高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

距离和密度制约对吉林蛟河阔叶红松林幼苗生长的影响

姚杰 宋子龙 张春雨 孟令君 赵秀海

姚杰, 宋子龙, 张春雨, 孟令君, 赵秀海. 距离和密度制约对吉林蛟河阔叶红松林幼苗生长的影响[J]. 北京林业大学学报, 2019, 41(5): 108-117. doi: 10.13332/j.1000-1522.20190027
引用本文: 姚杰, 宋子龙, 张春雨, 孟令君, 赵秀海. 距离和密度制约对吉林蛟河阔叶红松林幼苗生长的影响[J]. 北京林业大学学报, 2019, 41(5): 108-117. doi: 10.13332/j.1000-1522.20190027
Yao Jie, Song Zilong, Zhang Chunyu, Meng Lingjun, Zhao Xiuhai. Effects of distance and density dependence on seedling growth in a broadleaved Korean pine forest in Jiaohe of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 108-117. doi: 10.13332/j.1000-1522.20190027
Citation: Yao Jie, Song Zilong, Zhang Chunyu, Meng Lingjun, Zhao Xiuhai. Effects of distance and density dependence on seedling growth in a broadleaved Korean pine forest in Jiaohe of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 108-117. doi: 10.13332/j.1000-1522.20190027

距离和密度制约对吉林蛟河阔叶红松林幼苗生长的影响

doi: 10.13332/j.1000-1522.20190027
基金项目: 国家重点研发计划重点专项项目(2017YFC0504104),国家自然科学基金项目(31670643)
详细信息
    作者简介:

    姚杰。主要研究方向:森林生态学。Email:yaojie1316@hotmail.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    赵秀海,教授,博士生导师。主要研究方向:森林可持续经营、森林生态学。Email:zhaoxh@bjfu.edu.cn 地址:同上

  • 中图分类号: S754

Effects of distance and density dependence on seedling growth in a broadleaved Korean pine forest in Jiaohe of Jilin Province, northeastern China

  • 摘要: 目的生物多样性的形成和维持机制是生态学领域的核心问题,关于距离和密度制约对温带森林幼苗生长和生物量积累影响的报道目前较为缺乏。本研究探讨温带森林是否存在距离或密度制约现象,若存在,土壤病原菌是否是距离或密度制约现象的内在驱动机制。方法本研究基于温室控制试验,选取吉林蛟河阔叶红松林内3个树种,对其幼苗生长进行为期4个月的动态监测,分析不同试验处理(幼苗密度、距成年母体距离和土壤杀菌)对幼苗高生长和生物量的影响。结果红松、水曲柳和黄檗幼苗在低密度下的高生长显著高于高密度,都表现明显的负密度制约现象。土壤杀菌处理仅能显著提高水曲柳幼苗的高生长,虽然水曲柳和黄檗幼苗高生长在距母体不同距离间存在差异,但并未表现出随离母体距离增加有助于幼苗生长的现象,研究结果不符合距离制约现象。水曲柳和黄檗幼苗根、茎、叶以及总生物量积累仅与幼苗密度显著相关,且在低密度下的根、茎、叶以及总生物量积累显著高于高密度,同样表现出负密度制约现象。而距母体距离和土壤杀菌处理对幼苗根、茎、叶以及总生物量积累均无显著影响。结论该温带森林中存在明显的负密度制约现象,但不存在距离制约现象。本研究认为引起幼苗密度制约性生长的因素是种内竞争,而土壤病原菌作用非常有限,且研究结果不支持距离制约性生长;其次,距离制约证据的缺乏表明,该温带森林中的病原菌并不具有强烈的宿主专一性,对幼苗密度制约性生长起作用的可能是非特异性病原菌。未来还需深入探讨种内、种间竞争和非特异性病原菌对幼苗生长的相对作用。

     

  • 图  1  不同试验处理(幼苗密度、距母体距离和土壤杀菌处理)对幼苗高生长的影响

    Figure  1.  Effects of different experimental treatments (seedling density, distance to adult, and soil sterilized) on height growth of seedlings

    图  2  不同试验处理(幼苗密度、距母体距离和土壤杀菌处理)对红松幼苗生物量的影响

    Figure  2.  Effects of different experimental treatments (seedling density, distance to adult, and soil sterilized) on biomass of Pinus koraiensis seedlings

