高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桦木单板/玻璃纤维复合材料的制备工艺优化

林斌 翟学勇 李瑞 孙立鹏 张元婷 尹玉雪 刘镇波

林斌, 翟学勇, 李瑞, 孙立鹏, 张元婷, 尹玉雪, 刘镇波. 桦木单板/玻璃纤维复合材料的制备工艺优化[J]. 北京林业大学学报, 2019, 41(4): 127-135. doi: 10.13332/j.1000-1522.20190049
引用本文: 林斌, 翟学勇, 李瑞, 孙立鹏, 张元婷, 尹玉雪, 刘镇波. 桦木单板/玻璃纤维复合材料的制备工艺优化[J]. 北京林业大学学报, 2019, 41(4): 127-135. doi: 10.13332/j.1000-1522.20190049
Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. doi: 10.13332/j.1000-1522.20190049
Citation: Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. doi: 10.13332/j.1000-1522.20190049

桦木单板/玻璃纤维复合材料的制备工艺优化

doi: 10.13332/j.1000-1522.20190049
基金项目: 中央高校基本科研业务费专项资金项目(2572016EBJ1),国家自然科学基金(31670559)
详细信息
    作者简介:

    林斌。主要研究方向:木材声学。Email:LBQ877652256@163.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学材料科学与工程学院

    责任作者:

    刘镇波,教授。主要研究方向:木材声学、木材功能性改良。Email:liu.zhenbo@foxmail.com 地址:同上

  • 中图分类号: S781.38; TB332

Optimization of preparation process of birch veneer/glass fiber composite

  • 摘要: 目的为了探究工艺因子对复合材料声学振动性能的影响,优化复合材料制备工艺条件参数以提高复合材料声学振动性能。方法按照单板层积材结构设计制备桦木单板/玻璃纤维复合材料。利用双通道快速傅里叶变换频谱分析仪(FFT)对复合材料的声学振动性能进行检测,以比动弹性模量(E/ρ)、弹性模量和剪切模量的比值(E/G)、声辐射品质常数(R)、损耗角正切(tanσ)、声速(v)归一后的综合得分值为响应指标,分析热压时间、热压压力、施胶量对复合材料的声学振动性能的影响。在单因素实验的基础上,利用响应面分析法建立工艺因子和响应值的二次回归模型,优化复合材料的制备工艺条件。结果单因素实验范围内,在热压时间10 ~ 25 min、热压压力0.6 ~ 1.3 MPa、施胶量140 ~ 180 g/m2时,复合材料声学振动性能显著提升,说明实验的工艺因子对复合材料声学振动性能影响显著。利用Design-Expert软件对复合材料的声学振动性能测试结果进行二次多项式回归拟合,剔除对模型影响不显著的因素,建立了复合材料综合得分值的响应面模型。通过响应面模型优化后的最佳工艺条件为:热压时间24.5 min、热压压力1.3 MPa、施胶量180 g/m2,此条件下复合材料的E/ρ为25.27 GPa,E/G为15.99,R为6.48 m3/(Pa·s3),tanσ为0.001 25,v为5 026.55 m/s,综合得分值可达到98.19。结论综合得分值的模型P < 0.000 1,响应值的实测值和预测值之间的偏差均小于5%,说明响应值与回归模型均存在高度显著关系,也说明回归模型准确、可靠。

     

  • 图  1  复合材料制备示意图

    Figure  1.  Schematic diagram of composite material preparation

    图  2  热压时间对复合材料声学振动的影响

    E/ρ代表比动弹性模量,E/G代表弹性模量和剪切模量的比值,R代表声辐射品质常数,v代表声速,tanσ代表损耗角正切。下同。E/ρ is the specific dynamic elastic modulus, E/G is the ratio of elastic modulus and shear modulus, R is acoustic radiation damping, v is sound velocity, and tanσ is loss tangent. The same below.

    Figure  2.  Effects of hot-press time on acoustic vibration performance of composites

    图  3  热压压力对复合材料声学振动性能的影响

    Figure  3.  Effects of hot-press pressure on acoustic vibration performance of composites

    图  4  施胶量对复合材料声学振动性能的影响

    Figure  4.  Effects of resin sizing amount on the acoustic vibration performance of composites

    图  5  各因素交互作用对综合得分值影响的响应面图

    Figure  5.  Response surface diagrams of the interaction of various factors on the comprehensive score value

