高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙古栎次生林垂直结构特征对目标树经营的响应

张晓红 张会儒

张晓红, 张会儒. 蒙古栎次生林垂直结构特征对目标树经营的响应[J]. 北京林业大学学报, 2019, 41(5): 56-65. doi: 10.13332/j.1000-1522.20190046
引用本文: 张晓红, 张会儒. 蒙古栎次生林垂直结构特征对目标树经营的响应[J]. 北京林业大学学报, 2019, 41(5): 56-65. doi: 10.13332/j.1000-1522.20190046
Zhang Xiaohong, Zhang Huiru. Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release[J]. Journal of Beijing Forestry University, 2019, 41(5): 56-65. doi: 10.13332/j.1000-1522.20190046
Citation: Zhang Xiaohong, Zhang Huiru. Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release[J]. Journal of Beijing Forestry University, 2019, 41(5): 56-65. doi: 10.13332/j.1000-1522.20190046

蒙古栎次生林垂直结构特征对目标树经营的响应

doi: 10.13332/j.1000-1522.20190046
基金项目: 中国林业科学研究院基本科研业务费专项(CAFYBB2016SY023)
详细信息
    作者简介:

    张晓红,博士,助理研究员。研究方向:森林可持续经营理论与技术。Email:zhangxh@ifrit.ac.cn 地址:100091北京市海淀区香山路东小府1号中国林业科学研究院资源信息研究所

    责任作者:

    张会儒,研究员,博士生导师。研究方向:森林可持续经营。Email:huiru@ifrit.ac.cn 地址:同上

  • 中图分类号: S758.5+3

Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release

  • 摘要: 目的基于单株木的目标树经营技术是实现近自然森林经营的重要途径。为揭示目标树经营对天然次生林垂直结构的影响,以长白山北部蒙古栎次生林为研究对象,探讨各林层林分结构与单木生长对不同目标树抚育间伐强度的响应,为制定科学合理的经营措施提供基础依据。方法2013年8月在吉林省汪清林业局设置16块面积0.09 hm2(30 m × 30 m)的样地开展目标树经营试验。根据间伐强度设置弱度(5%)、轻度(10%)、中度(20%)和对照4种处理,每种处理4个重复,2016年复测样地。采用树冠光竞争高法(CCH)将林分划分为上林层、中林层和下林层3个林层,比较分析不同抚育间伐强度对各林层高度、树种组成、林木竞争和生长的影响。结果(1)各林层树冠光竞争高度分别为上林层15.27 ~ 16.12 m、中林层8.76 ~ 9.65 m、下林层2.95 ~ 3.37 m。间伐提高了上、中林层高度,其中中度间伐下上林层平均高度为15.42 ~ 17.21 m,显著高于其他处理,而下林层高度基本不变。(2)间伐调整了上林层和中林层各树种所占比重,上林层中白桦下降,蒙古栎提高,且蒙古栎比重随着间伐强度的增大而增大;中林层白桦、杂木比重下降,红松比重增加。(3)上林层平均胸径在中度间伐下得到了提高,增幅达到0.57 cm,而在其他处理下有所下降。中林层平均胸径只在轻度间伐下得到提升,下林层平均胸径的变化与上林层呈现相反的趋势。林分中上林层所占蓄积比重增大,弱度、轻度、中度间伐样地上林层蓄积比重分别增加了1.92%、11.52%、13.15%。(4)间伐显著降低了各林层林木竞争指数,其中下林层对目标树抚育间伐响应最为积极,以弱度间伐的降幅最为显著,林木竞争指数由0.634降为0.455。(5)各林层直径定期生长率和材积定期生长率随林层高度的增加而降低,上、中、下林层的直径生长率分别为1.22% ~ 1.96%、1.94% ~ 2.59%、4.02% ~ 8.17%,材积生长率分别为1.74% ~ 4.10%、3.50% ~ 5.14%、10.12% ~ 18.97%。结论目标树经营能够显著影响蒙古栎次生林各林层的生长与结构,但是各林层特征对不同抚育间伐强度的响应不一致。综合来看,中度间伐(间伐强度20%左右)是研究区蒙古栎次生林较为适合的目标树抚育间伐强度,有关具体抚育方式和后续抚育时间还有待林分动态的长期观测。

