chemical properties in Cunninghamia lanceolata plantation[J]. Journal of Central South University of Forestry & Technology, 2012, 32(5): 102−107. doi: 10.3969/j.issn.1673-923X.2012.05.022
    [15] 王伟峰, 段玉玺, 张立欣, 等. 不同轮伐期对杉木人工林碳固存的影响[J]. 植物生态学报, 2016, 40(7):669−678.

    Wang W F, Duan Y X, Zhang L X, et al. Effects of different rotations on carbon sequestration in Chinese fir plantations[J]. Chinese Journal of Plant Ecology, 2016, 40(7): 669−678.
    [16] 陈日升, 康文星, 周玉泉, 等. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2):173−184.

    Chen R S, Kang W X, Zhou Y Q, et al. Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest[J]. Chinese Journal of Plant Ecology, 2018, 42(2): 173−184.
    [17] 姜俊, 陆元昌, 庞丽峰. 南亚热带人工林树种种间联结分析及经营模式设计[J]. 林业资源管理, 2014(6):79−84.

    Jiang J, Lu Y C, Pang L F. Analysis on interspecific association and management modes of the tree species for plantation in southern subtropical zone, China[J]. Forest Resources Management, 2014(6): 79−84.
    [18] 曾冀. 广西大青山杉木马尾松人工林近自然化改造试验研究[D]. 北京: 中国林业科学研究院, 2017.

    Zeng J. Studies on close-to-nature transformation of Cunninghamia lanceolate and Pinus massoniana plantations in Daqingshan, Guangxi of China[D]. Beijing:Chinese Academy of Forestry, 2017.
    [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Soil and agricultural chemistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [20] Magurran A E. Ecological diversity and its measurement[M]. Princeton: Princeton University Press, 1988.
    [21] 方精云, 李意德, 朱彪, 等. 海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位[J]. 生物多样性, 2004, 12(1):29−43. doi: 10.3321/j.issn:1005-0094.2004.01.005

    Fang J Y, Li Y D, Zhu B, et al. Community structures and species richness in the montane rain forest of Jianfengling, Hainan Island, China[J]. Biodiverstiy Science, 2004, 12(1): 29−43. doi: 10.3321/j.issn:1005-0094.2004.01.005
    [22] 郭正刚, 刘慧霞, 孙学刚, 等. 白龙江上游地区森林植物群落物种多样性的研究[J]. 植物生态学报, 2003, 27(3):388−395. doi: 10.3321/j.issn:1005-264X.2003.03.015

    Guo Z G, Liu H X, Sun X G, et al. Characristics of species diversity of plant communities in the upper reaches of Bailong River[J]. Chinese Journal of Plant Ecology, 2003, 27(3): 388−395. doi: 10.3321/j.issn:1005-264X.2003.03.015
    [23] Berger T W, Neubauer C, Glatzel G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria[J]. Forest Ecology and Management, 2002, 159(1/2): 3−14.
    [24] 何友均, 梁星云, 覃林, 等. 南亚热带人工针叶纯林近自然改造早期对群落特征和土壤性质的影响[J]. 生态学报, 2013, 33(8):2484−2495.

    He Y J, Liang X Y, Qin L, et al. Community characteristics and soil properties of coniferous plantation forest monocultures in the early stages after close-to-nature transformation management in southern subtropical China[J]. Acta Ecologica Sinica, 2013, 33(8): 2484−2495.
    [25] 康冰, 刘世荣, 蔡道雄, 等. 马尾松人工林林分密度对林下植被及土壤性质的影响[J]. 应用生态学报, 2009, 20(10):2323−2331.

    Kang B, Liu S R, Cai D X, et al. Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2323−2331.
    [26] Thompson J, Brokaw N, Zimmerman J K, et al. Land use history, environment, and tree composition in a tropical forest[J]. Ecological Applications, 2002, 12: 1344−1363. doi: 10.1890/1051-0761(2002)012[1344:LUHEAT]2.0.CO;2
    [27] 孙冬婧, 温远光, 罗应华, 等. 近自然化改造对杉木人工林物种多样性的影响[J]. 林业科学研究, 2015, 28(2):202−208.

    Sun D J, Wen Y G, Luo Y H, et al. Effect of close-to-nature management on species diversity in a Cunninghamia lanceolata plantation[J]. Forest Research, 2015, 28(2): 202−208.
    [28] Brown K A, Gurevitch J. Long-term impacts of logging on forest diversity in Madagascar[J]. Proceedings of the National Academy of Sciences, 2004, 101(16): 6045−6049. doi: 10.1073/pnas.0401456101
    [29] Trettin C C, Jurgensen M F, Gale M R, et al. Recovery of carbon and nutrient pools in a northern forested wetland 11 years after harvesting and site preparation[J]. Forest Ecology and Management, 2011, 262: 1826−1833. doi: 10.1016/j.foreco.2011.07.031
    [30] Svob S, Arroyo-Mora J P, Kalacska M. The development of a forestry geodatabase for natural forest management plans in Costa Rica[J]. Forest Ecology & Management, 2014, 327: 240−250.
    [31] 吴波波, 郭剑芬, 吴君君, 等. 采伐剩余物对林地表层土壤生化特性和酶活性的影响[J]. 生态学报, 2014, 34(7):1645−1653.

    Wu B B, Guo J F, Wu J J, et al. Effects of logging residues on surface soil biochemical properties and enzymatic activity[J]. Acta Ecologica Sinica, 2014, 34(7): 1645−1653.
    [32] 陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2010.

    Chen H M. Environment soil science[M]. Beijing: Science Press, 2010.
    [33] 王慧敏, 张峰, 庞春花, 等. 汾河流域中下游植物群落物种多样性与土壤因子的关系[J]. 西北植物学报, 2013, 33(10):2077−2085. doi: 10.7606/j.issn.1000-4025.2013.10.2077

    Wang H M, Zhang F, Pang C H, et al. Interrelation between plant species diversity and soil factors in the middle and lower reaches of Fenhe River[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(10): 2077−2085. doi: 10.7606/j.issn.1000-4025.2013.10.2077
    [34] Schutz J P. Development of close to nature forestry and the role of ProSilva Europe[J]. Zbornik Gozdarstva in Lesarstva, 2011, 94: 39−42.
    [35] 陆元昌, 刘宪钊. 多功能人工林经营技术指南[M]. 北京:中国林业出版社, 2014.

    Lu Y C, Liu X Z. Technical guideline for multi-functional plantation forest management[M]. Beijing: China Forestry Publishing House, 2014.
    [36] Rametsteiner E, Simula M. Forest certification: an instrument to promote sustainable forest management[J]. Journal of Environmental Management, 2003, 67(1): 87−98. doi: 10.1016/S0301-4797(02)00191-3
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  2002
  • HTML全文浏览量:  577
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-03-01
  • 网络出版日期:  2019-04-30
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回