高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系

向云西 潘萍 陈胜魁 欧阳勋志 宁金魁 吴自荣 纪仁展

向云西, 潘萍, 陈胜魁, 欧阳勋志, 宁金魁, 吴自荣, 纪仁展. 天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系[J]. 北京林业大学学报, 2019, 41(11): 95-103. doi: 10.13332/j.1000-1522.20190029
引用本文: 向云西, 潘萍, 陈胜魁, 欧阳勋志, 宁金魁, 吴自荣, 纪仁展. 天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系[J]. 北京林业大学学报, 2019, 41(11): 95-103. doi: 10.13332/j.1000-1522.20190029
Xiang Yunxi, Pan Ping, Chen Shengkui, Ouyang Xunzhi, Ning Jinkui, Wu Zirong, Ji Renzhan. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95-103. doi: 10.13332/j.1000-1522.20190029
Citation: Xiang Yunxi, Pan Ping, Chen Shengkui, Ouyang Xunzhi, Ning Jinkui, Wu Zirong, Ji Renzhan. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95-103. doi: 10.13332/j.1000-1522.20190029

天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系

doi: 10.13332/j.1000-1522.20190029
基金项目: 国家自然科学基金项目(31760207、31360181),江西省林业科技创新专项资金项目(201607),中国科学院战略性先导科技专题(XDA05050205)
详细信息
    作者简介:

    向云西。主要研究方向:森林资源管理与监测。Email:289164472@qq.com  地址:330045 江西省南昌市昌北经济技术开发区志敏大道1225号

    责任作者:

    欧阳勋志,博士,教授,博士生导师。主要研究方向:森林资源管理与监测和森林生态。Email:oyxz_2003@hotmail.com 地址:同上

  • 中图分类号: S791.248;S714.2

Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest

  • 摘要: 目的对森林土壤碳氮磷特征及其与凋落物质量的关系进行分析,可为森林质量的精准提升提供参考依据。方法以赣南天然马尾松为研究对象,基于标准地调查及样品测定获取数据,利用主成分提取反映凋落物质量特征的变量并将其分别与土壤有机碳(C)、全氮(N)、全磷(P)建立线性回归模型,分析土壤C、N、P含量与凋落物质量的关系。结果(1)随土层深度(1)随土层深度的增加,土壤C、N、P含量逐渐降低,0 ~ 10 cm土层的C、N含量均显著高于其他土层(P < 0.05),各土层TP含量均无显著差异(P > 0.05)。土壤中的C、N、P含量整体表现为中等偏低到极低的状态;随林龄的递增,各土层C、N、P含量均呈上升趋势,其中0 ~ 10 cm土层的C含量各龄组间均呈显著差异(P < 0.05)。(2)凋落物半分解层、未分解层现存量随林龄的递增呈先增后减的趋势,各龄组均在近熟林达最大值;各分解层的C、N、P含量在不同龄组间均无明显变化规律,但半分解层的C含量、C/N值均显著小于未分解层(P < 0.05),N、P含量则为半分解层大于未分解层,其差异均不显著(P > 0.05)。(3)反映凋落物半分解层、未分解层质量特征的主成分均与土壤C、N含量呈显著相关、与土壤P含量相关性不显著,表现为土壤C、N、P含量与凋落物半分解C、N、P含量呈正相关、凋落物未分解层C、N、P含量呈负相关。结论天然马尾松林土壤的养分含量整体偏低,凋落物C、N、P含量在未分解层减少、半分解层增加时其土壤养分含量增加,因此,在经营中促进凋落物的分解可提高土壤养分含量,有利于林木生长。

     

  • 图  1  土壤C、N、P含量

    不同小写字母代表同一龄组不同土层间的差异显著(P < 0.05),不同大写字母代表同一土层不同龄组间的差异显著(P < 0.05)。下同。Different lowercase letters represent significant differences in different layers of the same age group (P < 0.05), different uppercase letters represent significant differences in varied age groups of the same soil layer (P < 0.05). The same below.

