高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于哑变量的闽楠天然次生林单木胸径和树高生长模型研究

曹梦 潘萍 欧阳勋志 臧颢 吴自荣 杨阳 占常燕

曹梦, 潘萍, 欧阳勋志, 臧颢, 吴自荣, 杨阳, 占常燕. 基于哑变量的闽楠天然次生林单木胸径和树高生长模型研究[J]. 北京林业大学学报, 2019, 41(5): 88-96. doi: 10.13332/j.1000-1522.20190026
引用本文: 曹梦, 潘萍, 欧阳勋志, 臧颢, 吴自荣, 杨阳, 占常燕. 基于哑变量的闽楠天然次生林单木胸径和树高生长模型研究[J]. 北京林业大学学报, 2019, 41(5): 88-96. doi: 10.13332/j.1000-1522.20190026
Cao Meng, Pan Ping, Ouyang Xunzhi, Zang Hao, Wu Zirong, Yang Yang, Zhan Changyan. Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable[J]. Journal of Beijing Forestry University, 2019, 41(5): 88-96. doi: 10.13332/j.1000-1522.20190026
Citation: Cao Meng, Pan Ping, Ouyang Xunzhi, Zang Hao, Wu Zirong, Yang Yang, Zhan Changyan. Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable[J]. Journal of Beijing Forestry University, 2019, 41(5): 88-96. doi: 10.13332/j.1000-1522.20190026

基于哑变量的闽楠天然次生林单木胸径和树高生长模型研究

doi: 10.13332/j.1000-1522.20190026
基金项目: 林业公益性行业科研专项(201504301),国家自然科学基金项目(31760207、31360181)
详细信息
    作者简介:

    曹梦。主要研究方向:森林资源管理与监测。Email:13687092584@163.com 地址:330045 江西省南昌市昌北经济技术开发区志敏大道1225号

    责任作者:

    欧阳勋志,教授,博士生导师。主要研究方向:森林资源管理与监测和森林生态。Email:oyxz_2003@hotmail.com 地址:同上

  • 中图分类号: S758.5

Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable

  • 摘要: 目的通过对闽楠天然次生林胸径和树高生长规律及生长模型的研究,为林木生长预估及林分质量提升经营措施的制订提供参考。方法以江西省安福县闽楠天然次生林为研究对象,通过标准地调查及树干解析等方法获取基础数据,按林木竞争压力水平从小到大将林木分为类型1、类型2和类型3,分析胸径和树高的生长规律;选取5种具有生物学意义的生长方程,根据模型拟合优度与评价指标选取最优基础生长模型,在最优模型的基础上构建含竞争类型哑变量的生长模型。结果(1)利用树干解析数据分析显示,30 ~ 50年为胸径生长速生期,连年生长量最大值达到0.57 cm;35 ~ 45年为树高主要生长速生期,连年生长量最大值为0.37 m。(2)胸径最优基础模型为Gompertz方程,模型R2和预估精度分别为0.756和94.28%,构建的最优哑变量模型的R2和预估精度分别为0.873和95.71%;树高最优基础模型为修正Weibull方程,模型R2和预估精度分别为0.856和96.54%,构建的最优哑变量模型的R2和预估精度分别为0.882和96.96%。(3)由构建的哑变量生长模型拟合的不同竞争类型下的胸径和树高生长曲线得知,胸径和树高总生长量均表现为类型1 > 类型2 > 类型3,类型1胸径最大生长量是类型3的1.6倍。结论竞争压力对闽楠胸径、树高生长均产生影响,较大的林木竞争压力不利于闽楠生长;构建含有竞争类型哑变量模型的拟合优度及预估精度均优于基础模型,有利于提高建模的精度和模型的适用性。

     

  • 图  1  胸径生长量曲线

    Figure  1.  Growth curve of DBH

    图  2  树高生长量曲线

    Figure  2.  Growth curve of tree height

    图  3  基础模型与哑变量模型实测值与预测值的相关关系

    Figure  3.  Correlation of observed and predicted values for basical model and dummy variable model

    图  4  不同竞争压力水平下的胸径、树高生长曲线

    Figure  4.  DBH and tree height growth curves at different competitive pressure levels

    表  1  对象木基本特征

    Table  1.   Basic characteristics of sampling trees

    变量
    Variable
    最大值
    Maximum value
    最小值
    Minimum value
    平均值
    Average value
    标准差
    Standard deviation
    年龄/a
    Age/year
    67 35 52 10.5
    胸径
    DBH/cm
    32.112.322.05.8
    树高
    Tree height/m
    23.412.716.63.0
    简单竞争指数
    Simple competition index
    2.95 0.42 1.36 0.66
    下载: 导出CSV

