高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单板层积材的三维光学检测及其托盘的有限元仿真分析

储德淼 母军 康柳 赖宗元

储德淼, 母军, 康柳, 赖宗元. 单板层积材的三维光学检测及其托盘的有限元仿真分析[J]. 北京林业大学学报, 2019, 41(9): 147-155. doi: 10.13332/j.1000-1522.20190056
引用本文: 储德淼, 母军, 康柳, 赖宗元. 单板层积材的三维光学检测及其托盘的有限元仿真分析[J]. 北京林业大学学报, 2019, 41(9): 147-155. doi: 10.13332/j.1000-1522.20190056
Chu Demiao, Mu Jun, Kang Liu, Lai Zongyuan. Three-dimensional optical deformation measurement of laminated veneer lumber and the finite element simulation analysis of the pallets[J]. Journal of Beijing Forestry University, 2019, 41(9): 147-155. doi: 10.13332/j.1000-1522.20190056
Citation: Chu Demiao, Mu Jun, Kang Liu, Lai Zongyuan. Three-dimensional optical deformation measurement of laminated veneer lumber and the finite element simulation analysis of the pallets[J]. Journal of Beijing Forestry University, 2019, 41(9): 147-155. doi: 10.13332/j.1000-1522.20190056

单板层积材的三维光学检测及其托盘的有限元仿真分析

doi: 10.13332/j.1000-1522.20190056
基金项目: 北京林业大学中央高校基本科研业务费专项资金项目(2017ZY28),国家林业公益性行业科研专项“低质人工林木材家具制造关键技术研究与示范”(201404502)
详细信息
    作者简介:

    储德淼,博士生。主要研究方向:木材热加工。Email:13chudemiao@sina.cn 地址:100083 北京市清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    母军,博士,教授。主要研究方向:木质生物质材料利用。Email:mujun222@sina.com 地址:同上

  • 中图分类号: TB34

Three-dimensional optical deformation measurement of laminated veneer lumber and the finite element simulation analysis of the pallets

  • 摘要: 目的单板层积材应用广泛,但其性能测试多采用破坏性实验方法,存在检测效率低且会造成资源浪费的不足。本研究对一种新型层积板材及其制得的托盘进行无损检测,旨在为木质层积材及制品性能的高效、精确检测提供理论参考和技术支撑。方法将三维光学检测法与有限元仿真分析相结合,首先采用数字散斑法测量并计算获得新型层积板材的弹性常数(包括弹性模量,泊松比,剪切模量);然后导入有限元仿真分析中,分别选取layer单元和solid 185单元对板材模型进行网格划分和静力模拟,优化其仿真模拟参数;参照国际标准ISO 8611—2011 对新型层积板材托盘性能进行检测,利用Solidworks建立及装配托盘模型,在ANSYS workbench软件中对托盘整体结构进行整体抗压、底板抗压、面板抗压和角跌落等仿真模拟,并与实验测试结果进行对比分析。结果三维光学法获得的弹性参数可以应用于新型层积板材及其制品的有限元仿真分析中,ANSYS有限元仿真结果可靠;将新型层积材作为整体结构,选用solid 185单元的仿真模拟结果与实际测试情况最为接近;新型层积材托盘静力仿真分析中托盘的最大变形与实验结果相近,4种工况仿真分析结果与实测结果相同。结论三维光学检测法结合有限元仿真分析可以对木质层积材及其制品的受力、变形和破坏情况进行无损检测,可达到高效和节能的目的。

     

  • 图  1  NLVL的结构示意图、NLVL模型坐标系和托盘有限元模型

    Figure  1.  Schematic diagram of the NLVL, coordinate of model and finite element model of the pallet

    图  2  三维光学变形和应变测量分析系统示意图以及拉伸装置

    Figure  2.  Three-dimensional optical deformation and strain measurement analysis system and stretching device

    图  3  试件时间–变形曲线和变形云图

    Figure  3.  Time-deformation curve and deformation contour of samples

    图  4  同一时刻y-zy-xz-x平面上横向与纵向变形的线性拟合结果

    Figure  4.  Lateral and longitudinal strain on the y-z plane, y-x plane, and z-x at the same time

    图  5  NLVL solid185单元整体划分仿真模拟变形和应力云图

    Figure  5.  Deformation contour and stress contour of the NLVL at simulation condition of solid 185

    图  6  托盘整体抗压、底板抗压有限元模拟以及变形和应力云图

    Figure  6.  Finite element simulation of overall compression, bottom deckboard compression, and deformation and stress contour

    图  7  托盘面板抗压、角跌落有限元模拟以及变形和应力云图

    Figure  7.  Finite element simulation of top deckborad compression, corner drop test, and deformation and stress contour

    表  1  新型单板层积材所制木质托盘的参数

    Table  1.   Parameters of the NLVL-made pallet

    名称 Name 数量 Number 尺寸 Dimension
    面板 Top deckboard 7 1 200 mm × 90 mm × 13 mm
    纵板 Stringer board 3 1 000 mm × 90 mm × 13 mm
    底板 Bottom deckboard 3 1 200 mm × 90 mm × 13 mm
    垫块 Block 9 90 mm × 90 mm × 87 mm
    下载: 导出CSV

