高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沙蒿水浸提液化感物质的分离与鉴定

邓文红 赵欣蕊 张俊琦 郭惠红

邓文红, 赵欣蕊, 张俊琦, 郭惠红. 沙蒿水浸提液化感物质的分离与鉴定[J]. 北京林业大学学报, 2019, 41(9): 156-163. doi: 10.13332/j.1000-1522.20190086
引用本文: 邓文红, 赵欣蕊, 张俊琦, 郭惠红. 沙蒿水浸提液化感物质的分离与鉴定[J]. 北京林业大学学报, 2019, 41(9): 156-163. doi: 10.13332/j.1000-1522.20190086
Deng Wenhong, Zhao Xinrui, Zhang Junqi, Guo Huihong. Isolation and identification of the allelochemicals in Artemisia ordosica aqueous extracts[J]. Journal of Beijing Forestry University, 2019, 41(9): 156-163. doi: 10.13332/j.1000-1522.20190086
Citation: Deng Wenhong, Zhao Xinrui, Zhang Junqi, Guo Huihong. Isolation and identification of the allelochemicals in Artemisia ordosica aqueous extracts[J]. Journal of Beijing Forestry University, 2019, 41(9): 156-163. doi: 10.13332/j.1000-1522.20190086

沙蒿水浸提液化感物质的分离与鉴定

doi: 10.13332/j.1000-1522.20190086
基金项目: “十二五”国家科技支撑计划项目(2012BAD16B02),国家自然科学基金面上项目(31870650)
详细信息
    作者简介:

    邓文红,博士,高级实验师。主要研究方向:色质谱分析。Email:dengwh@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学分析测试中心

Isolation and identification of the allelochemicals in Artemisia ordosica aqueous extracts

  • 摘要: 目的研究沙蒿根、茎、叶和种子水浸提液的化感物质,探究其对沙米种子发芽的影响,为沙蒿在群落演替过程中化感作用的研究提供理论依据。方法用超纯水室温浸提沙蒿根、茎、叶和种子48 h,离心,上清液经萃取后得到酸性、中性和碱性浸提液。将3种浸提液分为两部分,一部分用气相色谱质谱联用仪(GC-MS)对其组分含量进行分析,另一部分用于沙米种子发芽实验。结果沙蒿水浸提液酸性组分共检测到35种化合物,根的酸性组分主要为丁二酸(22.42%)和3,4-二羟基苯甲酸(13.13%);茎的酸性组分主要为丁二酸(25.81%)、咖啡酸(13.53%)、3-羟基-4-甲氧基苯甲酸(12.12%)和2-羟基丙酸(11.13%);叶的酸性组分主要为3,4-二羟基苯甲酸(23.15%)、苯甲酸(16.62%)和3-羟基-4-甲氧基苯甲酸(15.68%);种子的酸性组分主要为2-羟基丙酸(47.64%)和丁二酸(32.28%)。中性组分共检测到20种化合物,根、茎、叶和种子的主要成分均为2-呋喃丙醇,分别占检测到物质的62.28%、33.10%、47.42%、85.13%。碱性组分共检测到6种化合物,根中主要成分为乙胺(43.80%),茎、叶和种子中主要成分为2-羟基乙胺,分别占检测到物质的53.95%、42.45%、56.29%。沙蒿水浸提液酸性、中性和碱性组分对沙米种子发芽均有抑制作用,其中酸性组分的抑制作用最强,其次为碱性组分,影响最弱的为中性组分。结论沙蒿化感物质主要是酸性物质,在沙蒿与其他植物竞争中具有重要作用。不同部位水浸提液所表现出来的化感效应强度不同,表明化感作用与其含有的化感物质的种类与含量有关。

     