    图  3  不同试验处理(幼苗密度、距母体距离和土壤杀菌处理)对水曲柳幼苗生物量的影响

    Figure  3.  Effects of different experimental treatments (seedling density, distance to adult, and soil sterilized) on biomass of Fraxinus mandschurica seedlings

    图  4  不同试验处理(幼苗密度、距母体距离和土壤杀菌处理)对黄檗幼苗生物量的影响

    Figure  4.  Effects of different experimental treatments (seedling density, distance to adult, and soil sterilized) on biomass of Phellodendron amurense seedlings

    表  1  4个月观测期内幼苗高生长量

    Table  1.   Seedling height growth of three focal species during the four-month observation period

    目标物种 Focal species    均值 ± 标准误差 Mean ± SE 中位数 Median 最大值 Maximum 最小值 Minimum 变异系数 CV
    红松 Pinus koraiensis 0.98 ± 0.04 0.70 8.10 0.40 1.08
    水曲柳 Fraxinus mandschurica 11.21 ± 0.12 10.90 25.60 1.80 0.35
    黄檗 Phellodendron amurense 14.65 ± 0.18 14.20 36.50 2.90 0.37
    下载: 导出CSV

    表  2  4个月观测期内4个物种幼苗各部分生物量

    Table  2.   Seedling biomass of three focal species during the four-month observation period

