高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同覆盖条件下坡面流水力学特征试验研究

刘京晶 马岚 黎俊佑 陈佩岩 张金阁 孙占薇 燕琳 张栋

刘京晶, 马岚, 黎俊佑, 陈佩岩, 张金阁, 孙占薇, 燕琳, 张栋. 不同覆盖条件下坡面流水力学特征试验研究[J]. 北京林业大学学报, 2019, 41(8): 115-123. doi: 10.13332/j.1000-1522.20190070
引用本文: 刘京晶, 马岚, 黎俊佑, 陈佩岩, 张金阁, 孙占薇, 燕琳, 张栋. 不同覆盖条件下坡面流水力学特征试验研究[J]. 北京林业大学学报, 2019, 41(8): 115-123. doi: 10.13332/j.1000-1522.20190070
Liu Jingjing, Ma Lan, Li Junyou, Chen Peiyan, Zhang Jinge, Sun Zhanwei, Yan Lin, Zhang Dong. Experimental study on hydrodynamic characteristics of overland flow under different resistance conditions[J]. Journal of Beijing Forestry University, 2019, 41(8): 115-123. doi: 10.13332/j.1000-1522.20190070
Citation: Liu Jingjing, Ma Lan, Li Junyou, Chen Peiyan, Zhang Jinge, Sun Zhanwei, Yan Lin, Zhang Dong. Experimental study on hydrodynamic characteristics of overland flow under different resistance conditions[J]. Journal of Beijing Forestry University, 2019, 41(8): 115-123. doi: 10.13332/j.1000-1522.20190070

不同覆盖条件下坡面流水力学特征试验研究

doi: 10.13332/j.1000-1522.20190070
基金项目: 国家自然科学基金项目(51779004)
详细信息
    作者简介:

    刘京晶。主要研究方向:坡面水文与土壤侵蚀。Email:liujingjing0506@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    马岚,副教授。主要研究方向:水文水资源与水土保持。 Email:mlpcz@sina.com 地址:同上

  • 中图分类号: S774;S157.1

Experimental study on hydrodynamic characteristics of overland flow under different resistance conditions

  • 摘要: 目的坡面流水力学特性对阐明土壤侵蚀和坡面产沙机理具有重要意义,本试验就不同覆盖条件下坡面的坡面流阻力及相关水力学特征进行了研究,探究不同覆盖条件下坡面流水力学特征,以期为指导水土保持坡面措施合理配置提供理论支持。方法试验使用自制定床冲刷水槽,选用不同覆盖度(0%、10%、15%、20%)砾石、草被床面,在不同流量(15 ~ 120 L/(min·m))、不同坡度(3° ~ 15°)条件下进行室内定床冲刷试验。结果结果表明:(1)不同坡面上流速随着流量、坡度的增大而增大,且相同覆盖度下草被床面流速大于砾石床面流速,最高可达其2.2倍。(2)不同覆盖条件下弗劳德数(Fr)随着坡度的增大而增大,Darcy-weisbach阻力系数(f)随着覆盖度的增加而增加,相同覆盖度下砾石床面f大于草被床面,最高可分别为草被床面的10.9倍。(3)不同覆盖条件下坡面流阻力与流量呈线性正相关关系,相同覆盖度下砾石床面坡面流阻力大于草被床面,最高可达草被床面的2.2倍。(4)坡度与覆盖度对坡面流阻力均有显著影响,坡面流阻力随坡度的增大而增大,随着覆盖度的增大而增大,且呈较好的线性相关关系。结论本试验通过对不同覆盖条件下坡面流阻力的研究,可为建立基于径流动力学过程的山坡水文模型和侵蚀物理模型提供一定基础,为指导水土保持坡面措施合理配置提供理论支持。

     

  • 图  1  不同冲刷床面(自左向右依次为砂纸、砾石、草被床面)

    Figure  1.  Different scouring bed surfaces (from left to right are sandpaper, gravel and grass quilt beds)

    图  2  不同坡度砾石床面坡面流阻力与流量关系

    Figure  2.  Relation between overland flow resistance and flow on gravel bed with different slopes