     

  • 图  1  蒙古栎次生林样地抚育间伐前后林层平均胸径变化

    Figure  1.  Changes on mean DBH of each storey in secondary Quercus mongolica forest sample plots

    图  2  蒙古栎次生林样地抚育间伐前后林层林木竞争指数变化

    Figure  2.  Changes on mean competition index of each storey in secondary Quercus mongolica forest sample plots

    表  1  蒙古栎次生林样地基本情况

    Table  1.   Basic situation of secondary Quercus mongolica forest sample plots

    样地号
    Sample plot No.
    面积/hm2
    Area/ha
    海拔
    Altitude/m
    坡向
    Slope aspect
    坡度
    Grade/
    (°)
    林分密度/
    (株·hm− 2
    Stand density/
    (tree·ha− 1)
    断面积/
    (m2·hm− 2
    Basal area/
    (m2·ha− 1)
    蓄积/
    (m3·hm− 2
    Stock volume/
    (m3·ha− 1)
    树种组成
    Composition of
    tree species
    目标树密度/
    (株·hm− 2
    Density of crop tree/
    (tree·ha− 1)
    处理
    Treatment
    1 900 675 东南
    Southeast
    8 2 367 20.61 149.82 4Q1P1Bp1F1P1Pu1O 102 弱度
    Weak
    2 900 750 东南
    Southeast
    7 1 533 22.48 150.78 4Q2Pu1A1Bp1T1P 85 弱度
    Weak
    3 900 675 东南
    Southeast
    8 1 833 23.9 175.57 3Q1Bp1Pu1Q1T1P1O 99 弱度
    Weak
    4 900 750 东南
    Southeast
    7 2 044 23.21 193.74 5Q3Bp1P1An 86 弱度
    Weak
    5 900 675 东南
    Southeast
    8 1 667 26.37 204.36 6Q1Bp1P1Bd1O 76 轻度
    Mild
    6 900 675 东南
    Southeast
    8 1 844 22.39 176.31 4Q3Bp1P1O1L 89 轻度
    Mild
    7 900 750 东南
    Southeast
    7 2 033 22.38 180.23 6Q1Bp1Bd1P1An 93 轻度
    Mild
    8 900 705 东南
    Southeast
    10 1 289 21.05 159.76 4Q2T1A1T1P1Bp 87 轻度
    Mild
    9 900 765 东南
    Southeast
    6 1 433 21.25 171.34 2Q2Bp1Bd1OLQ1P1O1An 88 中度
    Moderate
    10 900 705 东南
    Southeast
    10 2 356 22.01 170.62 3Q3Bp1P1O1Pu1Bd 85 中度
    Moderate
    11 900 725 东南
    Southeast
    8 1 433 20.48 153.49 4Q1Bp2O1P1Bd1A 94 中度
    Moderate
    12 900 675 东南
    Southeast
    8 1 844 21.81 176.01 3Q3Bp1An1A1P1O 92 中度
    Moderate
    13 900 705 东南
    Southeast
    10 878 21.76 160.02 5Q2T1Bp1P1A 110 对照
    Control (CT)
    14 900 705 东南
    Southeast
    10 1 833 23.67 174.66 5Q1Bd1A1T1F1Q 96 对照
    Control (CT)
    15 900 705 东南
    Southeast
    10 1 343 24.4 171.54 5Q1A1T1Bp1P1O 180 对照
    Control (CT)
    16 900 715 东南
    Southeast
    8 1 333 23.18 170.81 6Q1A1T1P1Bp 122 对照
    Control (CT)
    注:Q. 蒙古栎;P. 红松;Pu. 大青杨;Bp.白桦;Bd. 黑桦;T. 紫椴;A. 色木槭;F. 水曲柳;Af. 冷杉;L. 长白落叶松;O. 杂木,杂木是指达到检尺直径的小乔木,包括暴马丁香、青楷槭、花楷槭等。表4同此。Notes: Q, Quercus mongolica; P, Pinus koraiensis; Pu, Populus ussuriensis; Bp, Betula platyphylla; Bd, Betula dahurica; T, Tilla amurensis; A, Acer mono; F, Fraxinus mandshurica; Af, Abies nephrolepis; L, Larix olgensis; O, other species refer to other small trees with diameter reaching 1 cm, including Syringa reticulata, Acer tegmentosum, Acer ukurnduense, et al. The same as Tab. 4.
    下载: 导出CSV

