高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素

何潇 曹磊 徐胜林 李海奎

何潇, 曹磊, 徐胜林, 李海奎. 内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素[J]. 北京林业大学学报, 2019, 41(9): 50-58. doi: 10.13332/j.1000-1522.20190030
引用本文: 何潇, 曹磊, 徐胜林, 李海奎. 内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素[J]. 北京林业大学学报, 2019, 41(9): 50-58. doi: 10.13332/j.1000-1522.20190030
He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. doi: 10.13332/j.1000-1522.20190030
Citation: He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. doi: 10.13332/j.1000-1522.20190030

内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素

doi: 10.13332/j.1000-1522.20190030
基金项目: 国家重点研发计划项目(2017YFC0504004-3),中央级公益性科研院所基本科研业务费专项(CAFYBB2016ZD004)
详细信息
    作者简介:

    何潇。主要研究方向:林业统计与生物数学模型。Email:hexiaonuist@163.com  地址:100091 北京市海淀区东小府 2 号中国林业科学研究院资源信息研究所

    责任作者:

    李海奎,博士,研究员。主要研究方向:林业统计与生物数学模型。Email:lihk@ifrit.ac.cn  地址:同上

  • 中图分类号: S718.5

Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China

  • 摘要: 目的针对内蒙古大兴安岭林区中火烧、采伐干扰后退化森林生态系统恢复演替进程,研究其林分生物量特征,确定林分、地形和气候因子对林分生物量的影响,建立林分生物量通用模型,进行森林碳汇功能研究。方法利用野外实测的胸径和树高推算生物量。采用方差分析确定林分、地形和气候因子以及恢复时间、干扰类型等对林分生物量有无影响,使用一般线性模型建立林分生物量的多元线性模型,比较退化森林生态系统在不同生境下林分生物量特征。结果(1)不同恢复阶段的林分生物量差异明显,森林各器官的生物量分配有所不同,生物量最大比重多出现在4 ~ 8 cm、14 cm和18 ~ 26 cm径阶。(2)方差分析结果表明,恢复时间、干扰类型、林分优势树种、海拔对林分生物量恢复有显著性影响,而气候因子或气候因子的2个主成分对林分生物量的影响都不显著,2个林分生物量模型的确定系数在0.85以上,可以用来预测退化森林生态系统中的森林生物量。结论不同恢复阶段森林生物量有较大差异,森林乔木各器官生物量分配、径阶分配受到干扰类型和恢复时间影响。林分生物量与时间和海拔成正比,干扰方式与林型会影响林分生物量,研究结果可为大兴安岭林区森林生物量预测以及森林碳库研究提供借鉴。

     

  • 图  1  1987—2016年的年平均气温与年平均降水量的变化趋势

    Figure  1.  Trends of mean annual temperature and precipitation in 1987−2016

    图  2  不同恢复阶段的森林林分生物量分配格局

    LF表示轻度火烧;MF表示中度火烧;SF表示重度火烧;C表示采伐。数字12、14、20、22、29、31表示恢复时间(年)。下同。LF, mild fire; MF, moderate fire; SF, severe fire; C, cutover. Number 12, 14, 20, 22, 29, 31 represent 12, 14, 20, 22, 29, 31 years restoration time, respectively. The same below.

    Figure  2.  Stand biomass distribution pattern of different restoration stages

    图  3  不同阶段的森林主要树种的生物量

    Figure  3.  Biomass of main tree species in different restoration stages

    图  4  不同恢复阶段森林的主要树种生物量分配格局

            L代表落叶松;B代表白桦;P代表山杨。L, Larix gmelinii; B, Betula platyphylla; P, Populus davidiana.

