高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

将乐林场马尾松树轮宽度对气候变化的响应

王童 孙玉军 乔晶晶

王童, 孙玉军, 乔晶晶. 将乐林场马尾松树轮宽度对气候变化的响应[J]. 北京林业大学学报, 2019, 41(9): 30-39. doi: 10.13332/j.1000-1522.20190067
引用本文: 王童, 孙玉军, 乔晶晶. 将乐林场马尾松树轮宽度对气候变化的响应[J]. 北京林业大学学报, 2019, 41(9): 30-39. doi: 10.13332/j.1000-1522.20190067
Wang Tong, Sun Yujun, Qiao Jingjing. Response of Pinus massoniana tree-ring width in the Jiangle Area of Fujian Province to climate change[J]. Journal of Beijing Forestry University, 2019, 41(9): 30-39. doi: 10.13332/j.1000-1522.20190067
Citation: Wang Tong, Sun Yujun, Qiao Jingjing. Response of Pinus massoniana tree-ring width in the Jiangle Area of Fujian Province to climate change[J]. Journal of Beijing Forestry University, 2019, 41(9): 30-39. doi: 10.13332/j.1000-1522.20190067

将乐林场马尾松树轮宽度对气候变化的响应

doi: 10.13332/j.1000-1522.20190067
基金项目: 国家自然科学基金项目(31870620),国家林业局“948”项目“基于FORPLAN的森林多功能经营技术引进”(2015-4-31)
详细信息
    作者简介:

    王童。主要研究方向:森林资源监测与模型。Email:1186585625@qq.com  地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    孙玉军,教授,博士生导师。主要研究方向:森林资源监测与模型。Email:sunyj@bjfu.edu.cn  地址:同上

Response of Pinus massoniana tree-ring width in the Jiangle Area of Fujian Province to climate change

  • 摘要: 目的研究福建将乐地区马尾松年轮宽度对气候变化的响应,为本地区的树木年轮生态学研究提供参考,为当地马尾松的生产、农林业的发展提供数据支撑。方法以福建将乐林场采集的80根马尾松树芯为对象,运用ARSTAN程序建立差值年表和标准年表,通过相关函数、响应函数、单年分析等方法研究马尾松径向生长对气候因子变化的响应,并采用响应面函数建立树木径向生长−气候因子关系模型。结果马尾松年轮宽度序列对气候变化相当敏感,上一年5月到当年12月的月降水量和月平均气温的响应函数模型可解释年轮宽度变化的57.43%;温度对马尾松径向生长的影响存在一定“滞后性”,上一年6月平均气温促进马尾松径向生长;月降水量和月极端最低气温是马尾松抽梢期生长的气候限制因素,当年抽梢期的降水和极端最低气温对马尾松年轮宽度有显著的正效应,其中当年3月份的降水和极端最低气温对马尾松年轮宽度的作用尤为显著;月极端最高气温是马尾松伏旱期径向生长的气候限制因素,其中8月份的气温对马尾松年轮宽度表现出显著的负效应。结论该研究地区马尾松生长具有明显的季节性,马尾松年轮宽度序列对气候变化相当敏感。建立的马尾松径向生长−气候因子关系模型R2为51.2%,进一步验证了当年的逐月气候因子对马尾松径向生长的影响,该模型可较好地模拟马尾松树木径向生长对气候的响应。

     

  • 图  1  将乐县1984—2017年间月平均温度和月总降水量

    Figure  1.  Monthly variations of mean air temperature and total precipitation of Jiangle meteorological station (1984−2017)

    图  2  马尾松的差值年表和标准年表

    Figure  2.  Residual chronology and standard chronology of Pinus massoniana

    图  3  单年分析结果

    Figure  3.  Single year analysis results

    图  4  马尾松年轮宽度指数预测值(虚线)与实际值(实线)相关趋势

    Figure  4.  Trend of correlation between predicted value (dashed line) and observed value (solid line) of Pinus massoniana ring width index