    表  1  响应面实验设计因素和水平表

    Table  1.   Response surface experimental design factors and level tables

    水平 Level 因素 Factor
    热压时间
    Hot-press time (A)/min
    热压压力
    Hot-press pressure (B)/MPa
    施胶量
    Resin sizing amount
    (C)/(g∙cm-2)
    − 1 15 1.0 160
    0 25 1.3 180
    1 35 1.6 200
    下载: 导出CSV

    表  2  响应面设计和实验结果

    Table  2.   Response surface design and experimental results

    序号 No. 因素 Factor 密度
    Dentisty/(g·cm− 3)
    E/ρ /GPa E/G R/(m3·Pa− 1·s− 3) tanσ V/(m·s− 1) 综合得分值
    Comprehensive
    score value (Y)
    A B C
    1 0 0 0 0.801 25.36 16.82 6.29 0.001 3 5 035.87 98.85
    2 0 0 0 0.812 25.52 16.59 6.22 0.001 3 5 051.73 98.71
    3 0 0 0 0.813 25.45 16.41 6.21 0.001 3 5 044.80 98.27
    4 − 1 0 − 1 0.796 20.36 13.28 5.67 0.002 2 4 512.21 76.77
    5 1 1 0 0.867 18.65 11.03 4.98 0.002 5 4 318.56 65.68
    6 1 − 1 0 0.832 18.72 11.97 5.20 0.002 5 4 326.66 68.15
    7 − 1 0 1 0.893 19.89 11.96 4.99 0.002 6 4 459.82 69.98
    8 1 0 1 0.952 20.75 12.79 4.78 0.002 6 4 555.22 72.14
    9 − 1 − 1 0 0.816 19.86 13.12 5.46 0.002 2 4 456.46 74.47
    10 − 1 1 0 0.867 19.25 11.01 5.06 0.002 4 4 387.48 69.89
    11 0 0 0 0.801 25.63 16.38 6.32 0.001 3 5 062.61 97.14
    12 0 0 0 0.798 25.67 16.68 6.35 0.001 3 5 066.56 99.82
    13 0 − 1 1 0.815 19.78 13.03 5.46 0.002 4 4 447.47 73.59
    14 0 1 − 1 0.821 17.73 10.56 5.13 0.002 4 4 210.70 63.72
    15 0 1 1 0.991 20.65 12.01 4.59 0.002 7 4 544.23 69.61
    16 1 0 − 1 0.896 17.59 10.61 4.68 0.002 5 4 194.04 61.13
    17 0 − 1 − 1 0.806 19.87 12.63 5.53 0.002 4 4 457.58 73.74
    下载: 导出CSV

    表  3  响应面模型方差分析

    Table  3.   ANOVA of response surface model

    来源 Source 平方和 Sum of square df 均方 Mean square F P 显著性 Significance R2
    模型 Model 3 128.02 9 347.56 216.73 < 0.000 1 ** 0.996 4
    A 72.12 1 72.12 44.97 0.000 3 **
    B 55.42 1 55.42 34.56 0.000 6 **
    C 12.42 1 12.42 7.75 0.027 2 *
    AB 1.11 1 1.11 0.69 0.433 0
    AC 79.35 1 79.35 49.48 0.000 2 **
    BC 9.11 1 9.11 5.68 0.048 6 *
    A2 895.69 1 895.69 558.52 < 0.000 1 **
    B2 876.18 1 876.18 546.36 < 0.000 1 **
    C2 821.64 1 821.64 512.35 < 0.000 1 **
    残差 Residual 11.23 7 1.60
    失拟项 Lack of fit 7.43 3 2.48 2.61 0.188 2
    纯误差 Pure error 3.79 4 0.95
    总和 Total sum 3 139.24 16
    注:* 表示差异显著(P < 0.05);** 表示差异极显著(P < 0.01)。Notes: * indicates significant difference at P < 0.05 level. ** indicates extremely significant difference at P < 0.01 level.
    下载: 导出CSV

    表  4  优化工艺的验证实验结果

    Table  4.   Verification test results of the optimized process

    指标
    Index
    实测值 Measured value平均值
    Average value
    预测值
    Predicted value
    偏差率
    Deviation rate/%
    相对标准偏差
    Relative standard
    deviation/%
    1 2 3
    E/ρ /GPa 26.12 25.58 24.12 25.27 25.54 1.06 3.34
    E/G 15.63 15.89 16.46 15.99 16.59 3.73 2.17
    R/(m3·Pa− 1·s− 3) 6.54 6.13 6.78 6.48 6.29 − 2.98 4.14
    tanσ 0.001 21 0.001 28 0.001 25 0.001 25 0.001 28 2.67 2.30
    v/(m·s− 1) 5 110.77 5 057.67 4 911.21 5 026.55 5 054.26 0.55 1.68
    综合得分值
    Comprehensive score value
    98.01 97.54 99.02 98.19 98.71 0.53 0.63
    下载: 导出CSV
  • [1] Heidelberg S B. Wood species for musical instruments[M]. Berlin: Springer, 2006.
    [2] 刘建霞, 王喜明, 郝中保, 等. 干燥条件对木材干缩力的影响[J]. 东北林业大学学报, 2015, 43(8):75−77. doi: 10.3969/j.issn.1000-5382.2015.08.017