    Figure  1.  Soil C,N,P contents

    图  2  不同龄组马尾松林下凋落物现存量

    Figure  2.  Litter stock under Pinus massoniana forest in different age groups

    表  1  标准地不同龄组基本概况

    Table  1.   Basic situation of different age groups of sample plot

    龄组
    Age group
    平均年龄/a
    Average age/year
    平均树高
    Average tree height/m
    平均胸径
    Average DBH/cm
    林分平均密度/(株·hm− 2
    Average tree density/
    (plant·ha− 1)
    郁闭度
    Canopy density
    灌木盖度
    Shrub coverage/%
    草本盖度
    Herbaceous coverage/%
    幼龄林
    Young forest
    16 6.4 8.3 1 651 0.5 5 81
    中龄林
    Middle-aged forest
    26 8.9 11.3 1 113 0.6 10 58
    近熟林
    Near-mature forest
    34 13.5 15.7 886 0.6 39 60
    成熟林
    Mature forest
    46 15.7 20.8 740 0.7 11 68
    注:引自文献[20]。Note: quoted from reference [20].
    下载: 导出CSV

    表  2  不同龄组马尾松林下凋落物C、N、P含量及C/N值

    Table  2.   C, N, P contents and C/N of litter under Pinus massoniana forest in different age groups

    龄组 Age group 半分解层 Semi-decomposed layer 未分解层 Undecomposed layer
    C/(g·kg− 1) N/(g·kg− 1) P/(g·kg− 1) C/N C/(g·kg− 1) N/(g·kg− 1) P/(g·kg− 1) C/N
    幼龄林 Young forest 394.2 ± 17.3a 10.6 ± 1.4a 0.8 ± 0.2a 37.2 ± 5.3b 453.4 ± 36.2b 8.4 ± 0.8a 0.5 ± 0.1a 53.9 ± 7.7a
    中龄林 Middle-aged forest 423.4 ± 45.4a 11.2 ± 0.5a 0.6 ± 0.2a 37.8 ± 2.1a 397.2 ± 16.6a 9.3 ± 0.8a 0.5 ± 0.1a 42.7 ± 4.0a
    近熟林 Near-mature forest 386.0 ± 12.1a 10.4 ± 1.0a 0.5 ± 0.1a 37.1 ± 3.8b 420.2 ± 59.4b 9.8 ± 1.0a 0.5 ± 0.1a 42.8 ± 10.1a
    成熟林 Mature forest 404.5 ± 18.2a 11.0 ± 0.7a 0.7 ± 0.1a 36.7 ± 4.0b 405.0 ± 28.8a 9.5 ± 1.2a 0.6 ± 0.1a 42.0 ± 4.0a
    平均 Average 402.1 ± 16.1b 10.8 ± 0.5a 0.6 ± 0.1a 37.2 ± 2.2b 418.9 ± 24.8a 9.3 ± 0.5a 0.5 ± 0.1a 45.6 ± 3.7a
    注:表中数据代表平均值 ± 标准误差,不同小写字母代表同一元素含量不同分解层差异显著(P < 0.05)。Notes: values are mean ± SD, different lowercase letters represent significant differences in varied decomposition layers of the same element content (P < 0.05).
    下载: 导出CSV

    表  3  凋落物C、N、P含量及C/N值相关系数矩阵

    Table  3.   Correlation matrix of C, N, P contents and C/N of litter

    变量 Variable x1 (SDC) x2 (SDN) x3 (SDP) x4 (SDC/N) x5 (UDC) x6 (UDN) x7 (UDP) x8 (UDC/N)
    x1 (SDC)    1
    x2 (SDN) − 0.195 1
    x3 (SDP) − 0.135 0.431* * 1
    x4 (SDC/N) 0.565* * − 0.882* * − 0.421* * 1
    x5 (UDC) − 0.306 0.108 − 0.001 − 0.177 1
    x6 (UDN) 0.147 0.490* 0.371 − 0.433* − 0.362 1
    x7 (UDP) 0.237 0.561* 0.475 * − 0.491* − 0.220 0.515* 1
    x8 (UDC/N) − 0.224 − 0.353 − 0.272 0.270 0.705* * − 0.881* * − 0.509* * 1
    注:SDC、SDN、SDP、SDC/N分别代表半分解层C含量、N含量、P含量、C/N值;UDC、UDN、UDP、UDC/N分别代表未分解层C含量、N含量、P含量、C/N值。*代表显著相关(P < 0.05);**代表极显著相关(P < 0.01)。下同。Notes: SDC, SDN, SDP and SDC/N represent contents of C, N, P and C/N in semi-decomposed layer, respectively; UDC, UDN, UDP and UDN/N represent contents of C, N, P and C/N in undecomposed layer, respectively. * represents significant correlation (P < 0.05); ** represents extremely significant correlation (P < 0.01). The same below.
    下载: 导出CSV