    表  1  马尾松年表特征及公共区间分析

    Table  1.   Statistics of the STD and RES chronology of Pinus massoniana

    年表类型Chronology type平均敏感度Mean sensitivity标准差Stand deviation一阶自相关系数
    First order
    auto-correlation
    树间平均
    相关系数
    Mean correlation
    信噪比
    Signal to
    noise ratio
    样本总体代表性
    Express population
    signal (EPS)/%
    第一特征根变异解释量
    First eigenvalue
    variation/%
    STD0.1550.138 70.031 90.4641.99998.5836.17
    RES0.1610.148 40.165 00.5082.11298.8035.56
    注:STD和RES分别表示马尾松标准年表和差值年表。Notes: STD and RES represent standard chronology and residual chronology of Pinus massoniana.
    下载: 导出CSV

    表  2  主成分分析结果

    Table  2.   Principal component analysis results

    主成分
    Principal component
    特征根Eigenvalue贡献率Proportion/%累计贡献率Cumulative/%
    1 1.67 14.02 14.02
    2 1.51 11.37 25.39
    3 1.45 10.51 35.90
    4 1.34 9.04 44.94
    5 1.22 7.44 52.38
    6 1.15 6.62 59.00
    7 1.10 6.01 65.01
    8 1.05 5.51 70.52
    9 1.04 5.36 75.89
    10 1.00 5.00 80.88
    下载: 导出CSV

    表  3  多元回归分析结果

    Table  3.   Multivariate regression analysis results

    主成分
    Principal component
    标准偏回归系数
    Standard partial regression coefficient
    1 0.005
    2 0.005
    3 0.036
    4 0.019
    5 − 0.037
    6 − 0.007
    7 − 0.024
    8 0.041
    9 − 0.036
    10 0.002
    决定系数
    Decision coefficient (R2)/%
    57.43
    下载: 导出CSV

    表  4  树轮宽度指数与逐月气候因子的相关系数

    Table  4.   Correlation coefficients between residual chronology and monthly climatic factors

    月份
    Month
    月平均气温
    Monthly average
    temperature (Tm)
    月降水量
    Monthly
    precipitation (Pm)
    月极端最高气温
    Monthly maximum
    temperature (Ta)
    月极端最低气温
    Monthly minimum
    temperature (Ti)
    标准化降水蒸散指数
    Standardized precipitation
    evapotranspiration index (S)
    相关响应相关响应相关响应相关响应相关
    − 5 − 0.169 − 0.134 − 0.091 − 0.114 0.001 0.109 − 0.245 − 0.061 − 0.144
    − 6 0.375* 0.025 − 0.161 − 0.088 0.283 − 0.083 0.183 0.126 − 0.138
    − 7 0.093 0.074 −0.030 − 0.022 0.067 0.062 0.068 − 0.026 − 0.051
    − 8 0.040 0.146 0.290 0.195 − 0.175 − 0.031 − 0.084 0.010 0.279
    − 9 0.035 − 0.042 − 0.209 − 0.056 0.031 0.075 − 0.015 − 0.016 − 0.145
    − 10 0.052 − 0.198 0.005 0.063 − 0.139 − 0.012 0.052 − 0.180 0.047
    − 11 0.112 0.158 0.017 − 0.016 0.031 − 0.015 0.099 0.020 0.061
    − 12 0.086 0.185 − 0.263 0.036 −0.170 − 0.048 − 0.048 − 0.010 − 0.251
    1 0.145 − 0.100 0.027 0.067 0.100 − 0.033 0.105 0.072 0.08
    2 0.065 0.139 0.008 − 0.018 0.102 − 0.004 0.100 0.049 − 0.073
    3 0.000 − 0.056 0.516** 0.216 0.257 0.137 0.503** 0.313* 0.458**
    4 − 0.132 0.000 0.174 0.028 − 0.005 0.037 − 0.284 − 0.135 0.215
    5 − 0.003 0.067 − 0.039 − 0.074 − 0.159 − 0.141 0.230 − 0.020 − 0.056
    6 0.103 − 0.015 −0.030 − 0.095 − 0.278 − 0.129 0.251 0.065 − 0.017
    7 − 0.201 − 0.145 0.343* 0.130 − 0.191 − 0.073 − 0.099 0.004 0.322
    8 − 0.374* − 0.202 0.223 0.200 − 0.386** − 0.035 0.225 0.030 0.328
    9 0.070 0.093 0.085 − 0.014 − 0.302 − 0.171 0.052 0.047 0.084
    10 − 0.011 0.077 − 0.243 − 0.048 0.115 − 0.085 − 0.038 − 0.061 − 0.335
    11 − 0.302 − 0.250 − 0.133 − 0.054 − 0.293 − 0.155 − 0.105 0.004 − 0.163
    12 0.246 − 0.134 0.153 0.097 0.226 0.094 − 0.299 − 0.110 0.210
    注:*表示宽度指数与逐月气候因子显著相关(P < 0.05),**表示宽度指数与逐月气候因子极显著相关(P < 0.001);−5、−6、−7、−8、−9、−10、−11、−12表示上一年5、6、7、8、9、10、11、12月份。下同。Notes: * indicates residual chronology is significantly correlated with the monthly climate factors (P < 0.05), ** indicates residual chronology is extremely correlated with the monthly climate factors (P < 0.001); −5、−6、−7、−8、−9、−10、−11 and −12 represent the period from May of last year to December of last year. The same below.
    下载: 导出CSV