    Liu J X, Wang X M, Hao Z B, et al. Effect of drying conditions on wood shrinkage stress[J]. Journal of Northeast Forestry University, 2015, 43(8): 75−77. doi: 10.3969/j.issn.1000-5382.2015.08.017
    [3] 刘镇波, 刘一星. 乐器共鸣板用木材声学振动性能改良研究现状及趋势[J]. 世界林业研究, 2012, 25(1):44−48.

    Liu Z B, Liu Y X. Research status and prospect of acoustic vibration properties modification of wood used for soundboard[J]. World Forestry Research, 2012, 25(1): 44−48.
    [4] Damodaran A, Lessaed L, Babu A S. An overview of fibre-reinforced composites for musical instrument soundboards[J]. Acoustics Australia, 2015, 43(1): 117−122. doi: 10.1007/s40857-015-0008-5
    [5] 秦丽丽, 苗媛媛, 刘镇波. 泡桐木材主要物理特征及化学组分对其声学振动性能的影响[J]. 森林工程, 2017, 33(4):34−39. doi: 10.3969/j.issn.1006-8023.2017.04.007

    Qin L L, Miao Y Y, Liu Z B. Influence of the main physical characteristics and components content of P. elongata on acoustic vibration performance[J]. Forest Engineering, 2017, 33(4): 34−39. doi: 10.3969/j.issn.1006-8023.2017.04.007
    [6] Endo K, Obataya E, Zeniya N, et al. Effects of heating humidity on the physical properties of hydrothermally treated spruce wood[J]. Wood Science & Technology, 2016, 50(6): 1161−1179.
    [7] Hossen M F, Hamdan S, Rahman M R. Investigation of the acoustic properties of chemically impregnated kayu malam wood used for musical instrument[J]. Advances in Materials Science and Engineering, 2018(4): 1−6.
    [8] 郭臻宇, 连弘扬, 李丽沙, 等. 炭化处理对杨木声学振动特性的影响[J]. 森林工程, 2016, 32(4):41−45. doi: 10.3969/j.issn.1001-005X.2016.04.009

    Guo Z Y, Lian H Y, Li L S, et al. The influence of carbonization on the acoustic vibration performance of poplars[J]. Forest Engineering, 2016, 32(4): 41−45. doi: 10.3969/j.issn.1001-005X.2016.04.009
    [9] 吕晓东, 苗媛媛, 林斌, 等. 层数与碳纤维方向对木质−碳纤维复合材料声学振动性能的影响[J]. 林业工程学报, 2018, 3(4):96−101.

    Lü X D, Miao Y Y, Lin B, et al. Study on acoustic vibration performance of wood-carbon fiber composite materials with different laying patterns[J]. Journal of Forestry Engineering, 2018, 3(4): 96−101.
    [10] 李焕强. 一种碳纤维吉他及碳纤维吉他的制作方法: CN 106328102 A[P]. 2017−12−13.

    Li H Q. A carbon fiber guitar and carbon fiber guitar manufacturing method: CN 106328102 A[P]. 2017−12−13.
    [11] 李哲锋, 多化琼, 青龙. 电声乐器中木材声学振动性能对音响特性的影响[J]. 林业工程学报, 2018, 3(3):18−23.

    Li Z F, Duo H Q, Qing L. Effects of acoustic vibration properties of wood on acoustic characteristic in electronic musical instrument[J]. Journal of Forestry Engineering, 2018, 3(3): 18−23.
    [12] Damodaran A, Mansour H, Lessard L, et al. Application of composite materials to the chenda, an Indian percussion instrument[J]. Applied Acoustics, 2015, 88: 1−5. doi: 10.1016/j.apacoust.2014.07.013
    [13] Jalili M M, Mousavi S Y, Piryeshfar A S. Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites[J]. Polymer Composites, 2014, 35(11): 2103−2111. doi: 10.1002/pc.v35.11
    [14] 何为, 唐斌, 薛卫东. 优化试验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012.