    表  4  主成分分析旋转成分矩阵

    Table  4.   Principal component analysis of rotational component matrices

    成分 Ingredient x1 (SDC) x2 (SDN) x3 (SDP) x4 (SDC/N) x5 (UDC) x6 (UDN) x7 (UDP) x8 (UDC/N)
    1 − 0.403 0.908 0.680 − 0.911 0.104 0.438 0.769 − 0.511
    2 − 0.635 − 0.096 0.065 − 0.108 0.875 − 0.559 − 0.706 0.796
    下载: 导出CSV

    表  5  凋落物主成分对土壤C、N、P线性回归方程系数的检验

    Table  5.   Test on the coefficient of soil C, N, P linear regression equation with the principal component of litter

    变量
    Variable
    主成分
    Principal component
    非标准化系数 Non-standardized coefficient 标准系数
    Standard coefficient
    t 显著性
    Significance
    B 标准误差 Standard error
    常数 Constant 24.633 0.036 686.552 P < 0.01
    C f1 − 5.355 0.062 0.628 32.866 P < 0.01
    f2 − 2.666 0.071 − 0.482 − 11.913 P < 0.05
    常数Constant 1.273 0.028 40.084 P < 0.01
    N f1 1.283 0.102 0.680 12.781 P < 0.01
    f2 − 0.006 0.102 − 0.015 − 0.062 ns
    常数 Constant 0.269 0.030 8.898 P < 0.01
    P f1 − 0.029 0.030 0.285 0.914 ns
    f2 0.022 0.032 0.214 0.685 ns
    下载: 导出CSV
  • [1] Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3): 593−608. doi: 10.1111/j.1469-8137.2010.03214.x
    [2] 马百兵, 孙建, 朱军涛, 等. 藏北高寒草地植物群落C、N化学计量特征及其影响因素[J]. 生态学杂志, 2018, 37(4):1026−1036.

    Ma B B, Sun J, Zhu J T, et al. Carbon and nitrogen stichiometry plant community and its influencing factors in a northern Tibet alpine grassland[J]. Chinese Journal of Ecology, 2018, 37(4): 1026−1036.
    [3] Elser J J, Dobberfuhl D, Mackay N A, et al. Organism size, life history, and N: P stoichiometry: towards a unified view of cellular and ecosystem processes[J]. Bioscience, 1996, 46(9): 674−684.
    [4] 王宁, 张有利, 王百田, 等. 山西省油松林生态系统碳氮磷化学计量特征[J]. 水土保持研究, 2015, 22(1):72−79.

    Wang N, Zhang Y L, Wang B T, et al. Stoichiometry of carbon, nitrogen and phosphorus in Pinus tabulaeformis Carr. forest ecosystems in Shanxi Province, China[J]. Research of Soil and Water Conservation, 2015, 22(1): 72−79.
    [5] Kumara M, Bhat J A, Bussmann R W. Effect of fire on soil nutrients and under storey vegetation in chir pine forest in Garhwal Himalaya, India[J]. Acta Ecologica Sinica, 2013, 33(1): 59−63. doi: 10.1016/j.chnaes.2012.11.001
    [6] 姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松人工林植物、凋落物与土壤C、N、P化学计量特征[J]. 生态学报, 2016, 36(19):6188−6197.

    Jiang P P, Cao Y, Chen Y M, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in Pinus tabulaeformis plantation[J]. Acta Ecologica Sinica, 2016, 36(19): 6188−6197.
    [7] 淑敏, 王东丽, 王凯, 等. 不同林龄樟子松人工林针叶−凋落叶−土壤生态化学计量特征[J]. 水土保持学报, 2018, 32(3):174−179.

    Shu M, Wang D L, Wang K, et al. Ecological stoichiometry charcteristics of needle leaves-litter-soils in Pinus sylvestris var. mongoilca plantations with different forest ages[J]. Research of Soil and Water Conservation, 2018, 32(3): 174−179.
    [8] 葛晓改, 肖文发, 曾立雄, 等. 不同林龄马尾松凋落物基质质量与土壤养分的关系[J]. 生态学报, 2012, 32(3):852−862.