    Figure  4.  Biomass distribution pattern of main forest species in different restoration stages

    表  1  不同阶段的森林林分生物量                  (t·hm− 2

    Table  1.   Stand biomass of different restoration stages (t·ha− 1)

    恢复时间/年
    Restoration
    time/year
    干扰类型
    Interference
    type
    树干生物量
    Stem
    biomass
    树皮生物量
    Bark
    biomass
    树枝生物量
    Branch
    biomass
    树叶生物量
    Leaf
    biomass
    地上生物量
    Aboveground
    biomass
    地下生物量
    Root
    biomass
    总生物量
    Total
    biomass
    12 轻度火烧
    Mild fire
    78.54 11.36 23.44 5.46 118.80 41.63 160.43
    中度火烧
    Moderate fire
    23.70 3.45 7.72 1.90 36.77 13.56 50.33
    重度火烧
    Severe fire
    1.39 0.38 0.74 0.26 2.77 1.09 3.86
    22 轻度火烧
    Mild fire
    68.92 9.39 18.87 4.19 101.37 34.93 136.30
    中度火烧
    Moderate fire
    57.45 7.60 15.06 3.31 83.42 28.81 112.23
    重度火烧
    Severe fire
    54.82 7.34 14.65 3.28 80.09 27.80 107.89
    31 轻度火烧
    Mild fire
    42.72 8.70 22.81 4.26 78.49 24.09 102.58
    中度火烧
    Moderate fire
    30.71 6.48 13.56 3.28 54.03 17.64 71.67
    重度火烧
    Severe fire
    28.69 6.00 10.77 3.08 48.54 16.17 64.71
    14 采伐 Cutover 1.76 0.51 0.97 0.34 3.58 1.44 5.02
    20 采伐 Cutover 52.56 10.23 15.42 4.69 82.90 21.27 104.17
    29 采伐 Cutover 26.45 5.65 9.79 2.90 44.79 14.38 59.17
    下载: 导出CSV

    表  2  不同阶段森林林分生物量的径阶分配

    Table  2.   Forest biomass proportion in different diameter classes of varied restoration stages %

    径阶
    Diameter
    class/cm
    12年
    12 years
    22年
    22 years
    31年
    31 years
    14年
    14 years
    20年
    20 years
    29年
    29 years
    LF MF SF LF MF SF LF MF SF C C C
    2 0.48 6.1 0.09 0.52 0.75 9.04 0.36 1.58
    4 0.14 0.48 21.77 0.08 0.36 1.22 5.49 43.98 4.18 9.21
    6 0.52 47.28 0.22 0.06 0.29 0.29 1.67 16.63 36.8 11.22 21.53
    8 1.91 1.33 24.85 0.12 0.46 0.93 4.73 26.18 10.19 19.13 32.99
    10 5.25 3.07 0.58 0.7 1.16 1.78 13.81 17.46 28.35 9.11
    12 6.23 5 1.03 2.12 1.91 14.67 10.08 22.94 2.59
    14 6.08 19.66 2.91 2.08 5.97 5.03 21.89 3.78 8.35 2.35
    16 11.47 11.91 4.77 7.31 13.04 8.97 20.45 3.01 4.41
    18 8.15 29.65 18.25 9.31 7.25 3.68 9.57 3.44 1.07 5.82
    20 17.93 9.11 17.97 15.23 18.03 14.59 5.33 5.09
    22 10.38 19.31 16.07 10.86 8.77 11.79 8.75 3.34 3.31
    24 8.81 22.55 16.43 12.86 12.62 2.72 6.42
    26 8.76 3.95 21.37 11.51 8.6 4.5
    28 4.36 9.28 11.94 7.12
    30 5.27 2.21 7.69
    32 3 4.53
    34
    36 7.85
    38 4.69
    40 7.22
    50 10.5
    下载: 导出CSV