    图  3  不同坡度草被坡面坡面流阻力与流量关系

    Figure  3.  Relation between overland flow resistance and flow on grass bed with different slopes

    图  4  砾石坡面不同坡度覆盖度与坡面流阻力关系

    Figure  4.  Relationship between different slope coverage and overland flow resistance of gravel slope

    图  5  草被坡面不同坡度覆盖度与坡面流阻力关系

    Figure  5.  Relationship between different slope coverage and overland flow resistance of grass slope

    表  1  不同砾石覆盖度下水力学参数范围

    Table  1.   Range of hydraulic parameters under different gravel coverage

    处理 TreatmentΘ/(°)Q/(L·min− 1·m− 1h/mmV/(min·s− 1ReFrfF
    0% 3 15 ~ 120 1.10 ~ 4.30 0.31 ~ 0.52 255.10 ~ 2 040.80 1.55 ~ 2.35 0.08 ~ 0.10 0.54 ~ 2.18
    9 15 ~ 120 1.40 ~ 4.10 0.40 ~ 0.74 255.10 ~ 2 040.80 1.44 ~ 4.10 0.07 ~ 0.60 2.08 ~ 4.77
    15 15 ~ 120 0.80 ~ 2.30 0.49 ~ 0.95 255.10 ~ 2 040.80 3.41 ~ 6.87 0.04 ~ 0.18 2.05 ~ 6.15
    10% 3 15 ~ 120 2.00 ~ 9.40 0.16 ~ 0.26 255.10 ~ 2 040.80 0.61 ~ 1.13 0.32 ~ 1.10 1.04 ~ 4.83
    9 15 ~ 120 1.30 ~ 6.10 0.30 ~ 0.56 255.10 ~ 2 040.80 1.26 ~ 1.90 0.35 ~ 0.79 1.92 ~ 9.33
    15 15 ~ 120 0.80 ~ 4.20 0.41 ~ 0.75 255.10 ~ 2 040.80 2.21 ~ 3.53 0.17 ~ 0.42 2.05 ~ 10.86
    15% 3 15 ~ 120 1.40 ~ 12.20 0.16 ~ 0.22 255.10 ~ 2 040.80 0.38 ~ 1.52 0.18 ~ 2.85 0.72 ~ 6.26
    9 15 ~ 120 1.90 ~ 6.50 0.29 ~ 0.52 255.10 ~ 2 040.80 1.36 ~ 4.82 0.25 ~ 0.68 1.00 ~ 8.50
    15 15 ~ 120 1.50 ~ 5.40 0.36 ~ 0.59 255.10 ~ 2 040.80 1.31 ~ 2.05 0.81 ~ 1.55 3.91 ~ 13.97
    20% 3 15 ~ 120 1.40 ~ 12.30 0.18 ~ 0.35 255.10 ~ 2 040.80 0.44 ~ 1.48 0.18 ~ 2.20 0.73 ~ 6.28
    9 15 ~ 120 1.10 ~ 8.00 0.27 ~ 0.41 255.10 ~ 2 040.80 0.89 ~ 2.37 0.28 ~ 1.57 1.73 ~ 12.31
    15 15 ~ 120 1.10 ~ 4.10 0.35 ~ 0.54 255.10 ~ 2 040.80 2.14 ~ 3.19 0.20 ~ 0.45 2.82 ~ 10.58
    注:Θ为坡度;Q为流量;h为水深;V为流速;Re为雷诺数;Fr为弗劳德数;f为阻力系数;F为坡面流阻力。下同。
    Notes: Θ is slope; Q is flow; h is water depth; V is flow velocity; Re is Reynolds number; Fr is Froude number; f is resistance coefficient; F is overland flow resistance. The same below.
    下载: 导出CSV