    表  5  树轮宽度指数与各时期气候因子的相关系数

    Table  5.   Correlation coefficients between residual chronology and climatic factors in different periods

    时期
    Period
    月份
    Month
    平均气温
    Monthly average
    temperature (Tm)
    降水量
    Monthly
    precipitation (Pm)
    极端最高气温
    Monthly maximum
    temperature (Ta)
    极端最低气温
    Monthly minimum
    temperature (Ti)
    标准化降水蒸散指数
    Standardized precipitation
    evapotranspiration index (S)
    抽梢期
    Shoot tip stage
    3—5 − 0.085 0.308* 0.131 0.327* 0.303*
    伏旱期
    Summer drought period
    7—8 0.14 0.188 − 0.389* 0.283 0.321*
    休眠期
    Dormancy period
    − 12—2 − 0.272 − 0.099 0.049 0.076 − 0.118
    注:*表示宽度年表和各时期气候因子显著相关(P < 0.05)。Notes: * indicates tree ring-width chronology is significantly correlated with climate variables of variable periods (P < 0.05).
    下载: 导出CSV

    表  6  多元回归模型验证结果

    Table  6.   Validation results of multivariate regression model

    RR2调整R2 Adjusted R2FF0.05
    0.7160.5120.4589.7431.974
    下载: 导出CSV
  • [1] 吴祥定. 树木年轮与气候变化[M]. 北京: 气象出版社, 1990.

    Wu X D. Tree rings and climate change.[M]. Beijing: Meteorological Publishing House, 1990.
    [2] 侯爱敏, 彭少麟, 周国逸. 树木年轮对气候变化的响应研究及其应用[J]. 生态科学, 1999(3):16−23. doi: 10.3969/j.issn.1008-8873.1999.03.004

    Hou A M, Peng S L, Zhou G Y. The study of the reactions of tree rings to the climate change and its applications[J]. Ecological Science, 1999(3): 16−23. doi: 10.3969/j.issn.1008-8873.1999.03.004
    [3] Walther G. Plants in a warmer world[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2003, 6(3): 169−185.
    [4] 陈彬杭, 温晓示, 张树斌, 等. 吉林北部山区长白落叶松林径向生长对气候干暖化的响应[J]. 北京林业大学学报, 2018, 40(12):18−26.

    Chen B H, Wen X S, Zhang S B, et al. Growth responses of Larix olgehsis forests to climatic drying-warming trend in the northern mountainous region of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 18−26.
    [5] 许海洋, 刘立斌, 郭银明, 等. 我国西南地区喀斯特森林树木年轮对气候变化的响应[J]. 地球与环境, 2018, 46(1):23−32.

    Xu H Y, Liu L B, Guo Y M, et al. Tree rings of dominant species in karst forests in southwestern China and their responses to climate change[J]. Earth and Environment, 2018, 46(1): 23−32.
    [6] 闫伯前, 林万众, 刘琪璟, 等. 秦岭不同年龄太白红杉径向生长对气候因子的响应[J]. 北京林业大学学报, 2017, 39(9):58−65.