    表  3  林分生物量与各因子的方差分析

    Table  3.   Variance analysis result of forest biomass with other factors

    影响因子 Influencing factor   平方和 Sum Sq. 自由度 df 均方 Mean Sq. FF value 显著性 Sig.
    恢复时间 Restoration time (T) 520.9 1 520.9 8.6 0.007
    海拔 Altitude (AL) 887.7 1 887.7 14.7 0.001
    干扰类型 Interference type (I) 2 920.0 3 973.3 16.1 < 0.001
    优势树种 Dominant species (S) 454.7 2 227.3 3.8 0.036
    变量 Variable ($\scriptstyle N{\bar d^2}$) 7 545.2 1 7 545.2 124.8 < 0.001
    残差 Residual 1 633.0 27 60.5
    模型 Model 48 002.0 8 6 000.2 99.2 < 0.001
    下载: 导出CSV
  • [1] Tang S Z, Liu S R. Conservation and sustainability of natural forests in China[J]. Review of China Agricultural Science and Technology, 2000, 2(1): 42−46.
    [2] 夏自谦, 滕秀玲. 世界森林资源现状及前景展望[J]. 北京林业大学学报(社会科学版), 2003, 2(3):24−28. doi: 10.3969/j.issn.1671-6116.2003.03.006

    Xia Z Q, Teng X L. Status quo and prospect of world forest resources[J]. Journal of Beijing Forestry University (Social Sciences), 2003, 2(3): 24−28. doi: 10.3969/j.issn.1671-6116.2003.03.006
    [3] Dobson A P, Bradshaw A D, Baker A J M. Hopes for the future: restoration ecology and conservation biology[J]. Science, 1997, 277: 515−522. doi: 10.1126/science.277.5325.515
    [4] 李俊清. 森林生态学[M]. 北京: 高等教育出版, 2010.

    Li J Q. Forest ecology[M]. Beijing: Higher Education Press, 2010.
    [5] 徐化成. 中国大兴安岭森林[M]. 北京: 科学出版社, 1998.

    Xu H C. Daxing’anling forest, China[M]. Beijing: Science Press, 1998.
    [6] 郑焕能, 温广玉. 林火灾变阈值[J]. 火灾科学, 1999, 8(3):1−5.

    Zheng H N, Wen G Y. Forest fire catastrophe and its threshold[J]. Fire Safety Science, 1999, 8(3): 1−5.
    [7] Houghton R A. Converting terrestrial ecosystems from sources to sinks of carbon[J]. Arnbio, 1996, 25(4): 267−272.
    [8] Hornbeck J W, Smith C T, Martin C W, et al. Effects of intensive harvesting on nutrient capitals of three forest types in New England[J]. Forest Ecology and Management, 1990, 30(1−4): 55−64. doi: 10.1016/0378-1127(90)90126-V
    [9] 张厚华, 傅德志, 孙谷畴. 森林植被恢复重建的理论基础[J]. 北京林业大学学报, 2004, 26(1):97−99. doi: 10.3321/j.issn:1000-1522.2004.01.020

    Zhang H H, Fu D Z, Sun G C. Theoretical fundamentals of restoration and reconstruction of degraded forest vegetation[J]. Journal of Beijing Forestry University, 2004, 26(1): 97−99. doi: 10.3321/j.issn:1000-1522.2004.01.020
    [10] Amiro B. Net primary productivity following forest fire for Canadian ecoregions[J]. Canadian Journal of Forest Research, 2000, 30(30): 939−947.
    [11] Wang C, Gower S T, Wang Y, et al. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in northeastern China[J]. Global Change Biology, 2010, 7(6): 719−730.
    [12] 丛燕, 魏荣华, 袁强. 黑河地区阔叶林和白桦落叶松林火烧迹地生物量动态变化的研究[J]. 林业科技, 2011, 36(2):17−19. doi: 10.3969/j.issn.1673-3290.2011.02.03

    Cong Y, Wei R H, Yuan Q. Research of the biomass dynamics in burned areas of broad-leaved forest and birch and larch forest in Heihe Area[J]. Forestry Science & Technology, 2011, 36(2): 17−19. doi: 10.3969/j.issn.1673-3290.2011.02.03
    [13] 解伏菊, 肖笃宁, 李秀珍, 等. 大兴安岭北坡火烧迹地森林景观恢复及其影响因子: 以郁闭度指标为例[J]. 应用生态学报, 2005, 16(9):1711−1718. doi: 10.3321/j.issn:1001-9332.2005.09.025

    Xie F J, Xiao D N, Li X Z, et al. Forest landscape restoration and its affecting factors in burned area of northern Great Xing’an Mountains: taking forest coverage as an example[J]. Chinese Journal of Applied Ecology, 2005, 16(9): 1711−1718. doi: 10.3321/j.issn:1001-9332.2005.09.025
    [14] 王晓莉, 常禹, 陈宏伟, 等. 黑龙江省大兴安岭主要森林生态系统生物量分配特征[J]. 生态学杂志, 2014, 33(6):1437−1444.