    表  2  生长模型表达式

    Table  2.   Expression of growth model

    模型 ModelSchumacherLogisticRichards修正Weibull Modified WeibullGompertz
    表达式 Expression$ {\scriptstyle y = a{{\rm{e}}}}^{ - \frac{b}{t}}$$\scriptstyle y = a/(1 + b{{\rm{e}}^{ - ct}})$$\scriptstyle y = a{(1 - {{\rm{e}}^{ - ct}})^b}$$\scriptstyle y = a(1 - {{\rm{e}}^{ - b{t^c}}})$$\scriptstyle y = a{{\rm{e}}^{ - b{{\rm e}^{ - ct}}}}$
    下载: 导出CSV

    表  3   胸径生长方程拟合参数值、拟合优度及评价指标

    Table  3.   Fitting parameter value, goodness of fit and evaluation index of growth models of DBH

    模型 Model参数值 Parameter value拟合指标 Fitting index评价指标 Evaluating index
    abcR2RMSEAICTREMAEPa
    Schumacher39.96342.7430.7493.530436.922.5080.77293.87
    修正Weibull
    Modified Weibull
    26.315 0.001 11.745 0.7533.496433.532.8050.70993.91
    Logistic21.14322.9860.094 20.7523.504434.30− 0.691 0.76794.15
    Gompertz25.413 4.3150.048 10.7563.484432.36 0.020 80.73294.28
    Richards32.422 2.0960.027 30.7533.500433.91− 2.451 0.74594.22
    下载: 导出CSV

    表  4   树高生长方程拟合参数值、拟合优度及评价指标

    Table  4.   Fitting parameter value, goodness of fit and evaluation index of growth models of tree height

    模型 Model参数值 Parameter value拟合指标 Fitting index评价指标 Evaluating index
    abcR2RMSEAICTREMAEPa
    Schumacher25.89229.7730.8302.091256.74 2.8061.64296.15
    修正Weibull
    Modified Weibull
    36.024 0.005 61.1550.8531.944231.65 0.3551.46396.54
    Logistic18.31910.8580.0770.8491.968235.92− 0.9881.50696.50
    Gompertz21.552 3.0740.0420.8521.948232.38− 1.2231.49696.52
    Richards40.153 1.1770.0110.8531.945231.88− 0.6081.48096.54
    下载: 导出CSV

    表  5  不同参数组合哑变量胸径生长模型拟合优度与评价指标

    Table  5.   Goodness of fit and evaluation index of dummy variable model with different parameter combinations

    参数 ParameterR2AICTREMAEPa
    a0.871324.85− 1.252 1.82695.76
    b0.852347.860.2002.00495.41
    c0.867329.920.7321.86595.60
    ab0.873321.691.1291.77495.71
    ac0.872322.860.6071.78995.69
    bc0.869327.21− 0.357 1.87095.69
    下载: 导出CSV

    表  6  哑变量胸径生长模型参数估计值

    Table  6.   Estimated value of dummy variable model parameters

    参数
    Parameter
    a0a1a2b0b1b2c0
    估计值
    Estimated value
    18.92111.3334.0845.400− 0.921− 1.2230.052
    下载: 导出CSV

    表  7  不同参数组合哑变量树高生长模型拟合优度与评价指标

    Table  7.   Goodness of fit and evaluation index of dummy variable model with different parameter combinations

    参数 ParameterR2AICTREMAEPa
    a0.881199.22− 3.7211.41896.97
    b0.874208.99− 4.3391.46796.90
    c0.882197.68− 3.0351.40896.96
    ab0.878203.94− 3.8441.42396.93
    ac0.880200.22− 4.1501.41796.97
    下载: 导出CSV

    表  8  哑变量树高生长模型参数估计值

    Table  8.   Estimated value of dummy variable model parameters

    参数
    Parameter
    ab c0c1c2
    估计值
    Estimated value
    32.0990.0061.1390.0750.066
    下载: 导出CSV

    表  9  最优基础模型与哑变量模型效果对比

    Table  9.   Comparison in the effects of optimal basic model and dummy variable model

    变量 Varible   模型 Model R2AICTREMAEPa
    胸径 DBH基础模型 Basic model0.756432.36 0.020 80.73294.28
    哑变量模型 Dummy variable model0.873321.691.1291.77495.71
    树高 Tree height基础模型 Basic model0.853231.650.3551.46396.54
    哑变量模型 Dummy variable model0.892197.68− 3.035 1.40896.96
    下载: 导出CSV
  • [1] 任瑞娟, 亢新刚, 杨华. 天然林单木生长模型研究进展[J]. 西北林学院学报, 2008, 23(6):203−206.