    表  2  不同草被覆盖度下水力学参数范围

    Table  2.   Range of hydraulics parameters under different grass coverage

    处理 TreatmentΘ/(°)Q/(L·min− 1·m− 1h/mmV/(min·s− 1ReFrfF
    0% 3 15 ~ 120 1.10 ~ 4.30 0.31 ~ 0.52 255.10 ~ 2 040.80 1.55 ~ 2.35 0.08 ~ 0.10 0.54 ~ 2.12
    9 15 ~ 120 1.40 ~ 4.10 0.40 ~ 0.73 255.10 ~ 2 040.80 1.44 ~ 4.10 0.07 ~ 0.60 2.23 ~ 4.77
    15 15 ~ 120 0.80 ~ 2.30 0.49 ~ 0.95 255.10 ~ 2 040.80 3.41 ~ 6.87 0.04 ~ 0.18 2.05 ~ 6.15
    10% 3 15 ~ 120 1.70 ~ 5.00 0.26 ~ 0.37 255.10 ~ 2 040.80 1.00 ~ 2.03 0.10 ~ 0.42 0.55 ~ 2.56
    9 15 ~ 120 0.70 ~ 3.30 0.44 ~ 0.64 255.10 ~ 2 040.80 2.19 ~ 3.70 0.09 ~ 0.26 1.19 ~ 4.96
    15 15 ~ 120 0.80 ~ 3.40 0.44 ~ 0.75 255.10 ~ 2 040.80 2.52 ~ 3.76 0.14 ~ 0.32 1.97 ~ 8.78
    15% 3 15 ~ 120 1.30 ~ 6.30 0.21 ~ 0.29 255.10 ~ 2 040.80 0.93 ~ 1.77 0.13 ~ 0.48 0.65 ~ 3.33
    9 15 ~ 120 1.40 ~ 4.50 0.31 ~ 0.48 255.10 ~ 2 040.80 1.52 ~ 2.95 0.14 ~ 0.54 2.15 ~ 6.92
    15 15 ~ 120 1.20 ~ 3.90 0.40 ~ 0.59 255.10 ~ 2 040.80 1.83 ~ 3.51 0.17 ~ 0.62 3.01 ~ 10.07
    20% 3 15 ~ 120 1.60 ~ 9.80 0.17 ~ 0.25 255.10 ~ 2 040.80 0.66 ~ 1.28 0.25 ~ 0.97 0.81 ~ 5.04
    9 15 ~ 120 1.10 ~ 6.20 0.28 ~ 0.45 255.10 ~ 2 040.80 1.29 ~ 2.31 0.23 ~ 0.75 1.73 ~ 9.62
    15 15 ~ 120 1.30 ~ 4.50 0.31 ~ 0.54 255.10 ~ 2 040.80 1.80 ~ 3.46 0.17 ~ 0.63 3.21 ~ 11.53
    下载: 导出CSV

    表  3  不同下垫面坡度对坡面流阻力显著性分析

    Table  3.   Significance analysis of overland flow resistance with different underlying slope

    处理 Treatment坡度 Slope/(°)R2FSig.样本数 Sample number
    玻璃床面 Glass surface 3 ~ 15 0.916 67.904 < 0.001 24
    砂纸床面 Sandpaper surface 3 ~ 15 0.873 47.081 < 0.001 24
    10%砾石床面 10% gravel cover surface 3 ~ 15 0.919 41.417 < 0.001 24
    15%砾石床面 15% gravel cover surface 3 ~ 15 0.925 56.658 < 0.001 24
    20%砾石床面 20% gravel cover surface 3 ~ 15 0.908 17.839 < 0.001 24
    10%草被床面 10% grass cover surface 3 ~ 15 0.837 44.536 < 0.001 24
    15%草被床面 15% grass cover surface 3 ~ 15 0.909 55.446 < 0.001 24
    20%草被床面 20% grass cover surface 3 ~ 15 0.921 43.895 < 0.001 24
    下载: 导出CSV