    Wang X L, Chang Y, Chen H, et al. Biomass allocation characteristics of the main forest ecosystems in the Great Xing’an Mountains, Heilongjiang Province[J]. Chinese Journal of Ecology, 2014, 33(6): 1437−1444.
    [15] 孙伟迪. 乌尔旗汗林业局森林碳储量分布特征研究[J]. 内蒙古林业调查设计, 2017, 40(6):96−100, 102.

    Sun W D. Study on distribution characteristics of forest carbon storage in Wuerqihan Forestry Bureau[J]. Inner Mongolia Forestry Survey and Design, 2017, 40(6): 96−100, 102.
    [16] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest mensuration[M]. Beijing: China Forestry Publishing House, 2006.
    [17] Wang T, Wang G, Innes J L, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 448−458. doi: 10.15302/J-FASE-2017172
    [18] Weiskittel A R, Crookston N L, Radtke P J. Linking climate, gross primary productivity, and site index across forests of the western United States[J]. Canadian Journal of Forest Research, 2011, 41(8): 1710−1721. doi: 10.1139/x11-086
    [19] 国家林业局. 国家森林资源连续清查技术规定[S]. 北京: 国家林业局, 2014.

    State Forestry Administration. National forest resources continuous inventory technical regulations[S]. Beijing: State Forestry Administration, 2014.
    [20] 国家林业局. LY/T 2655—2016立木生物量模型及碳计量参数: 云杉[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. LY/T 2655—2016, Tree biomass models and related parameters to carbon accounting for Picea asperata[S]. Beijing: China Forestry Publishing House, 2017.
    [21] 国家林业局. LY/T 2654—2016立木生物量模型及碳计量参数: 落叶松[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. LY/T 2654—2016, Tree biomass models and related parameters to carbon accounting for Larix gmelinii[S]. Beijing: China Forestry Publishing House, 2017.
    [22] 国家林业局. LY/T 2659—2016, 立木生物量模型及碳计量参数—桦树[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. LY/T 2659—2016, Tree biomass models and related parameters to carbon accounting for Betula platyphylla[S]. Beijing: China Forestry Publishing House, 2017.
    [23] 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.

    Li H K, Lei Y C. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010.
    [24] 唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算: ForStat教程[M]. 北京: 科学出版社, 2009.

    Tang S Z, Lang K J, Li H K.Statistics and biomathematical models[M]. Beijing: Science Press, 2009.
    [25] Kutner M H, Nachtsheim C J, Neter J, et al. Applied linear statistical models[M]. Boston: McGraw-Hill Irwin, 2005.
    [26] Farrar D E, Glauber R R. Multicollinearity in regression analysis: the problem revisited[J]. Review of Economics and Statistics, 1967, 49(1): 92−107. doi: 10.2307/1937887
    [27] Mcintyre S H, Montgomery D B, Srinivasan V, et al. Evaluating the statistical significance of models developed by stepwise regression[J]. Journal of Marketing Research, 1983, 20(1): 1−11. doi: 10.1177/002224378302000101
    [28] Cornell J. Classical and modern regression with applications[J]. Technometrics, 1987, 29(3): 2.
    [29] 曾锋, 张金池. 重金属在森林生态系统中的迁移规律研究进展[J]. 世界林业研究, 2001, 14(2):16−22.

    Zeng F, Zhang J C. Advances in the research on movement pattern of heavy metal ions in forest ecosystem[J]. World Forestry Research, 2001, 14(2): 16−22.
    [30] 范兆飞, 徐化成, 于汝元. 大兴安岭北部兴安落叶松种群年龄结构及其与自然干扰关系的研究[J]. 林业科学, 1992, 28(1):2−11.