    Ren R J, Kang X G, Yang H. Review on growth model of individual-tree in natural forest[J]. Journal of Northwest Forestry University, 2008, 23(6): 203−206.
    [2] Cao Q V. Prediction of annual diameter growth and survival for individual trees from periodic measurements[J]. Forest Science, 2000, 46(1): 127−131.
    [3] Mabvurira D, Miina J. Individual-tree growth and mortality models for Eucalyptus grandis (Hill) Maiden plantations in Zimbabwe[J]. Forest Ecology & Management, 2002, 161(1/3): 231−245.
    [4] 林丽平, 徐期瑚, 罗勇, 等. 广东省樟树立木生长规律和生长模型研究[J]. 中南林业科技大学学报, 2018, 38(6):23−29.

    Lin L P, Xu Q H, Luo Y, et al. Study on the growth laws and models of Cinnamomum Camphora in Guangdong Province[J]. Journal of Central South University of Forestry & Technology, 2018, 38(6): 23−29.
    [5] Canham C D, Papaik M J, Uriarte M, et al. Neighborhood analyses of canopy tree competition along environmental gradients in New England forests[J]. Ecological Applications, 2006, 16(2): 540−554. doi: 10.1890/1051-0761(2006)016[0540:NAOCTC]2.0.CO;2
    [6] Coomes D A, Allen R B. Effects of size, competition and altitude on tree growth[J]. Journal of Ecology, 2007, 95(5): 1084−1097. doi: 10.1111/jec.2007.95.issue-5
    [7] 王金池, 邓华锋, 冉啟香, 等. 基于哑变量的云南松蓄积生长模型[J]. 森林与环境学报, 2017, 37(4):453−458.

    Wang J C, Deng H F, Ran Q X, et al. The volume growth model of Pinus yunnanensis based on dummy variables[J]. Journal of Forest and Environment, 2017, 37(4): 453−458.
    [8] 吴大荣. 福建罗卜岩闽楠(Phoebe bournei)林中优势树种生态位研究[J]. 生态学报, 2001, 21(5):851−855. doi: 10.3321/j.issn:1000-0933.2001.05.026

    Wu D R. A study on the niche of dominant species in Phoebe bournei forests in Luoboyan Nature Reserve of Fujian[J]. Acta Ecologica Sinica, 2001, 21(5): 851−855. doi: 10.3321/j.issn:1000-0933.2001.05.026
    [9] 吴大荣, 朱政德. 福建省罗卜岩自然保护区闽楠种群结构和空间分布格局初步研究[J]. 林业科学, 2003, 39(1):23−30. doi: 10.3321/j.issn:1001-7488.2003.01.004

    Wu D R, Zhu Z D. Preliminary study on structure and spatial distribution pattern of Phoebe bournei in Luoboyan Nature Reserve in Fujian Province[J]. Scientia Silvae Sinicae, 2003, 39(1): 23−30. doi: 10.3321/j.issn:1001-7488.2003.01.004
    [10] 游晓庆, 彭诗涛, 郭孝玉, 等. 闽楠天然次生林林分空间结构研究[J]. 江西农业大学学报, 2016, 38(4):660−667.

    You X Q, Peng S T, Guo X Y, et al. A study on the spatial structure of natural secondary Phoebe bournei forest[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(4): 660−667.
    [11] 范繁荣. 闽楠群落种间关联性的灰色系统理论分析[J]. 浙江林学院学报, 2008, 25(1):33−36. doi: 10.3969/j.issn.2095-0756.2008.01.007

    Fan F R. Study of inter-specific correlation of Phoebe bournei communities by grey systems[J]. Journal of Zhejiang Forestry College, 2008, 25(1): 33−36. doi: 10.3969/j.issn.2095-0756.2008.01.007
    [12] 李雪云, 潘萍, 臧颢, 等. 闽楠天然次生林自然更新的影响因子研究[J]. 林业科学研究, 2017, 30(5):701−708.

    Li X Y, Pan P, Zang H, et al. Study on factors affecting natural regeneration of natural secondary Phoebe bournei forest[J]. Forest Research, 2017, 30(5): 701−708.
    [13] 江香梅, 肖复明, 叶金山, 等. 闽楠天然林与人工林生长特性研究[J]. 江西农业大学学报, 2009, 31(6):1049−1054. doi: 10.3969/j.issn.1000-2286.2009.06.015

    Jiang X M, Xiao F M, Ye J S, et al. A study on the growth characteristics of Phoebe bournei in natural forest and plantation stands[J]. Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(6): 1049−1054. doi: 10.3969/j.issn.1000-2286.2009.06.015
    [14] 陈东阳. 闽楠人工林与天然林生长特点比较[J]. 福建林业科技, 2012, 39(3):24−28. doi: 10.3969/j.issn.1002-7351.2012.03.06

    Chen D Y. Contrast of growth characteristics of Phoebe bournei artificial forest and natural forest[J]. Journal of Fujian Forestry Science and Technology, 2012, 39(3): 24−28. doi: 10.3969/j.issn.1002-7351.2012.03.06
    [15] 董点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程[J]. 北京林业大学学报, 2014, 36(4):54−63.