  • 图  1  浸提液酸性物质总离子流图

    Figure  1.  TICs of acidic compounds of extracts

    图  2  浸提液中性物质总离子流图

    Figure  2.  TICs of neutral compounds of extracts

    图  3  浸提液碱性物质总离子流图

    Figure  3.  TICs of alkaline compounds of extracts

    表  1  酸性物质GC-MS分析结果

    Table  1.   GC-MS results of acidic compounds %

    序号 No.化合物名称
    Compound name
    分子式 Formula峰面积 Peak area
    根 Root茎 Stem叶 Leaf种子 Seed
    1 乙醇酸 Glycolic acid C2H4O3 0.49 0.11 0.18 0.44
    2 2-羟基丙酸 2-Hydroxypropionic acid C3H6O3 8.12 11.13 1.72 47.64
    3 2-甲基丁二酸 2-Methylsuccinic acid C5H8O4 0.91 0.27 0.25 0.61
    4 2-己烯酸 2-Hexenoic acid C6H9O2 0.30 0.77 0.40
    5 3-甲基己二酸 3-Methyldipic acid C7H12O4 0.79 0.36 0.13 0.49
    6 2-羟基-4-甲基戊酸 2-Hydroxy-4-methylpentanoic acid C6H12O3 0.40 0.38 0.37
    7 3-羟基丁酸 3-Hydroxybutyric acid C4H7O3 3.20 0.34 0.12 0.14
    8 2-乙基己酸 2-Ethylhexanoic acid C8H16O2 2.50 0.50 0.17 0.48
    9 乙二酸 Oxalic acid C2H2O4 0.36 5.21 5.64 0.27
    10 苯甲酸 Benzoic acid C7H6O2 3.62 1.53 16.62 0.16
    11 丙酮酸 Pyruvic acid C3H4O3 0.65 0.14 0.11 0.29
    12 苯乙酸 Phenylacetic acid C8H8O2 0.58 0.19 2.55 0.14
    13 丁二酸 Succinic acid C4H6O4 22.42 25.81 2.56 32.28
    14 丁烯二酸 Butenedioic acid C4H4O4 0.49 6.65 1.59 0.32
    15 戊二酸 Glutaric acid C5H8O4 1.58 0.43 0.10 0.66
    16 2-羟基丁二酸 2-Hydroxysuccinic acid C4H6O5 0.75 1.29 0.26 0.12
    17 2-羟基苯甲酸 2-Hydroxybenzoic acid C7H6O3 3.25 3.57 1.17 0.33
    18 4-甲氧基苯甲酸 4-Methoxybenzoic acid C8H8O3 0.20 0.49
    19 2,3-二甲基丁二酸 2,3-Dimethylsuccinic acid C6H10O4 3.51 0.69 0.36
    20 3-甲氧基苯丙烯酸 4-Methoxy phenylacrylic acid C9H12O 0.46 0.29 0.12 0.44
    21 庚二酸 Pimelic acid C7H10O4 1.32 0.79 1.17 0.19
    22 4-羟基苯甲酸 4-Hydroxybenzoic acid C7H6O3 1.03 1.76 2.78 1.09
    23 4-羟基苯乙酸 4-Hydroxyphenylacetic acid C8H7O3 2.20 0.22 0.35 0.75
    24 1,2-苯二甲酸 1,2-Phthalic acid C8H6O4 7.14 0.93 0.66 3.34
    25 十四烷酸 Myristic acid C14H28O2 1.08 0.25 0.21 0.64
    26 4-羟基苯丙酸 Hydroxyphenyl propionic acid C9H9O3 1.44
    27 3-羟基-4-甲氧基苯甲酸 3-Hydroxy-4-methoxybenzoic acid C8H7O4 4.17 12.12 15.68 0.55
    28 香豆酸 Coumalic acid C6H4O4 1.07 0.23 0.51 0.03
    29 3,4-二羟基苯甲酸 3,4-Dihydroxybenzoic acid C7H6O4 13.13 2.81 23.15 1.47
    30 3,5-二甲氧基-4-羟基苯甲酸 3,5-Dimethoxyl-4-hydroxybenzoic acid C9H10O5 3.48 4.52 0.21
    31 肉桂酸 Cinnamic acid C9H8O2 0.60 0.61 0.16
    32 十六烷酸 Hexadecanoic acid C16H32O2 7.37 1.09 3.36 3.84
    33 阿魏酸 Ferulic acid C10H10O4 2.07 1.84 8.03 0.28
    34 咖啡酸 Caffeic acid C9H8O4 1.56 13.53 6.69 0.75
    35 9,12,15-十八碳三烯酸 9,12,15-Octadecatrienoic acid C18H30O2 0.22 0.24 1.33
    下载: 导出CSV