    Fan Z F, Xu H C, Yu R Y. A study on the species group age structure of Larix Gmelini population and its relation to disturbance on the North Daxing’anling Mountains[J]. Scientia Silvae Sinicae, 1992, 28(1): 2−11.
    [31] 李卓凡. 兴安落叶松林生物量与碳储量的研究[D]. 呼和浩特: 内蒙古农业大学, 2013.

    Li Z F. Biomass and carbon storage of the Larix gmelinii forest’s research[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
    [32] 王丽红, 辛颖, 邹梦玲, 等. 大兴安岭火烧迹地植被恢复中植物多样性与生物量分配格局[J]. 北京林业大学学报, 2015, 37(12):41−47.

    Wang L H, Xin Y, Zou M L, et al. Plants diversity and biomass distribution of vegetation restoration in burned area of Great Xing’an Mountains[J]. Journal of Beijing Forestry University, 2015, 37(12): 41−47.
    [33] Brown I F, Martinelli L A, Thomas W W, et al. Uncertainty in the biomass of Amazonian forests: an example from Rondonia, Brazil[J]. Forest Ecology and Management, 1995, 75(1−3): 175−189.
    [34] Condés S, Roberedo F G. An empirical mixed model to quantify climate influence on the growth of Pinus halepeensis Mill. stands in southeastern Spain[J]. Forest Ecology and Management, 2012, 284(15): 59−68.
    [35] 王轶夫. 基于神经网络的森林生物量估测模型研究[D]. 北京: 北京林业大学, 2013.

    Wang Y F. The study of forest biomass estimation model based on neural network[D]. Beijing: Beijing Forestry University, 2013.
    [36] Taylor K D. Fire history of a sequoia-mixed conifer forest[J]. Ecology, 1979, 60(1): 129−142. doi: 10.2307/1936475
    [37] Reed R A, Finley M E, Romme W H, et al. Above-ground net primary production and leaf area index in early postfire vegetation in Yellowstone National Park[J]. Ecosystems, 1999, 2(1): 88−94. doi: 10.1007/s100219900061
    [38] 张玉红, 覃炳醒, 孙铭隆, 等. 林火对大兴安岭典型林型林下植被与土壤的影响[J]. 北京林业大学学报, 2012, 34(2):7−13.

    Zhang Y H, Qin B X, Sun M L, et al. Impact of forest fire on understory vegetation and soil in typical forest types of Daxing’an Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(2): 7−13.
    [39] 郑丽凤, 周新年, 李丹, 等. 森林采伐对闽北天然次生林碳储量及其动态的影响[J]. 安全与环境学报, 2013, 13(6):162−167.

    Zheng L F, Zhou X N, Li D, et al. Impact of harvesting intensity of the natural secondary forestry on the carbon stocks reduction in northern Fujian[J]. Journal of Safety and Environment, 2013, 13(6): 162−167.
    [40] 胡海清, 罗碧珍, 魏书精, 等. 小兴安岭7种典型林型林分生物量碳密度与固碳能力[J]. 植物生态学报, 2015, 39(2):140−158. doi: 10.17521/cjpe.2015.0014

    Hu H Q, Luo B Z, Wei S J, et al. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing ’an Mountains, China[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 140−158. doi: 10.17521/cjpe.2015.0014
    [41] He Y J, Qin L, LI Z Y, et al. Carbon storage capacity of monoculture and mixed-species plantation in subtropical China[J]. Forest Ecology and Management, 2013, 295(1): 193−198.
    [42] Fan H B, Liu W F, Wu J P, et al. Ecosystem carbon pools in mixed stands of hardwood species and Masson pine[J]. Journal of Tropical Forest Science, 2013, 25(2): 154−165.
    [43] 李江, 陈宏伟, 冯弦. 云南热区几种阔叶人工林C储量的研究[J]. 广西植物, 2003, 23(4):294−298.

    Li J, Chen H W, Feng X. Carbon stock and rate of carbon sequestration assessment of hardwood plantations in tropical Yunnan, China[J]. Guihaia, 2003, 23(4): 294−298.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  433
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-20
  • 修回日期:  2019-05-13
  • 网络出版日期:  2019-09-12
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回