    Dong D, Lin T X, Tang J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54−63.
    [16] 钱升平, 吕飞舟, 边更战, 等. 基于简单竞争指标的青冈栎次生林林木竞争单元构建[J]. 林业资源管理, 2016(2):56−61.

    Qian S P, Lü F Z, Bian G Z, et al. Structure of tree competition unit of Cyclobalanopsis glauca secondary forest based on simple competition index[J]. Forest Resources Management, 2016(2): 56−61.
    [17] 唐守正, 郎奎建, 李海奎. 统计与生物数学模型计算: ForStat教程[M]. 北京: 科学出版社, 2009.

    Tang S Z, Lang K J, Li H K. Statistic and biometric model calculation: ForStat course[M]. Beijing: Science Press, 2009.
    [18] 李忠国, 孙晓梅, 陈东升, 等. 基于哑变量的日本落叶松生长模型研究[J]. 西北农林科技大学学报(自然科学版), 2011, 39(8):69−74.

    Li Z G, Sun X M, Chen D S, et al. Dummy variables model of increment of Larix kaempferi[J]. Journal of Northwest A&F University(Natural Science Edition), 2011, 39(8): 69−74.
    [19] 曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106−113. doi: 10.11707/j.1001-7488.20111117

    Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11): 106−113. doi: 10.11707/j.1001-7488.20111117
    [20] 张炜, 何兴炳, 唐森强, 等. 四川桢楠生长特性与分布[J]. 林业科技开发, 2012, 26(5):38−41. doi: 10.3969/j.issn.1000-8101.2012.05.010

    Zhang W, He X B, Tang S Q, et al. Study on the growth characteristics and distribution of Phoebe zhennan in Sichuan[J]. China Forestry Science and Technology, 2012, 26(5): 38−41. doi: 10.3969/j.issn.1000-8101.2012.05.010
    [21] 龙汉利, 张炜, 宋鹏, 等. 四川桢楠生长初步分析[J]. 四川林业科技, 2011, 32(4):89−91. doi: 10.3969/j.issn.1003-5508.2011.04.019

    Long H L, Zhang W, Song P, et al. An analysis of the growth of Phoebe zhennan in Sichuan[J]. Journal of Sichuan Forestry Science & Thecnology, 2011, 32(4): 89−91. doi: 10.3969/j.issn.1003-5508.2011.04.019
    [22] 刘发林. 南方集体林区木荷次生林生长规律及经营技术研究[D]. 长沙: 中南林业科技大学, 2013.

    Liu F L. Research on growth law and management technique of Schima superb in southern collective forest region[D]. Changsha: Central South University of Forestry and Technology, 2013.
    [23] 唐继新, 麻静, 贾宏炎, 等. 南亚热带珍稀濒危树种格木生长规律研究[J]. 中南林业科技大学学报, 2015, 35(7):37−44.

    Tang J X, Ma J, Jia H Y, et al. Study on the growth law of a rare and endangered tree species of Erythrophleum fordii in south subtropical area of China[J]. Journal of Central South University of Forestry & Technology, 2015, 35(7): 37−44.
    [24] 赵俊卉, 亢新刚, 张慧东, 等. 长白山主要针叶树种胸径和树高变异系数与竞争因子的关系[J]. 应用生态学报, 2009, 20(8):1832−1837.

    Zhao J H, Kang X G, Zhang H D, et al. Relationships between coefficient of variation of diameter and height and competition index of main coniferous trees in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1832−1837.
    [25] 胡焕香, 佘济云, 李俊, 等. 湖北桂花林场檫木次生林单木生长模型的研究[J]. 中南林业科技大学学报, 2013, 33(4):61−65.

    Hu H X, She J Y, Li J, et al. Study on individual tree growth model of Sassafras tsumu secondary forest on Osmanthus Forest Farm in Hubei Province[J]. Journal of Central South University of Forestry & Technology, 2013, 33(4): 61−65.
    [26] 朱光玉, 罗小浪. 湖南栎类天然混交林优势木树高曲线哑变量模型研究[J]. 林业资源管理, 2017(4):22−29.

    Zhu G Y, Luo X L. Dominant height-diameter models for mixed Quercus forest based on dummy variable[J]. Forest Resources Management, 2017(4): 22−29.
    [27] 沈国舫, 翟明普. 森林培育学[M]. 北京: 中国林业出版社, 2013.

    Shen G F, Zhai M P. Silvicuture[M]. Beijing: China Forestry Publishing House, 2013.
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  2217
  • HTML全文浏览量:  1018
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-04-08
  • 网络出版日期:  2019-04-30
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回