    He W, Tang B, Xue W D. Optimized test design method and data analysis[M]. Beijing: Chemical Industry Press, 2012.
    [15] Khuri A I. Response surface methodology[M]//Lovric M. International encyclopedia of statistical science. Berlin: Springer, 2009: 1171−1179.
    [16] 徐正东, 赵俊石, 张双保. 玻璃纤维增强结构用单板层积材热压工艺研究[J]. 林业机械与木工设备, 2012, 40(5):37−40. doi: 10.3969/j.issn.2095-2953.2012.05.011

    Xu Z D, Zhao J S, Zhang S B. Study of the hot pressing technology of LVL for fiberglass reinforced structures[J]. Forestry Machinery & Woodworking Equipment, 2012, 40(5): 37−40. doi: 10.3969/j.issn.2095-2953.2012.05.011
    [17] 孙妍, 尤立行, 郁辰, 等. 木粉/废旧橡胶粉/HDPE三元复合材料热压法制备工艺[J]. 林业工程学报, 2017, 2(3):38−43.

    Sun Y, You L X, Yu C, et al. Manufacturing of wood/rubber/HDPE composites by hot pressing[J]. Journal of Forestry Engineering, 2017, 2(3): 38−43.
    [18] 李坚, 郑睿贤, 金春德. 无胶人造板研究与实践[M]. 北京: 科学出版社, 2010.

    Li J, Zheng R X, Jin C D. Research and practice of glueless wood-based panels[M]. Beijing: Science Press, 2010.
    [19] 董宏敢, 王传贵, 刘盛全, 等. 榆木层积材制备工艺分析与优化[J]. 西北林学院学报, 2017, 32(6):245−249.

    Dong H G, Wang C G, Liu S Q, et al. Preparation and optimization of laminated elm lumber[J]. Journal of Northwest Forestry University, 2017, 32(6): 245−249.
    [20] 左迎峰, 吴义强, 李新功, 等. 地板用双秸秆板芯层复合结构材工艺优化[J]. 中南林业科技大学学报, 2016, 36(3):101−105.

    Zuo Y F, Wu Y Q, Li X G, et al. Process optimization of double straw board core layer composite structure use for floor[J]. Journal of Central South University of Forestry & Technology, 2016, 36(3): 101−105.
    [21] 刘镇波, 沈隽, 刘一星, 等. 实际尺寸乐器音板用云杉属木材的声学振动特性[J]. 林业科学, 2007, 43(8):100−105. doi: 10.3321/j.issn:1001-7488.2007.08.017

    Liu Z B, Shen J, Liu Y X, et al. Acoustic vibration property of full-size spruce wood soundboard of musical instruments[J]. Scientia Silvae Sinicae, 2007, 43(8): 100−105. doi: 10.3321/j.issn:1001-7488.2007.08.017
    [22] Ghani Z A, Yusoff M S, Zaman N Q, et al. Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate[J]. Waste Management, 2017, 62: 177−187. doi: 10.1016/j.wasman.2017.02.026
    [23] 周丽萍, 王化, 何丹娆, 等. 超声波辅助逆流提取蓓蕾蓝靛果花色苷工艺[J]. 北京林业大学学报, 2017, 39(9):119−125.

    Zhou L P, Wang H, He D Y, et al. Extraction technology of anthocyanin from Lonicera caerulea ‘Beilei’ fruit by ultrasonic-assisted countercurrent extraction[J]. Journal of Beijing Forestry University, 2017, 39(9): 119−125.
    [24] Muralidhar R V, Chirumamila R R, Marchant R, et al. A response surface approach for the comparison of lipase production by Canida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal, 2001, 9(1): 17−23. doi: 10.1016/S1369-703X(01)00117-6
    [25] 胡建鹏, 郭明辉. 木纤维−木质素磺酸铵−聚乳酸复合材料的工艺优化与可靠性分析[J]. 北京林业大学学报, 2015, 37(1):115−121.

    Hu J P, Guo M H. Optimal process and reliability analysis of fiber-ammonium lignosulphonate-PLA wood composites[J]. Journal of Beijing Forestry University, 2015, 37(1): 115−121.
    [26] Li Q, Fu C. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein[J]. Food Chemistry, 2004, 92(4): 701−706.
    [27] 陈善敏, 张静, 蒋和体. 响应面法优化甘薯废水混凝沉淀工艺[J]. 食品与发酵工业, 2019, 45(6):165−171.

    Chen S M, Zhang J, Jiang H T. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of sweet potato wastewater[J]. Food and Fermentation Industries, 2019, 45(6): 165−171.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1219
  • HTML全文浏览量:  340
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 修回日期:  2019-02-25
  • 网络出版日期:  2019-04-02
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回