    Yan B Q, Lin W Z, Liu Q J, et al. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 58−65.
    [7] 李春义. 白皮松生物量分配及径向生长与气候因子的关系[D]. 北京: 北京林业大学, 2013.

    Li C Y. Biomass partitioning of lacebark pine and it’s tree-ring in relation to climatic factors[D]. Beijing: Beijing Forestry University, 2013.
    [8] 白雪,范泽鑫. 哀牢山中山湿性常绿阔叶林水青树年轮宽度对气候变化的响应[J]. 林业科学, 2018, 54(3):161−167.

    Bai X, Fan Z X. Response of tree ring width to climate change of Tetracentron sinense in humid evergreen broad-leaved forest in the middle Ailao Mountains[J]. Scientia Silvae Sinicae, 2018, 54(3): 161−167.
    [9] 陈列. 长白山阔叶红松林主要树种种群结构及其林木径向生长对气候响应[D]. 北京: 北京林业大学, 2014.

    Chen L. Population structureof main tree species and the response of tree radial growth to climate in broadleaved-Korean pineforests in Changbai Mountain[D]. Beijing:Beijing Forestry University, 2014.
    [10] 苟晓霞, 叶茂, 汪亮亮, 等. 塔里木河上游河岸胡杨径向生长对温度的敏感性[J]. 干旱区研究, 2018, 35(4):899−904.

    Gou X X, Ye M, Wang L L, et al. Sensitivity of radial growth of Populus euphratica to temperature in the upper reaches of the Tarim River[J]. Arid Zone Research, 2018, 35(4): 899−904.
    [11] Cook E, Bird T, Peterson M, et al. Climatic change in tasmania inferred from a 1089-year tree-ring chronology of huon pine[J]. Science , 1991, 253: 1266−1268.
    [12] 高露双. 长白山典型树种径向生长与气候因子的关系研究[D]. 北京:北京林业大学, 2011.

    Gao L S. The radial growth in relation to climate factors for typical species in Changbai Mountain[D]. Beijing: Beijing Forestry University, 2011.
    [13] 雷静品, 肖文发, 黄志霖, 等. 三峡库区秭归县不同海拔马尾松径向生长对气候的响应[J]. 林业科学, 2009, 45(2):33−39. doi: 10.3321/j.issn:1001-7488.2009.02.007

    Lei J P, Xiao W F, Huang Z L, et al. Responses of ring width of pinus massoniana to the climate change at different elevations in Zigui County, Three-Gorge Reservoir Area[J]. Scientia Silvae Sinicae, 2009, 45(2): 33−39. doi: 10.3321/j.issn:1001-7488.2009.02.007
    [14] 陈建金. 闽南地区马尾松速生丰产林的环境因子研究[J]. 林业建设, 2016(5):43−46.

    Chen J J. Study on environmental factors for Pinus massoniana fast-growing and high-yield plantation in south Fujian[J]. Forestry Construction, 2016(5): 43−46.
    [15] 董志鹏, 郑怀舟, 方克艳, 等. 福建三明马尾松树轮宽度对气候变化的响应[J]. 亚热带资源与环境学报, 2014, 9(1):1−7. doi: 10.3969/j.issn.1673-7105.2014.01.001

    Dong Z P, Zheng H Z, Fang K Y, et al. Responses of tree-ring width of Pinus massiuiaua to climate change in Sanming, Fujian Province[J]. Journal of Subtropical Resource and Environment, 2014, 9(1): 1−7. doi: 10.3969/j.issn.1673-7105.2014.01.001
    [16] 段丙闯, 蔡秋芳. 桂林三月岭马尾松树轮宽度对气候变化的响应[J]. 地球环境学报, 2017, 8(3):243−252.

    Duan B C, Cai Q F. Responses of tree-ring width of Pinus massoniana to climate change in Guilin, Guangxi Province[J]. Journal of Earth Environment, 2017, 8(3): 243−252.
    [17] 陈秋艳. 长江中下游地区树轮气候响应特征分析与区域冬春季温度的重建[D]. 兰州: 兰州大学, 2015.