    Ge X G, Xiao W F, Zeng L X, et al. Relationships between litter substrate quality and soil nutrients in different-aged Pinus massoniana stands[J]. Acta Ecologica Sinica, 2012, 32(3): 852−862.
    [9] Berg B, Lousier J D. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest Ecology and Management, 2000, 133(1−2): 13−22. doi: 10.1016/S0378-1127(99)00294-7
    [10] 周玮莹, 杨明义. 黄土高原坝控小流域土壤C, N, P计量特征解析[J]. 水土保持研究, 2018, 25(3):17−22.

    Zhou W Y, Yang M Y. Analysis on stoichiometry characteristics of soil carbon, nitrogen and phosphorus in small watershed of the Loess Plateau[J]. Research of Soil and Water Conservation, 2018, 25(3): 17−22.
    [11] 聂兰琴, 吴琴, 尧波, 等. 鄱阳湖湿地优势植物叶片−凋落物−土壤碳氮磷化学计量特征[J]. 生态学报, 2016, 36(7):1898−1906.

    Nie L Q, Wu Q, Yao B, et al. Leaf litter and soil carbon, nitrogen, and phosphorus stoichiometry of dominant plant species in the Poyang Lake wetland[J]. Acta Ecologica Sinica, 2016, 36(7): 1898−1906.
    [12] 李慧, 王百田, 曹远博, 等. 吕梁山区3种人工林植被、凋落物生物量差异特征及其与土壤养分的关系[J]. 植物研究, 2016, 36(4):573−580. doi: 10.7525/j.issn.1673-5102.2016.04.013

    Li H, Wang B T, Cao Y B, et al. Difference feature of planted vegetation biomass and litter biomass for three plantations and their relationship with soil nutrients in Lüliang Mountainous region[J]. Bulletin of Botanical Research, 2016, 36(4): 573−580. doi: 10.7525/j.issn.1673-5102.2016.04.013
    [13] 毕建华, 苏宝玲, 于大炮, 等. 辽东山区不同森林类型生态化学计量特征[J]. 生态学杂志, 2017, 36(11):3109−3115.

    Bi J H, Su B L, Yu D P, et al. Ecological stoichiometry of different forest types in mountainous region of eastern Liao-ning Province[J]. Chinese Journal of Ecology, 2017, 36(11): 3109−3115.
    [14] 刘倩, 王书丽, 邓邦良, 等. 武功山山地草甸不同海拔凋落物−土壤碳、氮、磷含量及其生态化学计量特征[J]. 应用生态学报, 2018, 29(5):1535−1541.

    Liu Q, Wang S L, Deng B L, et al. Carbon, Nitrogen and Phosphorus contents and their ecological stoichiometry in litters and soils on meadow of Wugong Mountain, Jiangxi, China at different altitudes[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1535−1541.
    [15] Pan P, Zhao F, Ning J, et al. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations[J/OL]. PloS One, 2018, 13(1): e191952 [2019−01−10]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191952.
    [16] 向云西, 陈胜魁, 潘萍, 等.马尾松叶片−凋落物−土壤的碳氮磷化学计量特征[J/OL]. 森林与环境学报, 2019, 39(2): 120−126 [2018−03−12]. http://doi.org/10.1371/journal.pone.0191952.

    Xiang Y X, Chen S K, Pan P, et al. Stoichiometric traits of C, N and P of leaf-litter-soil system of Pinus massoniana forest[J/OL]. Journal of Forest and Environment, 2019, 39(2): 120−126 [2018−03−12]. http://doi.org/10.1371/journal.pone.0191952.
    [17] 潘萍, 赵芳, 欧阳勋志, 等. 马尾松林两种林下植被土壤碳氮特征及其与凋落物质量的关系[J]. 生态学报, 2018, 28(11):3988−3997.

    Pan P, Zhao F, Ouyang X Z, et al. Characteristics of soil carbon and nitrogen and relationship with litter quality under different understory vegetation in Pinus massoniana plantations[J]. Acta Ecologica Sinica, 2018, 28(11): 3988−3997.
    [18] 葛晓改, 肖文发, 曾立雄, 等. 三峡库区马尾松林土壤−凋落物层酶活性对凋落物分解的影响[J]. 生态学报, 2014, 34(9):2228−2237.