    表  4  不同覆盖度对坡面流阻力的影响

    Table  4.   Effects of different coverage on overland flow resistance

    坡度 Slope/(°)处理覆盖度 Processing coverageR2FSig.样本数 Sample number
    3砾石覆盖0 ~ 20% Gravel coverage 0−20%0.87524.262 < 0.00132
    草被覆盖0 ~ 20% Grass coverage 0−20%0.84614.408 < 0.00132
    9砾石覆盖0 ~ 20% Gravel coverage 0−20%0.845 8.518 < 0.00132
    草被覆盖0 ~ 20% Grass coverage 0−20%0.86011.463 < 0.00132
    15砾石覆盖0 ~ 20% Gravel coverage 0−20%0.90731.147 < 0.00132
    草被覆盖0 ~ 20% Grass coverage 0−20%0.89314.191 < 0.00132
    下载: 导出CSV
  • [1] Horton R E, Horton R, Horton H. Erosinal development of streams and their drainage basins: hidrophysical approach to quantitative morfology[J]. Journal of the Japanese Forestry Society, 1945, 56(3): 275−370.
    [2] 张宽地, 王光谦, 孙晓敏, 等. 坡面薄层水流水动力学特性试验[J]. 农业工程学报, 2014, 30(15):182−189. doi: 10.3969/j.issn.1002-6819.2014.15.024

    Zhang K D, Wang G Q, Sun X M, et al. Experiment on hydraulic characteristics of shallow open channel flow on slope[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(15): 182−189. doi: 10.3969/j.issn.1002-6819.2014.15.024
    [3] 罗榕婷, 张光辉, 曹颖. 坡面含沙水流水动力学特性研究进展[J]. 地理科学进展, 2009, 28(4):567−574. doi: 10.11820/dlkxjz.2009.04.012

    Luo R T, Zhang G H, Cao Y. Research progress on hydrodynamic characteristics of sediment-laden flow on slopes[J]. Progress in Geography, 2009, 28(4): 567−574. doi: 10.11820/dlkxjz.2009.04.012
    [4] 张光辉, 卫海燕, 刘宝元. 坡面流水动力学特性研究[J]. 水土保持学报, 2001, 15(1):58−61. doi: 10.3321/j.issn:1009-2242.2001.01.016

    Zhang G H, Wei H Y, Liu B Y. Study on hydro-dynamic properties of overland flow[J]. Journal of Soil and Water Conservation, 2001, 15(1): 58−61. doi: 10.3321/j.issn:1009-2242.2001.01.016
    [5] 王俊杰, 张宽地, 杨苗, 等. 雨强和糙度对坡面薄层流水动力学特性的影响[J]. 农业工程学报, 2017, 33(9):147−154. doi: 10.11975/j.issn.1002-6819.2017.09.019

    Wang J J, Zhang K D, Yang M, et al. Influence of rainfall and roughness on hydrodynamic characteristics of overland flow[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 147−154. doi: 10.11975/j.issn.1002-6819.2017.09.019
    [6] 戴矜君, 程金花, 张洪江, 等. 野外放水条件下坡面流水动力学特征[J]. 中国水土保持科学, 2016, 14(3):52−59.

    Dai J J, Cheng J H, Zhang H J, et al. Hydrodynamic characteristics of surface runoff on field scour[J]. Science of Soil and Water Conservation, 2016, 14(3): 52−59.
    [7] 郭明明, 王文龙, 李建明, 等. 野外模拟降雨条件下矿区土质道路径流产沙及细沟发育研究[J]. 农业工程学报, 2016, 32(24):155−163. doi: 10.11975/j.issn.1002-6819.2016.24.020

    Guo M M, Wang W L, Li J M, et al. Runoff, sediment yield and rill development characteristic of unpaved road in mining area under field artificial simulated rainfall condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 155−163. doi: 10.11975/j.issn.1002-6819.2016.24.020
    [8] Roche N, Daïan J, Lawrence D S L. Hydraulic modeling of runoff over a rough surface under partial inundation[J]. Water Resources Research, 2007, 43(8): 159−164.
    [9] Myers T G. Modeling laminar sheet flow over rough surfaces[J]. Water Resources Research, 2002, 38(11): 1230−1236.
    [10] 张光辉. 退耕驱动的近地表特性变化对土壤侵蚀的潜在影响[J]. 中国水土保持科学, 2017, 15(4):143−154.