    表  2  新型层积材NLVL和杨木材料的弹性常数

    Table  2.   Elastic constants of the NLVL and poplar wood

    试样 Sample  泊松比 Poisson’s ratio 弹性模量 Elastic modulus/Pa 剪切模量 Shear modulus/Pa
    y-x z-x y-z x y z y-x z-x y-z
    NLVL 0.305 0.331 0.315 1.23e10 7.97e9 5.44e9 2.95e9 3.41e9 4.68e9
    杨木 Poplar 0.660 0.660 0.400 5.35e9 1.04e9 1.21e9 4.66e8 6.2e8 9.4e7
    注:NLVL的z-x平面的泊松比数据引自文献[18]。杨木的弹性常数数据引自文献[19]。Notes: Poisson’s ratio of the NLVL on z-x plane was cited from reference [18]. Elastic modulus of the poplar was cited from reference [19].
    下载: 导出CSV

    表  3  NLVL板材在最大破坏应力(1 056 N)时的变形量

    Table  3.   Deformations of NLVL at maximum damage stress of 1 056 N

    测试条件 Test condition   变形量 Deformation/mm
    静力测试 Static experiment 8.90
    Solid 185单元模型 Solid 185 unit 7.69
    Layer 46单元模型 Layer 46 unit 32.16
    下载: 导出CSV

    表  4  NLNL托盘的整体抗压、底板抗压、面板抗压实验测试结果

    Table  4.   Experimental results of compression test of NLVL-made pallet

    抗压测试
    Compression testing
    载荷
    Load
    条件
    Condition
    变形量 Deformation/mm
    阶段1
    Stage 1
    阶段1
    Stage 1
    力卸载30分钟后
    30 min after unload
    整体 Overall 3P ISO标准 ISO standard < 4 < 4 < 3
    实验结果 Experimental result 3.27 3.40 1.10
    底板 Bottom deckboard 2P ISO标准 ISO standard < 30 < 30 < 6
    实验结果 Experimental result 27.42 26.66 1.05
    面板 Top deckboard 2P ISO标准 ISO standard < 30 < 30 < 6
    实验结果 Experimental result 29.65 28.30 1.40
    注:ISO标准为ISO 8611—2011标准; P为托盘的设计载荷,1 100 kg。Notes: ISO means ISO 8611-2011 standard; P means the design load of pallet, 1 100 kg.
    下载: 导出CSV
  • [1] 于文吉, 张亚慧. 结构用单板类人造板的应用及发展[J]. 木材工业, 2016, 30(2):48−50. doi: 10.3969/j.issn.1001-8654.2016.02.013

    Yu W J, Zhang Y H. Application and development of veneer-based structural panels[J]. China Wood Industry, 2016, 30(2): 48−50. doi: 10.3969/j.issn.1001-8654.2016.02.013
    [2] 潘景龙, 祝恩淳. 木结构设计原理[M]. 北京: 中国建筑工业出版社, 2009.

    Pan J L, Zhu E C. Design priciples of timber structures[M]. Beijing: China Architecture and Building Press, 2009.
    [3] 陈剑平, 张建辉. 国内外单板层积材应用现状[J]. 林业机械与木工设备, 2012, 40(8):12−13. doi: 10.3969/j.issn.2095-2953.2012.08.005

    Chen J P, Zhag J H. Application situation of LVL at home and abroad[J]. Forestry Machinery & Woodworking Equipment, 2012, 40(8): 12−13. doi: 10.3969/j.issn.2095-2953.2012.08.005
    [4] 张训亚, 殷亚方, 姜笑梅. 两种无损检测法评估人工林杉木抗弯性质[J]. 建筑材料学报, 2010, 13(6):836−840. doi: 10.3969/j.issn.1007-9629.2010.06.027

    Zhanng X Y, Yin Y F, Jiang X M. Evalution of bending properties of Chinese fir plantation by two nondestructive testing methods[J]. Journal of Building Materials, 2010, 13(6): 836−840. doi: 10.3969/j.issn.1007-9629.2010.06.027
    [5] 张顺庆, 高晨家, 张龙. 数字图像相关技术在应力应变测量中的发展与最新应用[J]. 影像科学与光化学, 2017, 35(2):193−198. doi: 10.7517/j.issn.1674-0475.2017.02.193

    Zhang S Q, Gao C J, Zhang L. The development and latest applications of digital image correlation in stress and strain measurement[J]. Imaging Science and Photochemistry, 2017, 35(2): 193−198. doi: 10.7517/j.issn.1674-0475.2017.02.193
    [6] Chen H, Chen G, Ye D, et al. 3D deformation measurement by digital speckle correlation method and stereo vision[C]// International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. International Society for Optics and Photonics, Chengdu: Proc. SPIE 6723, 2007. https://doi.org/10.1117/12.783189
    [7] 石立万, 王端宜, 吴文亮, 等. 基于数字图像处理的沥青混合料骨架研究[J]. 建筑材料学报, 2016, 19(4):767−772. doi: 10.3969/j.issn.1007-9629.2016.04.028

    Shi L W, Wang D Y, Wu W L, et al. Study of asphalt mixture skeleton based on digital image processing[J]. Journal of Building Materials, 2016, 19(4): 767−772. doi: 10.3969/j.issn.1007-9629.2016.04.028
    [8] 孙艳玲, 赵东, 高继河. 数字散斑相关方法在木材断裂力学上的应用分析[J]. 北京林业大学学报, 2009, 31(增刊1):206−209.