    目标物种  
    Focal species  
    器官
    Tissue
    干物质含量/(g·株− 1) Dry mass/(g·plant− 1
    均值 ± 标准误差 Mean ± SE 中位数 Median 最大值 Maximum 最小值 Minimum 变异系数 CV
    红松
    Pinus koraiensis
    根 Root 0.087 6 ± 0.003 0 0.086 4 0.178 3 0.017 7 0.340 5
    茎 Stem 0.057 2 ± 0.001 2 0.059 4 0.079 8 0.016 1 0.210 6
    叶 Leaf 0.135 4 ± 0.002 4 0.135 2 0.199 4 0.046 2 0.174 6
    总干物质量 Total dry mass 0.280 1 ± 0.005 4 0.283 5 0.398 4 0.079 8 0.191 1
    水曲柳
    Fraxinus mandschurica
    根 Root 0.446 1 ± 0.024 3 0.485 8 1.491 5 0.156 3 0.444 4
    茎 Stem 0.227 8 ± 0.008 7 0.221 6 0.545 0 0.085 9 0.379 9
    叶 Leaf 0.543 7 ± 0.020 2 0.407 9 1.018 1 0.161 3 0.455 0
    总干物质量 Total dry mass 1.217 7 ± 0.049 6 1.142 7 2.820 0 0.403 5 0.407 7
    黄檗
    Phellodendron amurense
    根 Root 0.269 3 ± 0.010 7 0.244 2 0.509 9 0.100 7 0.396 1
    茎 Stem 0.224 1 ± 0.009 2 0.203 7 0.458 6 0.106 0 0.408 6
    叶 Leaf 0.334 1 ± 0.014 4 0.313 6 0.635 9 0.095 7 0.432 9
    总干物质量 Total dry mass 0.827 4 ± 0.032 6 0.759 1 1.537 0 0.352 3 0.393 5
    下载: 导出CSV
  • [1] Schupp E W. The Janzen-Connell model for tropical tree diversity: population implications and the importance of spatial scale[J]. American Naturalist, 1992, 140(3): 526−530. doi: 10.1086/285426
    [2] Hubbell S P, Ahumada J A, Condit R, et al. Local neighborhood effects on long-term survival of individual trees in a neotropical forest[J]. Ecological Research, 2001, 16(5): 859−875. doi: 10.1046/j.1440-1703.2001.00445.x
    [3] Wright J S. Plant diversity in tropical forests: a review of mechanisms of species coexistence[J]. Oecologia, 2002, 130(1): 1−14. doi: 10.1007/s004420100809
    [4] Bell G. The distribution of abundance in neutral communities[J]. American Naturalist, 2000, 155(5): 606−617. doi: 10.1086/303345
    [5] Janzen D H. Herbivores and the number of three species in tropical forests[J]. American Naturalist, 1970, 104: 501−528. doi: 10.1086/282687
    [6] Connell J H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees[M]// Boer P J D, Gradwell G R. Dynamics of populations. Wageningen: Centre for Agricultural Publishing and Documentation, 1971: 298−313.
    [7] Freckleton R P, Lewis O T. Pathogens, density dependence and the coexistence of tropical trees[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273: 2909−2916. doi: 10.1098/rspb.2006.3660
    [8] Harms K E, Wright S J, Calderón O, et al. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest[J]. Nature, 2000, 404: 493−495. doi: 10.1038/35006630
    [9] Packer A, Clay K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree[J]. Nature, 2000, 404: 278−281. doi: 10.1038/35005072
    [10] Bell T, Freckleton R P, Lewis O T. Plant pathogens drive density-dependent seedling mortality in a tropical tree[J]. Ecology Letters, 2006, 9(5): 569−574. doi: 10.1111/ele.2006.9.issue-5
    [11] Petermann J S, Fergus A J F, Turnbull L A, et al. Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands[J]. Ecology, 2008, 89(9): 2399−2406. doi: 10.1890/07-2056.1
    [12] Li R B, Yu S X, Wan Y F, et al. Distance-dependent effects of soil-derived biota on seedling survival of the tropical tree legume Ormosia semicastrata[J]. Journal of Vegetation Science, 2009, 20(3): 527−534. doi: 10.1111/jvs.2009.20.issue-3
    [13] Bagchi R, Swinfield T, Gallery R E, et al. Testing the Janzen-Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree[J]. Ecology Letters, 2010, 13(10): 1262−1269. doi: 10.1111/j.1461-0248.2010.01520.x
    [14] Mangan S A, Schnitzer S A, Herre E A, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest[J]. Nature, 2010, 466: 752−756. doi: 10.1038/nature09273
    [15] Konno M, Iwamoto S, Seiwa K. Specialization of a fungal pathogen on host tree species in a cross-inoculation experiment[J]. Journal of Ecology, 2011, 99(6): 1394−1401. doi: 10.1111/jec.2011.99.issue-6
    [16] Swamy V, Terborgh J, Dexter K G, et al. Are all seeds equal? Spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest[J]. Ecology Letters, 2011, 14(2): 195−201. doi: 10.1111/j.1461-0248.2010.01571.x
    [17] Liu X, Liang M, Etienne R S, et al. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest[J]. Ecology Letters, 2012, 15(2): 111−118. doi: 10.1111/ele.2011.15.issue-2
    [18] Liu Y, Yu S, Xie Z, et al. Analysis of a negative plant-soil feedback in a subtropical monsoon forest[J]. Journal of Ecology, 2012, 100(4): 1019−1028. doi: 10.1111/jec.2012.100.issue-4
    [19] Liu Y, Fang S, Chesson P, et al. The effect of soil-borne pathogens depends on the abundance of host tree species[J]. Nature Communications, 2015, 6(1): 10017. doi: 10.1038/ncomms10017
    [20] Liang M, Liu X, Gilbert G S, et al. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi[J]. Ecology Letters, 2016, 19(12): 1448−1456. doi: 10.1111/ele.2016.19.issue-12
    [21] Comita L S, Queenborough S A, Murphy S J, et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival[J]. Journal of Ecology, 2014, 102(4): 845−856. doi: 10.1111/1365-2745.12232
    [22] Terborgh J. Enemies maintain hyperdiverse tropical forests[J]. American Naturalist, 2012, 179(3): 303−314. doi: 10.1086/664183
    [23] Bagchi R, Gallery R E, Gripenberg S, et al. Pathogens and insect herbivores drive rainforest plant diversity and composition[J]. Nature, 2014, 506: 85−88. doi: 10.1038/nature12911
    [24] Hyatt L A, Rosenberg M S, Howard T G, et al. The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis[J]. Oikos, 2003, 103(3): 590−602. doi: 10.1034/j.1600-0706.2003.12235.x
    [25] Carson W P, Jill T A, Egbert G L, et al. Challenges associated with testing and falsifying the Janzen-Connell hypothesis, a review and critique[M]//Carson W P, Stefan A S. Tropical forest community ecology. Chichester: Wiley-Blackwell, 2008: 210−241.
    [26] Yan Y, Zhang C, Wang Y, et al. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession[J]. Ecology and Evolution, 2015, 5(19): 4287−4299. doi: 10.1002/ece3.2015.5.issue-19
    [27] Bachelot B, Uriarte M, McGuire K L, et al. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species[J]. Ecology, 2017, 98(3): 712−720. doi: 10.1002/ecy.1683
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  981
  • HTML全文浏览量:  910
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-27
  • 修回日期:  2019-01-15
  • 网络出版日期:  2019-04-30
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回