    Zhang G H. Potential effects of changes in near soil surface characteristics driven by farmland abandonment on soil erosion[J]. Science of Soil and Water Conservation, 2017, 15(4): 143−154.
    [11] 刘青泉, 李家春, 陈力, 等. 坡面流及土壤侵蚀动力学(Ⅰ): 坡面流[J]. 力学进展, 2004, 34(3):360−372. doi: 10.3321/j.issn:1000-0992.2004.03.007

    Liu Q Q, Li J C, Chen L, et al. Slope flow and soil erosion dynamics (Ⅰ): overland flow[J]. Advances in Mechanics, 2004, 34(3): 360−372. doi: 10.3321/j.issn:1000-0992.2004.03.007
    [12] 张光辉. 坡面薄层流水动力学特性的试验研究[J]. 水科学进展, 2002, 13(2):159−165. doi: 10.3321/j.issn:1001-6791.2002.02.005

    Zhang G H. Experimental research on hydrodynamic characteristic of slope thin layer flow[J]. Advances in Water Science, 2002, 13(2): 159−165. doi: 10.3321/j.issn:1001-6791.2002.02.005
    [13] 潘成忠, 上官周平. 降雨和坡度对坡面流水动力学参数的影响[J]. 应用基础与工程科学学报, 2009, 17(6):843−851. doi: 10.3969/j.issn.1005-0930.2009.06.004

    Pan C Z, Shangguan Z P. Effects of rainfall and slope gradient on hydrodynamic parameters of slope flow[J]. Journal of Basic Science and Engineering, 2009, 17(6): 843−851. doi: 10.3969/j.issn.1005-0930.2009.06.004
    [14] Rauws G. Laboratory experiments on resistance to overland flow due to composite roughness[J]. Journal of Hydrology, 1988, 103(1−2): 37−52.
    [15] Abrahams A D, Parsons A J. Hydraulics of interrill overland flow on stone-covered desert surfaces[J]. Catena, 1994, 23(1−2): 111−140. doi: 10.1016/0341-8162(94)90057-4
    [16] Atkinson J F, Abrahams A D, Krishnan C, et al. Shear stress partitioning and sediment transport by overland flow[J]. Journal of Hydraulic Research, 2000, 38(1): 37−40. doi: 10.1080/00221680009498356
    [17] 梁洪儒, 余新晓, 樊登星, 等. 砾石覆盖对坡面产流产沙的影响[J]. 水土保持学报, 2014, 28(3):57−61.

    Liang H R, Yu X X, Fan D X, et al. Effect of gravel-sand muchling on slope runoff and sediment yield[J]. Journal of Soil and Water Conservation, 2014, 28(3): 57−61.
    [18] 柳晓娜, 樊登星, 余新晓, 等. 大粗糙单元对坡面流水动力学特性的影响[J]. 水土保持学报, 2018, 32(4):43−50.

    Liu X N, Fan D X, Yu X X, et al. Influence of large-scale roughness element on hydraulic characteristics of overland flow[J]. Journal of Soil and Water Conservation, 2018, 32(4): 43−50.
    [19] 姚文艺. 坡面流流速计算的研究[J]. 中国水土保持, 1993(3):25−29, 65.

    Yao W Y. Study on slope flow velocity calculation[J]. Soil and Water Conservation in China, 1993(3): 25−29, 65.
    [20] Zhang G H, Luo R T, Cao Y, et al. Correction factor to dye-measured flow velocity under varying water and sediment discharges[J]. Journal of Hydrology, 2010, 389(1−2): 205−213. doi: 10.1016/j.jhydrol.2010.05.050
    [21] 赵春红, 高建恩, 徐震. 牧草调控绵沙土坡面侵蚀机理[J]. 应用生态学报, 2013, 24(1):113−121.

    Zhao C H, Gao J E, Xu Z. Mechanisms of grass control on slope erosion of Miansha soil[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 113−121.
    [22] Hu S, Abrahams A D. Resistance to overland flow due to bed-load transport on plane mobile beds[J]. Earth Surface Processes & Landforms, 2010, 29(13): 1691−1701.
    [23] 高延良, 董旭, 杨帆, 等. 坡面植被水流水动力学特性研究[J]. 水力发电学报, 2016, 35(9):38−47. doi: 10.11660/slfdxb.20160905

    Gao Y L, Dong X, Yang F, et al. Experimental study on hydraulic characteristics of overland flows under vegetation cover[J]. Journal of Hydroelectric Engineering, 2016, 35(9): 38−47. doi: 10.11660/slfdxb.20160905
    [24] 占顺. 砾石覆盖对坡面流水动力学特性试验研究[D]. 武汉: 华中农业大学, 2015.