    Chen Q Y. Climate-tree growth interaction and reconstruction of winter-spring temperature in middle and lower reaches of Yangtze River[D]. Lanzhou: Lanzhou University, 2015.
    [18] 章浩白. 福建森林[M]. 北京: 中国林业出版社, 1993.

    Zhang H B. Fujian forest[M]. Beijing: China Forestry Publishing House, 1993.
    [19] 周政贤. 中国马尾松[M]. 北京: 中国林业出版社, 2001.

    Zhou Z X. Chinese Pinus massoniana[M]. Beijing: China Forestry Publishing House, 2001.
    [20] 戴守政. 马尾松年轮宽度年表特征及气候响应的相关性评价[D]. 南京: 南京农业大学, 2014.

    Dai S Z. Climate response analysis of Pinus massoniana tree-ring chronology[D]. Nanjing:Nanjing Agricultural University, 2014.
    [21] Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bulletin, 1983, 43(3): 69−75.
    [22] 王念, 田庆春. 基于Mann-Kendall方法的1954—2015年临汾市气候变化特征分析[J]. 现代农业科技, 2019(13):175−178.

    Wang N, Tian Q C. Analysis on climate change characteristics in Linfen City from 1954 to 2015 based on Mann-Kendall method[J]. Modern Agricultural Science and Technology, 2019(13): 175−178.
    [23] David F N, Kendall M G. Rank correlation methods[J]. The American Mathematical Monthly, 1950, 57: 425.
    [24] 王林, 陈文. 标准化降水蒸散指数在中国干旱监测的适用性分析[J]. 高原气象, 2014, 33(2):423−431.

    Wang L, Chen W. Applicability analysis of standardized precipitation evapotranspiration index in drought monitoring in China[J]. Plateau Meteorology, 2014, 33(2): 423−431.
    [25] 曹博,张勃,马彬,等. 基于SPEI指数的长江中下游流域干旱时空特征分析[J]. 生态学报, 2018, 38(17): 6258-6267.

    Cao B, Zhang B, Ma B, et al. Spatial and temporal characteristics analysis of drought based on SPEI in the Middle and Lower Yangtze Basin[J]. Acta Ecologica Sinica, 2018, 38(17):6258−6267.
    [26] Qing Y, Li M X, Zheng Z Y, et al. Regional applicability of seven meteorological drought indices in China[J]. Science China (Earth Sciences), 2017, 60(4): 745−760. doi: 10.1007/s11430-016-5133-5
    [27] 黄荣凤, 赵有科, 吕建雄, 等. 侧柏年轮宽度和年轮密度对气候变化的响应[J]. 林业科学, 2006, 42(7):78−82. doi: 10.3321/j.issn:1001-7488.2006.07.014

    Huang R F, Zhao Y K, Lü J X, et al. Response of ring width and ring density of Platycladus orieutalis to climate change in Beijing[J]. Scientia Silvae Sinicae, 2006, 42(7): 78−82. doi: 10.3321/j.issn:1001-7488.2006.07.014
    [28] Kienast F, Schweingruber F H, BräKer O U, et al. Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses[J]. Canadian Journal of Forest Research, 1987, 17(7): 683−696. doi: 10.1139/x87-111
    [29] 喻树龙, 袁玉江, 魏文寿, 等. 天山北坡西部树木年轮对气候因子的响应分析及气温重建[J]. 中国沙漠, 2008, 28(5):827−832.

    Yu S L, Yuan Y J, Wei W S, et al. Response of tree-ring to climate change and temperature reconstruction in west of Tianshan Mountains north slope[J]. Journal of Desert Research, 2008, 28(5): 827−832.
    [30] 曹受金. 南岭山地松科树种径向生长与气候因子关系及气候重建研究[D]. 长沙: 中南林业科技大学, 2015.

    Cao S J. The study on the response of tree ring width of pinaceae tree species to climate factors and climate reconstruction in Nanling region[D]. Changsha: Central South University of Forestry and Technology, 2015.
    [31] 邵雪梅, 吴祥定. 中国秦岭地区树木年轮密度对气候响应的初步分析[J]. 应用气象学报, 1994, 5(2):253−256.