    Sun Y L, Zhao D, Gao J H. Application of digital speckle correlation method in wood fracture mechanics[J]. Beijing Forestry University, 2009, 31(Suppl.1): 206−209.
    [9] 刘嘉新, 周伟, 李超. 基于有限元的原木横切面应力波振动特性的研究[J]. 林业工程学报, 2018, 3(6):19−24.

    Liu J X, Zhou W, Li C. Stress wave vibration characterization of cross section of log using finite element method[J]. Journal of Forestry Engineering, 2018, 3(6): 19−24.
    [10] 李雪梅. 基于有限元法木材力学性能模拟及优化设计研究[D]. 呼和浩特: 内蒙古农业大学, 2009.

    Li X M. Research on mechanical property simulation of timber with finite element method and optimization of timber[D]. Huhhot: Inner Mongolia Agriculture University, 2009.
    [11] Meng M, Le H R, Rizvi M J, et al. 3D FEA modelling of laminated composites in bending and their failure mechanisms[J]. Composite Structures, 2015, 119: 693−708. doi: 10.1016/j.compstruct.2014.09.048
    [12] Wang A S D, Crossman F W. Some new results on edge effect in symmetric composite laminates[J]. Journal of Composite Materials, 1977, 11(1): 92−106. doi: 10.1177/002199837701100110
    [13] Tang S, Levy A. A boundary layer theory. (part ii): extension of laminated finite strip[J]. Journal of Composite Materials, 1975, 9(1): 42−52. doi: 10.1177/002199837500900105
    [14] Masood S H, Song W Q. Development of new metal/polymer materials for rapid tooling using Fused deposition modelling[J]. Materials & Design, 2004, 25(7): 587−594.
    [15] Masood S H, Rizvi S H. An investigation of pallet design using alternative materials for cold room applications[J]. International Journal of Advanced Manufacturing Technology, 2006, 29(1−2): 1−8. doi: 10.1007/s00170-004-2485-9
    [16] 李霞镇, 徐明, 蔡芸, 等. 电测法测试结构用重组竹弹性常数的研究[J]. 安徽农业大学学报, 2015, 42(5):756−760.

    Li X Z, Xu M, Cai Y, et al. Determination of elastic constants of recombinant bamboo for structural material using an electrical measurement method[J]. Journal of Anhui Agricultural University, 2015, 42(5): 756−760.
    [17] 康柳, 储德淼, 赵美霞, 等. 托盘用人造板弹性模量与强度的相关关系[J]. 包装工程, 2016, 37(21):110−114.

    Kang L, Chu D M, Zhao M X, et al. Relationship between MOE and MOR of wood composite panel used in trays[J]. Packaging Engineering, 2016, 37(21): 110−114.
    [18] 黄先宝, 卫佩行, 王泉中. 高频热压杨木单板层积材纵向弹性模量和泊松比的测定与分析[J]. 包装工程, 2013, 34(5):1−4.

    Huang X B, Wei P X, Wang Q Z. Measurement and analysis of longitudinal elastic modulus and Poisson’s ratio of high frequency hot pressing poplar laminated veneer lumber[J]. Packaging Engineering, 2013, 34(5): 1−4.
    [19] 荣向吴. 木材的弹性与粘弹性[D]. 合肥: 安徽农业大学, 2008.

    Rong X W. Wood elasticity and viscoelastic[D]. Hefei: Anhui Agricultural University, 2008.
    [20] 钟永, 邢新婷, 任海青, 等. 结构用单板层积材的斜纹承压力学性能[J]. 建筑材料学报, 2014, 17(1):115−119. doi: 10.3969/j.issn.1007-9629.2014.01.021

    Zhong Y, Xing X T, Ren H Q, et al. Properties of structural laminated veneer lumber in compression at an angle to grain[J]. Journal of Building Materials, 2014, 17(1): 115−119. doi: 10.3969/j.issn.1007-9629.2014.01.021
    [21] 张宏健, 陈琦, 文天国, 等. 机械应力式人造板质量在线无损检测技术的研发和应用[J]. 林产工业, 2007(6):33−35. doi: 10.3969/j.issn.1001-5299.2007.06.009

    Zhang H J, Chen Q, Wen T G, et al. Development and application of the mechanical stress type on-line non-destructive testing system for wood-based panel[J]. China Forest Products Industry, 2007(6): 33−35. doi: 10.3969/j.issn.1001-5299.2007.06.009
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2789
  • HTML全文浏览量:  1348
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 修回日期:  2019-05-16
  • 网络出版日期:  2019-07-01
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回