    Zhan S. Effects of rock fragment cover on hydraulics by overland flow[D]. Wuhan: Huazhong Agricultural University, 2015.
    [25] 余冰, 王军光, 蔡崇法, 等. 不同模拟糙度定床坡面集中水流水力学特性研究[J]. 水土保持学报, 2015, 29(2):50−54.

    Yu B, Wang J G, Cai C F, et al. Study on hydraulic properties of concentrated flow under different artificial surface roughness[J]. Journal of Soil and Water Conservation, 2015, 29(2): 50−54.
    [26] 敬向锋, 吕宏兴, 张宽地, 等. 不同糙率坡面水力学特征的试验研究[J]. 水土保持通报, 2007, 27(2):33−38. doi: 10.3969/j.issn.1000-288X.2007.02.008

    Jing X F, Lü H X, Zhang K D, et al. Experimental study of overland flow hydromechanics under different degrees of roughness[J]. Bulletin of Soil and Water Conservation, 2007, 27(2): 33−38. doi: 10.3969/j.issn.1000-288X.2007.02.008
    [27] Salman M, Manochehr G, Ali J. Effect of rock fragments cover on distance of rill erosion initiation and overland flow hydraulics[J]. International Journal of Soil Science, 2012, 7(3): 100−107. doi: 10.3923/ijss.2012.100.107
    [28] Guo T L, Wang Q X, Li D Q, et al. Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semi-arid loess region of northwestern China[J]. Journal of Soils and Sediments, 2010, 10(6): 1200−1208. doi: 10.1007/s11368-010-0257-8
    [29] 吴秋菊, 吴发启, 王林华. 土壤结皮坡面流水动力学特征[J]. 农业工程学报, 2014, 30(1):73−80. doi: 10.3969/j.issn.1002-6819.2014.01.010

    Wu Q J, Wu F Q, Wang L H. Hydrodynamic characteristics of overland floundersoil crusts condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 73−80. doi: 10.3969/j.issn.1002-6819.2014.01.010
    [30] 翟艳宾. 缓坡面薄层水流水动力学特性的试验研究[D]. 杨凌: 西北农林科技大学, 2013.

    Zhai Y B. Study on hydrodynamic characteristic of sheet flow on overland slope surface [D]. Yangling: Northwest A&F University, 2013.
    [31] 张冠华. 茵陈蒿群落分布格局对坡面侵蚀及坡面流水动力学特性的影响[D]. 杨凌: 西北农林科技大学, 2012.

    Zhang G H. Influence of patterned Artemisia capillaris on slope erosion and overland flow hydrodynamic characteristics[D]. Yangling: Northwest A&F University, 2012.
    [32] 李占斌, 鲁克新, 丁文峰. 黄土坡面土壤侵蚀动力过程试验研究[J]. 水土保持学报, 2002, 16(2):5−7, 49. doi: 10.3321/j.issn:1009-2242.2002.02.002

    Li Z B, Lu K X, Ding W F. Experimental study on dynamic processes of soil erosion on loess slope[J]. Journal of Soil and Water Conservation, 2002, 16(2): 5−7, 49. doi: 10.3321/j.issn:1009-2242.2002.02.002
    [33] Bunte K, Poesen J. Effects of rock fragment covers on erosion and transport of noncohesive sediment by shallow overland flow[J]. Water Resources Research, 1993, 29(5): 1415−1424. doi: 10.1029/92WR02706
    [34] 吴卿, 杨春霞, 甄斌, 等. 草被覆盖对坡面径流剪切力影响的试验研究[J]. 人民黄河, 2010, 32(8):96, 99.

    Wu Q, Yang C X, Zhen B, et al. Experimental study on the effect of grass cover on the shear force of slope runoff[J]. Yellow River, 2010, 32(8): 96, 99.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1098
  • HTML全文浏览量:  537
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-04-15
  • 网络出版日期:  2019-07-10
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回