    Shao X M, Wu X D. A preliminary analysis on response of tree-ring density to climate in the Qinling Mountain of China[J]. Quarterly Journal of Applied Meteorology, 1994, 5(2): 253−256.
    [32] 邵雪梅, 刘洪滨, 吴祥定. 采用树轮图像分析方法研究历史时期气候变化的可行性[J]. 地理研究, 1996, 15(2):44−51.

    Shao X M, Liu H B, Wu X D. A preliminary study on climate change research during historical time using image analysis of tree ring in Kangding Area, Sichuan Province[J]. Geographical Research, 1996, 15(2): 44−51.
    [33] Diaz H F, Bradley R S. Temperature variations during the last century at high elevation sites[J]. Climatic Change, 1997, 36(3−4): 253−279.
    [34] 范玮熠, 王孝安. 树木年轮宽度与气候因子的关系研究进展[J]. 西北植物学报, 2004, 24(2):345−351. doi: 10.3321/j.issn:1000-4025.2004.02.028

    Fan W Y, Wang X A. Advances in studies on the relationships between tree-ring width and climatic factors[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(2): 345−351. doi: 10.3321/j.issn:1000-4025.2004.02.028
    [35] 曹受金, 曹福祥, 项文化. 利用树木年轮重建赣南地区1890年以来2—3月份温度的变化[J]. 生态学报, 2012, 32(20):6369−6375.

    Cao S J, Cao F X, Xiang W H. Tree-ring-based reconstruction of the temperature variations in February and March since 1890 AD in southern Jiangxi Province, China[J]. Acta Ecologica Sinica, 2012, 32(20): 6369−6375.
    [36] 盛浩, 杨玉盛, 陈光水, 等. 植物根呼吸对升温的响应[J]. 生态学报, 2007, 27(4):1596−1605. doi: 10.3321/j.issn:1000-0933.2007.04.040

    Sheng H, Yang Y S, Chen G S, et al. The dynamic response of plant root respiration to increasing temperature and global warming[J]. Acta Ecologica Sinica, 2007, 27(4): 1596−1605. doi: 10.3321/j.issn:1000-0933.2007.04.040
    [37] 余佳霖, 张卫国, 田昆, 等. 普达措国家公园海拔上限3个针叶树种径向生长对气候变化的响应[J]. 北京林业大学学报, 2017, 39(1):43−51.

    Yu J L, Zhang W G, Tian K, et al. Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-La southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 43−51.
    [38] 郑怀舟, 朱锦懋, 李守中, 等. 长汀水土流失区生长季马尾松树干液流密度特征[J]. 亚热带资源与环境学报, 2007, 2(2):21−29. doi: 10.3969/j.issn.1673-7105.2007.02.004

    Zheng H Z, Zhu J M, Li S Z, et al. Sap flux density of Piuus massoniana during growing season in the soil erosion area of Changting County[J]. Journal of Subtropical Resources and Environment, 2007, 2(2): 21−29. doi: 10.3969/j.issn.1673-7105.2007.02.004
    [39] 邵雪梅, 吴祥定. 采用树轮宽度资料分析气候变化对树木生长量影响的尝试[J]. 地理学报, 1996, 51(增刊1):92−101.

    Shao X M, Wu X D. A preliminary study on impact of climate change on tree growth using tree ring-width data[J]. Acta Geographica Sinica, 1996, 51(Suppl.1): 92−101.
    [40] Chen F, Yuan Y, Wei W, et al. Reconstructed temperature for Yong’an, Fujian, southeast China: Linkages to the Pacific Ocean climate variability[J]. Global and Planetary Change, 2012, 86−87: 11−19.
    [41] 张晓, 潘磊磊, 刘艳书, 等. 沙地天然樟子松径向生长对干旱的响应[J]. 北京林业大学学报, 2018, 40(7):27−35.

    Zhang X, Pan L L, Liu Y S, et al. Climatological response of radial growth for Piuus sylvestris var. mougolica to drought in Hulun Buir Sandland, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(7): 27−35.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  1177
  • HTML全文浏览量:  660
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-25
  • 修回日期:  2019-08-01
  • 网络出版日期:  2019-08-16
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回