    Ge X G, Xiao W F, Zeng L X, et al. Effect of soil-litter layer enzyme activities on litter decomposition in Pinus massoniana plantation in Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2014, 34(9): 2228−2237.
    [19] 肖欣, 王雄涛, 欧阳勋志. 马尾松人工林土壤有机碳特征及其与凋落物质量的关系[J]. 南京林业大学学报(自然科学版), 2015, 39(6):105−111.

    Xin X, Wang X T, Ouyang X Z. The characteristic of soil organic carbon and relationship with litter quality in pinus massoniana plant[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6): 105−111.
    [20] 郭丽玲, 潘萍, 欧阳勋志, 等. 赣南马尾松天然林不同生长阶段碳密度分布特征[J]. 北京林业大学学报, 2018, 40(1):37−45.

    Guo L L, Pan P, Ouyang X Z, et al. Distribution characteristics of carbon density of natural Pinus massoniana forest at different stand growing stages in southern Jiangxi Province, eastern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 37−45.
    [21] 全国土壤普查办公室.中国土壤[Z]. 北京: 中国农业出版社, 1998.

    National soil census office. Chinese soil[Z]. Beijing: China Agricultural Press, 1998.
    [22] 张庆费, 由文辉, 宋永昌. 浙江天童植物群落演替对土壤化学性质的影响[J]. 应用生态学报, 1999, 10(1):21−24.

    Zhang Q F, You W H, Song Y C. Effect of plant community succession on soil chemical properties in Tiantong, Zhejiang Province[J]. Chinese Journal of Applied Ecology, 1999, 10(1): 21−24.
    [23] 张庆费, 宋永昌, 由文辉. 浙江天童植物群落次生演替与土壤肥力的关系[J]. 生态学报, 1999, 19(2):32−36.

    Zhang Q F, Song Y C, You W H. Relationshio between plant community secondary succession and soil fertility in Tiantong, Zhejiang Province[J]. Acta Ecologica Sinica, 1999, 19(2): 32−36.
    [24] 秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):68−76.

    Qin J, Kong H Y, Liu H. Stoichiomeric characteristics of soil C、N、P and K in different Pinus massoniana forests[J]. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(2): 68−76.
    [25] Ren C, Zhao F, Kang D. Linkages of C: N: P stoichiometry and bacterial community in soil following afforestation of former farmland[J]. Forest Ecology and Management, 2016, 376(1): 59−66.
    [26] 朱海强, 李艳红, 张小萌. 艾比湖湿地不同植物群落下土壤全磷空间变异[J]. 水土保持研究, 2017, 24(5):45−50.

    Zhu H Q, Li Y H, Zhang X M. Spatial varibility of soil total phosphorus in different palant communities of Ebinue lake wetland[J]. Research of Soil and Water Conservation, 2017, 24(5): 45−50.
    [27] 李明军, 喻理飞, 杜明凤, 等. 不同林龄杉木人工林植物−凋落叶−土壤C、N、P化学计量特征及互作关系研究[J]. 生态学报, 2018, 38(21):1−9.

    Li M J, Yu L F, Du M F, et al. C, N, and P stoichiometry and their interaction with plants, litter, and soil in a cunninghamia lanceolata plantation with different ages[J]. Acta Ecologica Sinica, 2018, 38(21): 1−9.
    [28] 田大伦, 宁晓波. 不同龄组马尾松林凋落物量及养分归还量研究[J]. 中南林学院学报, 1995, 15(2):163−169.

    Tian D L, Ning X B. Study on litter amount and nutrient restitution of Pinus massoniana forest in different age groups[J]. Journal of Central-South Forestry University, 1995, 15(2): 163−169.
    [29] 李志安, 邹碧, 丁永祯, 等. 森林凋落物分解重要影响因子及其研究进展[J]. 生态学杂志, 2004, 23(6):77−83. doi: 10.3321/j.issn:1000-4890.2004.06.017

    Li Z A, Zou B, Ding Y Z, et al. Key factors of forest litter decomposition and research progress[J]. Chinese Journal of Ecology, 2004, 23(6): 77−83. doi: 10.3321/j.issn:1000-4890.2004.06.017
    [30] 褚欣, 潘萍, 郭丽玲, 等. 不同密度飞播马尾松林凋落物及土壤持水性能比较分析[J]. 浙江农林大学学报, 2004, 23(6):77−83.