    表  2  蒙古栎次生林样地抚育间伐前后林层高度变化

    Table  2.   Changes on CCH of sample plots in secondary Quercus mongolica forest

    CTR处理
    CTR treatment
    上林层 Upper canopy layer 中林层 Middle canopy layer 下林层 Lower canopy layer
    伐前
    Before thinning
    伐后3年
    3 years after thinning
    伐前
    Before thinning
    伐后3年
    3 years after thinning
    伐前
    Before thinning
    伐后3年
    3 years after thinning
    CT 15.86 ± 0.39a 15.60 ± 0.25a 9.31 ± 0.38a 8.98 ± 0.13a 3.22 ± 0.25a 3.12 ± 0.19a
    弱度 Weak 15.27 ± 0.55a 15.42 ± 0.46b 8.76 ± 0.33b 8.85 ± 0.28a 2.95 ± 0.11b 3.09 ± 0.09a
    轻度 Mild 16.12 ± 0.47a 16.40 ± 0.49c 9.30 ± 0.28a 9.43 ± 0.30b 3.14 ± 0.09b 3.18 ± 0.10a
    中度 Moderate 15.63 ± 0.51a 17.21 ± 0.45d 9.65 ± 0.21a 9.95 ± 0.26c 3.37 ± 0.12a 3.29 ± 0.11b
    F 1.302 14.726 5.882 15.634 4.907 6.603
    P 0.319 0.000 0.010 0.000 0.019 0.007
    注:CTR.目标树经营;CT.对照;不同字母表示差异显著(P < 0.05,LSD,t检验)。下同。Notes:CTR, crop tree release; CT, control; different lowercase letters show significant differences (P < 0.05). The same below.
    下载: 导出CSV

    表  3  蒙古栎次生林样地抚育间伐前后林层高度方差分析

    Table  3.   ANOVA of CCH in secondary Quercus mongolica forest sample plots before and after thinning

    阶段
    Period
    CTR处理
    CTR treatment
    方差来源
    Source of variation
    离差平方和
    Sum of squares
    df 均方
    Mean square
    F Sig.
    伐前
    Before thinning
    CT 组间 Between groups 319.421 2 159.711 1 360.430 < 0.001
    组内 Within group 1.057 9 0.117
    总和 Total 320.478 11
    弱度 Weak 组间 Between groups 303.645 2 151.823 1 060.069 < 0.001
    组内 Within group 1.289 9 0.143
    总和 Total 304.934 11
    轻度 Mild 组间 Between groups 377.026 2 188.513 1 817.673 < 0.001
    组内 Within group 0.933 9 0.104
    总和 Total 377.959 11
    中度 Moderate 组间 Between groups 432.180 2 216.090 1 342.081 < 0.001
    组内 Within group 1.449 9 0.161
    总和 Total 433.629 11
    伐后3年
    3 years after thinning
    CT 组间 Between groups 312.125 2 156.063 3 983.733 < 0.001
    组内 Within group .353 9 0.039
    总和 Total 312.478 11
    弱度 Weak 组间 Between groups 344.794 2 172.397 1 703.527 < 0.001
    组内 Within group .911 9 .101
    总和 Total 345.705 11
    轻度 Mild 组间 Between groups 387.254 2 193.627 1 714.232 < 0.001
    组内 Within group 1.017 9 0.113
    总和 Total 388.271 11
    中度 Moderate 组间 Between groups 382.311 2 191.156 1 953.226 < 0.001
    组内 Within group 0.881 9 0.098
    总和 Total 383.192 11
    下载: 导出CSV

    表  4  蒙古栎次生林样地抚育间伐前后林层主要树种组成变化

    Table  4.   Changes on the tree species composition of each storey in secondary Quercus mongolica forest sample plots