    表  2  中性物质GC-MS分析结果

    Table  2.   GC-MS results of neutral compounds %

    序号 No.化合物名称
    Compound name
    分子式 Formula峰面积 Peak area
    根 Root茎 Stem叶 Leaf种子 Seed
    1 2,5-二甲基-3-己炔-2,5-二醇 2,5-Dimethyl-3-hexyne-2,5-diol C8H14O2 0.21 0.10 0.10
    2 1,3,3-三甲基-2-乙烯基环己烯 1,3,3-Trimethyl-2-Vinylcyclohexene C11H18 0.10 0.11
    3 紫丁香醇 Lilac alcohol C8H10O3 0.55 0.28 0.34
    4 2,3-蒎烷二醇 2,3-Pinanediol C10H18O2 0.20 0.09 0.32
    5 4,4,6-三甲基-2-环己烯-1-醇 4,4,6-Trimethyl-2-cyclohexene-1-alcohol C9H16O 0.05 0.03
    6 4-异丙烯基-1-甲基-1,2-环己烷二醇 4-Isopropenyl-1-methyl-1,2-cyclohexane diol C10H18O2 1.40 0.28 0.40
    7 8-羟基芳樟醇 8-Hydroxyl linalool C10H19O2 0.41 0.09 0.23 0.03
    8 2-羟基苯乙酮 2-Hydroxyacetophenone C8H8O2 0.98 1.78 3.62 0.28
    9 1,4-二乙酰基苯 1,4-Diacetylbenzene C10H10O2 0.34 1.01 0.45
    10 斯巴醇 Spathulenol C15H24O 0.65 0.73 0.59
    11 3,7,11-三甲基-1,3,6,10-十二碳四烯 3,7,11-Trimethyl-1,3,6,10- dodecatetraene C15H24 3.37 0.88 0.99 0.78
    12 柠檬酸三乙酯 Triethyl citrate C12H20O7 2.57 31.83 31.71 1.45
    13 2-呋喃丙醇 2-Furan propanol C7H10O2 62.28 33.10 47.42 85.13
    14 红没药醇 Dragosantol C15H26O 1.66 1.04 0.45
    15 6,10-二甲基-5,9-十一碳二烯-2-酮 6,10-Dimethyl-5,9- undecadiene-2-ketone C13H22O 1.84 0.83 1.11
    16 红没药醇氧化物A Bisabolol oxide A C15H26O2 16.30 11.81 6.05 7.16
    17 8-羟基喹啉-2-甲醛 8-Hydroxyquinoline-2-formaldehyde C10H7NO2 1.70 0.66 0.66
    18 9,12-亚油酸甲酯 Methyl linoleate C19H33O2 0.47 0.32
    19 柠檬酸三丁酯 Tributyl citrate C18H32O7 1.01 1.09 0.86 0.25
    20 邻苯二甲酸二(2-乙基)己酯 Di-(2-ethylhexyl) phthalate C24H38O4 5.18 15.91 2.95 3.43
    下载: 导出CSV

    表  3  碱性物质GC-MS分析结果

    Table  3.   GC-MS results of alkaline compounds %

    序号
    No.
    化合物名称
    Compound name
    分子式
    Formula
    峰面积 Peak area
    根 Root茎 Stem叶 Leaf种子 Seed
    1 尿素 Carbamide CH4N2O 6.54 31.37 29.43 23.04
    2 吗啉 Morpholine C4H9NO 21.11
    3 乙胺 Ethylamine C2H7N 43.80 10.23 24.08
    4 2-羟基乙胺 2-Hydroxyethylamine C2H7NO 16.93 53.95 42.45 56.29
    5 2,4-二羟基嘧啶 2,4-Dihydroxypyrimidine C4H4N2O2 8.98 4.45 4.04 9.90
    6 2,4,6-三甲氧基嘧啶 2,4,6-Trimethoxypyrimidine C7H10N2O3 2.64 10.77
    下载: 导出CSV

    表  4  沙蒿水浸提液不同组分对沙米种子发芽率的影响

    Table  4.   Influences of different components of aqueous extracts of A. ordosica on seed germination rates of A. squarrosum %