    Chu X, Pan P, Guo L L, et al. Comparing water-holding capacity in forest litter and soils for an aerially seeded Pinus massoniana plantation with different stand densities[J]. Journal of Zhejiang A&F University, 2004, 23(6): 77−83.
    [31] 赵畅, 龙健, 李娟, 等. 茂兰喀斯特原生林不同坡向及分解层的凋落物现存量和养分特征[J]. 生态学杂志, 2018, 37(2):295−303.

    Zhao C, Long J, Li J, et al. Litter stock and nutrient characteristics of decomposing litter layers in Maolan Karst primary forest in different slope directions[J]. Chinese Journal of Ecology, 2018, 37(2): 295−303.
    [32] 刘蕾, 申国珍, 陈芳清, 等. 神农架海拔梯度上4种典型森林凋落物现存量及其养分循环动态[J]. 生态学报, 2012, 32(7):2142−2149.

    Liu L, Shen G Z, Chen F Q, et al. Dynamic characteristics of litterfall and nutrient return of four typicalforests along the altitudinal gradients in Mt.Shennongjia, China[J]. Acta Ecologica Sinica, 2012, 32(7): 2142−2149.
    [33] 温丁, 何念鹏. 中国森林和草地凋落物现存量的空间分布格局及其控制因素[J]. 生态学报, 2016, 36(10):2876−2884.

    Wen D, He N P. Spatial patterns of litter density and their controlling factors in forests and grasslands of China[J]. Acta Ecologica Sinica, 2016, 36(10): 2876−2884.
    [34] 裴蓓, 高国荣. 凋落物分解对森林土壤碳库影响的研究进展[J]. 中国农学通报, 2018, 34(26):58−64.

    Pei B, Gao G R. Impact of forest litter decomposition on soil carbon pool: a review[J]. Chinese Agricultural Science Bulletin, 2018, 34(26): 58−64.
    [35] 姜沛沛, 曹扬, 陈云明, 等. 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征[J]. 生态学报, 2017, 37(2):443−454.

    Jiang P P, Cao Y, Chen Y M, et al. N and P stoichiometric characteristics of leaves, litter, and soil for three dominant tree species in the Shanxi Province[J]. Acta Ecologica Sinica, 2017, 37(2): 443−454.
    [36] 张娜, 王希华, 郑泽梅, 等. 浙江天童常绿阔叶林土壤的空间异质性及其与地形的关系[J]. 应用生态学报, 2012, 23(9):2361−2369.

    Zhang N, Wang X H, Zheng Z M, et al. Spatial heterogeneity of soil properties and its relationships with terrain factors in broad-leaved forest in Tiantong of Zhejiang Province, East China[J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2361−2369.
    [37] 苏松锦, 刘金福, 何中声, 等. 格氏栲天然林土壤养分空间异质性[J]. 生态学报, 2012, 32(18):5673−5682.

    Su S J, Liu J F, He Z S, et al. The Spatial heterogeneity of soil nutrients in a mid-subtropical Castanopsis kawakamii natural forest[J]. Acta Ecologica Sinica, 2012, 32(18): 5673−5682.
    [38] 葛晓改, 周本智, 肖文发. 马尾松人工林凋落物产量、养分含量及养分归还量特性[J]. 长江流域资源与环境, 2014, 23(7):996−1003.

    Ge X G, Zhou B Z, Xiao W F. Study on litter fall, nutrient content and nutrient return of Pinus massoniana plantation[J]. Resources and Environment in the Yangze Basin, 2014, 23(7): 996−1003.
    [39] 宋影, 辜夕容, 严海元, 等. 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态[J]. 环境科学, 2014, 35(3):1151−1158.

    Song Y, Gu X R, Yan H Y, et al. Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area[J]. Environmental Science, 2014, 35(3): 1151−1158.
    [40] 李雪峰, 韩士杰, 胡艳玲, 等. 长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J]. 应用生态学报, 2008, 19(2):245−251.

    Li X F, Han S J, Hu Y L, et al. Decomposition of litter organicmatter and its relations to C、N and P release in secondary conifer and broad jeaf mixed forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2008, 19(2): 245−251.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  2200
  • HTML全文浏览量:  1039
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-03-11
  • 网络出版日期:  2019-06-15
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回