    CTR处理
    CTR treatment
    林层
    Canopy layer
    伐前
    Before thinning
    伐后3年
    3 years after thinning
    CT 上林层 Upper canopy layer Q (45.47%) T (24.69%) Bp (9.55%) A (9.21%) Q (40.23%) T (23.88%) Bp (15.17%) A (9.93%)
    中林层 Middle canopy layer Q (73.78%) A (8.28%) T (4.77%) Bp (4.81%) Q (69.62%) A (9.90%) Bp (6.67%) T (3.14%)
    下林层 Lower canopy layer Q (40.35%) P (37.40%) A (13.11%) O (2.95%) Q (29.30%) P (44.49%) A (16.74%) O (2.29%)
    弱度 Weak 上林层 Upper canopy layer Bp (39.31%) Q (23.61%) Pu (16.63%) T (9.35%) Bp (38.11%) Q (26.30%) Pu (11.59%) T (9.24%)
    中林层 Middle canopy layer Q (57.93%) Pu (19.89%) Bp (5.65%%) P (3.60%) Q (62.07%) Pu (14.16%) Bp (5.20%) P (4.38%)
    下林层 Lower canopy layer Q (57.93%) A (20.81%) P (18.35%) O (11.52%) Q (29.69%) A (21.87%) P (17.80%) O (12.82%)
    轻度 Mild 上林层 Upper canopy layer Bp (41.12%) Q (22.39%) T (12.94%) Bd (10.80%) Bp (36.12%) Q (30.72%) T (15.68%) Bd (6.80%)
    中林层 Middle canopy layer Q (79.29%) Bp (4.77%) P (3.62%) A (3.56%) Q (79.87%) Bp (4.70%) P (4.84%) A (3.07%)
    下林层 Lower canopy layer Q (41.47%) P (38.36%) O (9.76%) A (3.33%) Q (36.09%) P (39.76%) O (10.49%) A (4.15%)
    中度 Moderate 上林层 Upper canopy layer Bp (63.76%) Bd (14.47%) Q (13.17%) L (6.53%) Bp (46.99%) Q (27.12%) Bd (15.33%) L (7.51%)
    中林层 Middle canopy layer Q (67.64%) O (11.22%) Af (5.57%) P (4.70%) Q (72.78%) O (9.14%) P (6.20%) Af (5.35%)
    下林层 Lower canopy layer Q (33.61%) P (31.91%) O (20.82%) A (3.93%) Q (30.33%) P (33.46%) O (22.12%) A (3.52%)
    下载: 导出CSV

    表  5  蒙古栎次生林样地抚育间伐前后各林层蓄积量比值变化

    Table  5.   Changes on volume ratio of each storey in secondary Quercus mongolica forest sample plots

    CTR处理
    CTR treatment
    伐前 Before thinning 伐后3年 3 years after thinning
    上林层
    Upper canopy layer
    中林层
    Middle canopy layer
    下林层
    Lower canopy layer
    上林层
    Upper canopy layer
    中林层
    Middle canopy layer
    下林层
    Lower canopy layer
    CT 54.60 ± 3.00a 40.40 ± 0.93a 5.00 ± 0.17a 48.03 ± 3.58 46.88 ± 2.57a 5.04 ± 0.10a
    弱度 Weak 44.30 ± 1.95b 49.70 ± 4.34b 5.84 ± 0.44b 46.22 ± 3.16 46.71 ± 1.12a 7.07 ± 1.59b
    轻度 Mild 36.13 ± 1.85c 56.83 ± 2.79c 6.91 ± 0.51c 47.65 ± 3.70 42.96 ± 0.80b 9.64 ± 0.17c
    中度 Moderate 44.82 ± 4.43b 45.43 ± 0.86d 9.75 ± 0.51d 57.97 ± 3.50 37.82 ± 0.40c 4.21 ± 0.27a
    下载: 导出CSV

    表  6  蒙古栎次生林各林层单木直径定期生长率和材积定期生长率

    Table  6.   DBH periodic growth rate and volume periodic growth rate of each storey in secondary Quercus mongolica forest