    处理 Treatment    发芽率 Germination rate
    酸性组分 Acidic component中性组分 Neutral component碱性组分 Alkaline component
    对照 Control80.40 ± 5.90a80.40 ± 5.90a80.40 ± 5.90a
    根浸提液 Root extract36.80 ± 3.63b68.40 ± 4.34c61.20 ± 5.02d
    茎浸提液 Stem extract35.60 ± 3.29b69.60 ± 5.18c67.20 ± 4.82c
    叶浸提液 Leaf extract33.60 ± 2.61b67.60 ± 4.56c65.20 ± 3.63c
    种子浸提液 Seed extract42.80 ± 4.15b75.60 ± 5.55a68.80 ± 5.22c
    注:同行中不同字母表示差异显著(P < 0.05)。Note: different letters in same row indicate significant differences (P < 0.05).
    下载: 导出CSV
  • [1] Gruntman M, Pehl A K, Joshi S, et al. Competitive dominance of the invasive plant Impatiens glandulifera: using competitive effect and response with a vigorous neighbour[J]. Biological Invasions, 2014, 16(1): 141−151. doi: 10.1007/s10530-013-0509-9
    [2] Sieg R D, Kubanek J. Chemical ecology of marine angiosperms:opportunities at the interface of marine and terrestrial systems[J]. Journal of Chemical Ecology, 2013, 39(6): 687−711. doi: 10.1007/s10886-013-0297-9
    [3] Kueh B W B, Yusup S, Osman N, et al. Analysis of Melaleuca cajuputi extract as the potential herbicides for paddy weeds[J]. Sustainable Chemistry and Pharmacy, 2019, 11: 36−40. doi: 10.1016/j.scp.2018.12.004
    [4] Gatti A B, Ferreira A G, Arduin M, et al. Allelopathic effects of aqueous extracts of Artistolochia esperanzae O.Kuntze on development of Sesamum indicum L. seedlings[J]. Acta Botanica Brasilica, 2010, 24(2): 454−461. doi: 10.1590/S0102-33062010000200016
    [5] Thiébaut G, Thouvenot L, Rodríguez-Pérez H. Allelopathic effect of the invasive Ludwigia hexapetala on growth of three macrophyte species[J]. Frontiers in Plant Science, 2018, 9(12): 1−10.
    [6] Madrigal-González J, Cea A P, Sánchez-Fernández L A, et al. Facilitation of the non-native annual plant Mesembryanthemum crystallinum(Aizoaceae) by the endemic cactus Eulychnia acida(Cactaceae) in the Atacama Desert[J]. Biological Invasions, 2013, 15(7): 1439−1447. doi: 10.1007/s10530-012-0382-y
    [7] 杜明利, 高群英, 高岩, 等. 外来物种大花金鸡菊不同器官成分的气质联用(GC-MS)分析[J]. 浙江农林大学学报, 2012, 29(2):313−318. doi: 10.3969/j.issn.2095-0756.2012.02.024

    Du M L, Gao Q Y, Gao Y, et al. Organic compounds in exotic Coreopsis grandiflora using GC-MS[J]. Journal of Zhejiang A&F University, 2012, 29(2): 313−318. doi: 10.3969/j.issn.2095-0756.2012.02.024
    [8] 孔垂华, 胡飞. 植物化感(相生相克)作用及其应用[M]. 北京: 中国农业出版社, 2001.

    Kong C H, Hu F. Plant allelopathy and its application[M]. Beijing: China Agriculture Press, 2001.
    [9] Li X R, Xiao H L, Zhang J G, et al. Long-term ecosystem effects of sand-binding vegetation in the Tengger Desert, northern China[J]. Restoration Ecology, 2004, 12(3): 376−390. doi: 10.1111/rec.2004.12.issue-3
    [10] Zhang J H, Wu B, Li Y H, et al. Biological soil crust distribution in Artemisia ordosica communities along a grazing pressure gradient in Mu Us Sandy Land, northern China[J]. Journal of Arid Land, 2013, 5(2): 172−179. doi: 10.1007/s40333-013-0148-0
    [11] Li S L, Werger M J A, Zuidema P A, et al. Seedlings of the semi-shrub Artemisia ordosica are resistant to moderate wind denudation and sand burial in Mu Us sandland, China[J]. Trees, 2010, 24(3): 515−521. doi: 10.1007/s00468-010-0422-0
    [12] 张财, 查天山, 贾昕, 等. 毛乌素沙地油蒿群落叶面积指数动态及模型[J]. 北京林业大学学报, 2018, 40(3):75−83.