    CTR处理
    CTR treatment
    直径定期生长率 DBH periodic growth rate 材积定期生长率 Volume periodic growth rate
    上林层
    Upper canopy layer
    中林层
    Middle canopy layer
    下林层
    Lower canopy layer
    上林层
    Upper canopy layer
    中林层
    Middle canopy layer
    下林层
    Lower canopy layer
    CT 1.22 ± 0.16a 1.94 ± 0.46a 8.17 ± 0.40a 1.74 ± 0.59a 3.50 ± 0.34a 18.97 ± 0.85a
    弱度 Weak 1.42 ± 0.17b 2.43 ± 0.97b 5.02 ± 0.18b 2.46 ± 0.51b 5.06 ± 0.26b 12.27 ± 0.44b
    轻度 Mild 1.49 ± 0.21b 2.59 ± 0.57b 6.03 ± 0.28c 2.52 ± 0.38b 5.14 ± 0.68b 14.75 ± 0.64c
    中度 Moderate 1.96 ± 0.28c 2.32 ± 0.78b 4.02 ± 0.15d 4.10 ± 0.92c 4.94 ± 0.28b 10.12 ± 0.37d
    F 8.725 3.467 44.849 9.392 5.154 40.426
    P 0.006 0.016 0.000 0.001 0.002 0.000
    下载: 导出CSV
  • [1] 樊后保, 臧润国, 李德志. 蒙古栎种群天然更新的研究[J]. 生态学杂志, 1996, 15(3):15−20.

    Fan H B, Zang R G, Li D Z. Natural regeneration of Mongolian oak population[J]. Chinese Journal of Ecology, 1996, 15(3): 15−20.
    [2] 王文权. 辽宁森林资源.北京[M]. 北京: 中国林业出版社, 2007.

    Wang W Q. Forest resources in Liaoning Province[M]. Beijing: China Forestry Publishing House, 2007 .
    [3] 何友均, 梁星云, 覃林, 等. 南亚热带马尾松红椎人工林群落结构、物种多样性及基于自然的森林经营[J]. 林业科学, 2013, 49(4):24−33.

    He Y J, Liang X Y, Qin L, et al. Community structure, species diversity of Pinus massoniana and Castanopsis hystrix plantation and the nature-based forest management in the southern subtropical China[J]. Scientia Silvae Sinicae, 2013, 49(4): 24−33.
    [4] Demirc M, Bettinger P. Using mixed integer multi-objective goal programming for stand tending block designation: a case study from Turkey[J]. Forest Policy and Economics, 2015, 55: 28−36. doi: 10.1016/j.forpol.2015.03.007
    [5] 盛炜彤. 我国应将天然次生林的经营放在重要位置[J]. 林业科技通讯, 2016(2):10−13.

    Sheng W T. China should put an important position for the management of natural secondary forests[J]. Forest Science and Technology, 2016(2): 10−13.
    [6] Miller G W, Stringer J W, Mercker D C. Technical guide to crop tree release in hardwood forests[R/OL]//The University of Tennessee Agricultural Extension Service Publication Series. Knoxville: University of Tennessee, 2007: 1−24. [2018−10−10]. http://trace.tennessee.edu/utk_agexfores/19.
    [7] 陆元昌.近自然森林经营理论与实践[M]. 北京: 科学出版社, 2006.

    Lu Y C. Theory and practice of close-to-nature forest management[M]. Beijing: Science Press, 2006.
    [8] Healy W M, Lewis A M, Boose E F. Variation of red oak acorn production[J]. Forest Ecology and Management, 1999, 116(1−3): 1−11. doi: 10.1016/S0378-1127(98)00460-5
    [9] 宁金魁, 陆元昌, 赵浩彦, 等. 北京西山地区油松人工林近自然化改造效果评价[J]. 东北林业大学学报, 2009, 37(7):42−44. doi: 10.3969/j.issn.1000-5382.2009.07.015

    Ning J K, Lu Y C, Zhao H Y, et al. Assessment on close-to- nature transformation of Pinus tabuliformis plantations in Xishan Region, Beijing[J]. Journal of Northeast Forestry University, 2009, 37(7): 42−44. doi: 10.3969/j.issn.1000-5382.2009.07.015
    [10] 王懿祥, 张守攻, 陆元昌, 等. 干扰树间伐对马尾松人工林目标树生长的初期效应[J]. 林业科学, 2014, 50(10):67−73.