    Zhang C, Zha T S, Jia X, et al. Dynamics and simulation of leaf area index for Artemisia ordosica community in the Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(3): 75−83.
    [13] Khurelbat D, Densmaa D, Sanjjav T, et al. Artemisioside, a new monoterpene glucoside from the aerial parts of Artemisia ordosica (Asteraceae)[J]. Journal of Natural Medicines, 2010, 64(2): 203−205. doi: 10.1007/s11418-009-0385-x
    [14] Fan D Q, Zhang Y Q, Qin S G, et al. Relationships between Artemisia ordosica communities and environmental factors following sand-dune stabilization in the Mu Us desert, northwest China[J]. Journal of Forestry Research, 2017, 28(1): 115−124. doi: 10.1007/s11676-016-0289-z
    [15] 周凯, 郭维明, 徐迎春. 菊科植物化感作用研究进展[J]. 生态学报, 2004, 24(8):1780−1788.

    Zhou K, Guo W M, Xu Y C. Advances of research on allelopathic potential in compositae[J]. Acta Ecologica Sinica, 2004, 24(8): 1780−1788.
    [16] Inderjit D S O. Ecophysiological aspects of allelopathy[J]. Planta, 2003, 217(4): 529−539. doi: 10.1007/s00425-003-1054-z
    [17] 李朝婵, 乙引, 全文选, 等. 野生高山杜鹃群落林内自然挥发的化感成分[J]. 林业科学, 2015, 51(12):35−44.

    Li C C, Yi Y, Quan W X, et al. The natural volatile components of allelochemicals in the wild alpine Rhododendron community[J]. Scientia Silvae Sinicae, 2015, 51(12): 35−44.
    [18] 崔翠, 蔡靖, 张硕新. 核桃根系分泌物化感物质的分离与鉴定[J]. 林业科学, 2013, 49(2):54−60. doi: 10.11707/j.1001-7488.20130209

    Cui C, Cai J, Zhang S X. Isolation and identification of the allelochemicals in walnut (Juglans regia) root exudates[J]. Scientia Silvae Sinicae, 2013, 49(2): 54−60. doi: 10.11707/j.1001-7488.20130209
    [19] 于会泳, 申国明, 高欣欣. 连作烟田土壤根系分泌物的变化和分解[J]. 中国烟草科学, 2014, 35(1):43−47.

    Yu H Y, Shen G M, Gao X X. The changes and degradation of tobacco root exudates in tobacco field with continuous cropping[J]. Chinese Tobacco Science, 2014, 35(1): 43−47.
    [20] 许蓝心, 田如男. 梭鱼草化感物质丁二酸对微囊藻和栅藻生长及竞争的影响[J]. 生态学杂志, 2019, 38(3):770−777.

    Xu L X, Tian R N. Effects of succinic acid, an allelopathic substance of Pontederi cordata, on the growth and competition of Microcystis aeruginosa and Scenedesmus obliquus[J]. Chinese Journal of Ecology, 2019, 38(3): 770−777.
    [21] 郭凯, 燕志强, 金辉, 等. 肉桂酸和咖啡酸对莴苣生长的化感作用及其机理研究[J]. 西北植物学报, 2016, 36(1):93−99. doi: 10.7606/j.issn.1000-4025.2016.01.0093

    Guo K, Yan Z Q, Jin H, et al. Allelopathic effect and mechanism of cinnamic acid and caffeic acid on the growth of lettuce[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(1): 93−99. doi: 10.7606/j.issn.1000-4025.2016.01.0093
    [22] 潘琦, 邹国燕, 宋祥甫, 等. 美人蕉根系对铜绿微囊藻的化感作用[J]. 环境科学研究, 2014, 27(10):1193−1198.

    Pan Q, Zou G Y, Song X F, et al. Inhibitory effects of the roots of floating bed plants of Canna indica on[J]. Research of Enviromental Sciences, 2014, 27(10): 1193−1198.
    [23] 周志红, 骆世明, 牟子平. 番茄(Lycopersicon)的化感作用研究[J]. 应用生态学报, 1997, 8(4):445−449. doi: 10.3321/j.issn:1001-9332.1997.04.023

    Zhou Z H, Luo S M, Mou Z P. Allelopathic effect of tomato[J]. Chinese Journal of Applied Ecology, 1997, 8(4): 445−449. doi: 10.3321/j.issn:1001-9332.1997.04.023
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1297
  • HTML全文浏览量:  634
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-23
  • 修回日期:  2019-06-02
  • 网络出版日期:  2019-07-06
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回