    Wang Y X, Zhang S G, Lu Y C, et al. Initial effects of crop tees growth after crop tree release on Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2014, 50(10): 67−73.
    [11] 李婷婷, 陆元昌, 姜俊, 等. 马尾松人工林森林经营模式评价[J]. 西北林学院学报, 2015, 30(1):164−171. doi: 10.3969/j.issn.1001-7461.2015.01.27

    Li T T, Lu Y C, Jiang J, et al. Assessment of forest management model of Pinus massoniana plantation[J]. Journal of Northwest Forestry University, 2015, 30(1): 164−171. doi: 10.3969/j.issn.1001-7461.2015.01.27
    [12] 张晓红, 张会儒, 卢军, 等. 美国目标树经营体系及其经营效果研究进展[J]. 世界林业研究, 2016, 29(2):91−96.

    Zhang X H, Zhang H R, Lu J, et al. Crop tree release in United States and progress on management effect[J]. World Forestry Research, 2016, 29(2): 91−96.
    [13] 李俊清, 牛树奎, 刘艳红.森林生态学[M]. 3版.北京: 高等教育出版社.2017.

    Li J Q, Niu S K, Liu Y H. Forest ecology[M]. 3rd ed. Beijing: Higher Education Press, 2017.
    [14] 臧润国, 杨彦承, 蒋有绪. 海南岛霸王岭热带山地雨林群落结构及树种多样性特征的研究[J]. 植物生态学报, 2001, 25(3):270−275. doi: 10.3321/j.issn:1005-264X.2001.03.003

    Zang R G, Yang Y C, Jiang Y X. Community structure and tree species diversity characteristics in a tropical montane rain forest in bawangling nature reserve, Hainan Island[J]. Acta Phytoecologica Sinica, 2001, 25(3): 270−275. doi: 10.3321/j.issn:1005-264X.2001.03.003
    [15] 惠刚盈, Gadow K V, 胡艳波, 等. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.

    Hui G Y, Gadow K V, Hu Y B, et al. Structure based forest management[M]. Beijing: China Forestry Publishing House, 2007.
    [16] Latham P A, Zuuring H R, Coble D W. A method for quantifying vertical forest structure[J]. Forest Ecology and Management, 1998, 104(1): 157−170.
    [17] Ishii H T, Tanabe S, Hiura T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems[J]. Forest Science, 2004, 50(3): 342−355.
    [18] 郑景明, 张春雨, 周金星, 等. 云蒙山典型森林群落垂直结构研究[J]. 林业科学研究, 2007, 20(6):768−774. doi: 10.3321/j.issn:1001-1498.2007.06.006

    Zheng J M, Zhang C Y, Zhou J X, et al. Study on vertical structue of forest communities in Yunmengshan[J]. Forest research, 2007, 20(6): 768−774. doi: 10.3321/j.issn:1001-1498.2007.06.006
    [19] 玉宝, 张秋良, 王立明. 中幼龄兴安落叶松过伐林垂直结构综合特征[J]. 林业科学, 2015, 51(1):132−139.

    Yu B, Zhang Q L, Wang L M. Comprehensive characteristics of the vertical structure of middle young over cutting forest of Larix gmelinii[J]. Scientia Silvae Sinicae, 2015, 51(1): 132−139.
    [20] 惠刚盈, 胡艳波, 赵中华, 等. 基于交角的林木竞争指数[J]. 林业科学, 2013, 49(6):68−73.

    Hui G Y, Hu Y B, Zhao Z H, et al. Forest competition index based on intersection angle[J]. Scientia Silvae Sinicae, 2013, 49(6): 68−73.
    [21] 惠刚盈. 基于相邻木关系的林分空间结构参数应用研究[J]. 北京林业大学学报, 2013, 35(4):l−9.

    Hui G Y. Studies on the application of stand spatial structure parameters based on the relationship of neighborhood trees[J]. Journal of Beijing Forestry University, 2013, 35(4): l−9.
    [22] 孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest mensuration[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
    [23] 吕勇, 臧颢, 万献军, 等. 基于林层指数的青椆混交林林层结构研究[J]. 林业资源管理, 2012(3):81−84. doi: 10.3969/j.issn.1002-6622.2012.03.018

    Lü Y, Zang H, Wan X J, et al. Storey structure study of Cyclobalanopsis myrsinaefolia mixed stand based on storey index[J]. Forest Resources Management, 2012(3): 81−84. doi: 10.3969/j.issn.1002-6622.2012.03.018
    [24] 陈科屹, 张会儒, 雷相东, 等. 云冷杉过伐林垂直结构特征分析[J]. 林业科学研究, 2017, 30(3):450−459.

    Chen K Y, Zhang H R, Lei X D, et al. Analysis of vertical structure characteristics for spruce-fir over-cutting forest[J]. Forest Research, 2017, 30(3): 450−459.
    [25] 马履一, 李春义, 王希群, 等. 不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J]. 林业科学, 2007, 43(5):1−9. doi: 10.3321/j.issn:1001-7488.2007.05.001

    Ma L Y, Li C Y, Wang X Q, et al. Effects of thinning on growth and diversity of undergrowth of Pinus tabuliformis plantation in Beijing Mountainous Areas[J]. Scientia Silvae Sinicae, 2007, 43(5): 1−9. doi: 10.3321/j.issn:1001-7488.2007.05.001
    [26] 段劼, 马履一, 贾黎明, 等. 抚育间伐对侧柏人工林及林下植被生长的影响[J]. 生态学报, 2010, 30(6):1431−1441.

    Duan J, Ma L Y, Jia L M, et al. Effects of thinning on growth of Platycladus orientalis plantation and undergrowth vegetations[J]. Acta Ecologica Sinica, 2010, 30(6): 1431−1441.
    [27] 徐金良, 毛玉明, 郑成忠, 等. 抚育间伐对杉木人工林生长及出材量的影响[J]. 林业科学研究, 2014, 27(1):99−107.

    Xu J L, Mao Y M, Zheng C Z, et al. Effect of thinning on growth and timber qutturn in Cunninghamia lanceolate plantation[J]. Forest Research, 2014, 27(1): 99−107.
    [28] 尤文忠, 赵刚, 张慧东, 等. 抚育间伐对蒙古栎次生林生长的影响[J]. 生态学报, 2015, 35(1):56−64.

    You W Z, Zhao G, Zhang H D, et al. Effects of thinning on growth of mongolian oak (Quercus mongolica) secondary forests[J]. Acta Ecologica Sinica, 2015, 35(1): 56−64.
    [29] Miller G W, Kochenderfer J N, Fekedulgn D B. Influence of individual reserve trees on nearby reproduction in two-aged appalachian hardwood stands[J]. Forest Ecology and Management, 2006, 224(3): 241−251. doi: 10.1016/j.foreco.2005.12.035
    [30] 陆元昌, 张守攻, 雷相东, 等. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 2009, 22(1):20−27.

    Lu Y C, Zhang S G, Lei X D, et al. Theoretical basis and implementation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 2009, 22(1): 20−27.
    [31] Gary D L. Ten year growth response of red and white oak crop trees to intensity of crown release[R]//Walrop T A. General technical report (SRS-20). Asheville: Department of Agriculture, Forestry Service, Southern Research Station, 1998: 163−167.
    [32] Lin Y C, Chang L W, Yang K C, et al. Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation[J]. Ocecologia, 2011, 165(1): 175−184. doi: 10.1007/s00442-010-1718-x
    [33] Shchuler T M. Crop tree release improves competitiveness of northern red oak growing in association with black cherry[J]. Northern Journal of Applied Forestry, 2006, 23(2): 77−82.
    [34] Ward J S. Intensity of precommercial crop tree release increases diameter growth and survival of upland oaks[J]. Canadian Journal of Forest Research, 2009, 39(1): 118−130. doi: 10.1139/X08-165
    [35] Ward J S. Precommercial crop tree release increases upper canopy persistence and diameter growth of oak saplings[J]. Northern Journal of Applied Forestry, 2013, 30(4): 156−163. doi: 10.5849/njaf.13-017
    [36] Leak W B. Smith M L. Long-term species and structural changes after cleaning young even-aged northern hardwoods in New Hampshire, USA[J]. Forest Ecology and Management, 1997, 95(1): 11−20. doi: 10.1016/S0378-1127(97)00011-X
    [37] Lamson N I. Precommercial thinning increases diameter growth of Appalachian hardwood stump sprouts[J]. Southern Journal of Applied Forestry, 1983, 7(2): 93−97.
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  1166
  • HTML全文浏览量:  688
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-02-26
  • 网络出版日期:  2019-04-30
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回