高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于选择清除分析鉴定影响枣果实大小的基因

杨柳 周鹤莹 薄文浩 李颖岳 庞晓明

杨柳, 周鹤莹, 薄文浩, 李颖岳, 庞晓明. 基于选择清除分析鉴定影响枣果实大小的基因[J]. 北京林业大学学报, 2019, 41(10): 30-36. doi: 10.13332/j.1000-1522.20190097
引用本文: 杨柳, 周鹤莹, 薄文浩, 李颖岳, 庞晓明. 基于选择清除分析鉴定影响枣果实大小的基因[J]. 北京林业大学学报, 2019, 41(10): 30-36. doi: 10.13332/j.1000-1522.20190097
Yang Liu, Zhou Heying, Bo Wenhao, Li Yingyue, Pang Xiaoming. Identification of genes related with jujube fruit size based on selective sweep analysis[J]. Journal of Beijing Forestry University, 2019, 41(10): 30-36. doi: 10.13332/j.1000-1522.20190097
Citation: Yang Liu, Zhou Heying, Bo Wenhao, Li Yingyue, Pang Xiaoming. Identification of genes related with jujube fruit size based on selective sweep analysis[J]. Journal of Beijing Forestry University, 2019, 41(10): 30-36. doi: 10.13332/j.1000-1522.20190097

基于选择清除分析鉴定影响枣果实大小的基因

doi: 10.13332/j.1000-1522.20190097
基金项目: 国家重点研发项目(2018YFD1000607),2017年农业部华北都市农业重点实验室开放课题(kf2017015),北京林业大学热点追踪项目(2018BLRD)
详细信息
    作者简介:

    杨柳。主要研究方向:经济林木遗传育种。Email:991916694@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    庞晓明,教授,博士生导师。主要研究方向:经济林遗传育种。Email:xmpang@163.com 地址:同上

  • 中图分类号: S665.1

Identification of genes related with jujube fruit size based on selective sweep analysis

  • 摘要: 目的通过全基因组水平上比较大果型和小果型两种类型枣品种间遗传多样性水平,检测基因组的选择清除区域,以期鉴定影响枣果实大小的潜在相关基因,为解析枣果实大小差异形成的分子机制奠定基础。方法本研究通过利用12个大果类型枣品种和25个小果类型枣品种群体的简化基因组测序,获得SNP标记后进行主成分和遗传多样性分析,解析枣品种的群体遗传关系;同时,基于遗传分化系数(Fst)和核苷酸多态性(π)进行选择信号检测,进一步对受选择区域所包含的基因进行基因功能及通路的生物信息学分析,并对其中与细胞周期调节以及激素相关的基因在‘桐柏大枣’和酸枣果实中的相对表达量进行了比较分析。结果共获得130 077个高质量的SNPs,大果群体的遗传多样性(π:0.32)低于小果群体(π:0.33),大果和小果群体分别检测到83和149个受选择基因。通过基因的功能注释和富集分析,我们确定了6个参与细胞周期或激素合成调控途径的候选基因(LOC107404981、LOC107406728、LOC107424132、LOC107426306、LOC107418232、LOC107432595)。qRT-PCR检测发现,LOC107424132、LOC107426306、LOC107418232、LOC107432595表达量在花后75天增加,候选基因LOC107404981、LOC107406728的表达量在花后45天和75天显著增加。进一步分析发现这些候选基因在枣品种和酸枣之间存在差异表达。结论结果表明LOC107404981、LOC107406728基因可能与枣果实大小的分子调控有关,为进一步揭示该基因的调控机制奠定了基础。

     

  • 图  1  大果和小果群组亲缘关系分析

    PC代表主成分。PC represents principal component.

    Figure  1.  Large and small jujube groups genetic analysis

    图  2  大果和小果群组连锁不平衡(LD)的衰退曲线图

    Figure  2.  Decline graph of linkage disequilibrium (LD) in large and small jujube groups

    图  3  大果和小果群组中具有强选择性扫描信号的基因组区域

    Pi_ratio((L)θπ/(S)θπ)和Fst值,以10 kb步长滑动的100 kb窗口中计算。Distribution of Pi_ratio ((L)θπ/(S)θπ) and Fst values were calculated in 100 kb windows sliding in 10 kb steps.

    Figure  3.  Genomic regions with strong selective sweep signals in large and small jujube groups

    图  4  候选基因在6个果实发育时期的基因表达分析

    Figure  4.  qRT-PCR analysis of candidate genes in six fruit development stages after flowering

  • [1] Nielsen R. Molecular signatures of natural selection[J]. Annual Review of Genetics, 2005, 39: 197−218.
    [2] Matsuoka Y, Vigouroux Y, Goodman M, et al. A single domestication for maize shown by multilocus microsatellite genotyping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 6080−6084. doi: 10.1073/pnas.052125199
    [3] Smith J, Haigh J. The hitch-hiking effect of a favourable gene[J]. Genetics Research, 2008, 89(5–6): 391−403.
    [4] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication[J]. Cell, 2006, 127(7): 1309–1321. doi: 10.1016/j.cell.2006.12.006
    [5] Du X, Huang G, He S, et al. Resequencing of 243 diploid cotton accessions based on an updated a genome identifies the genetic basis of key agronomic traits[J]. Nature Genetics, 2018, 50(6): 796–802. doi: 10.1038/s41588-018-0116-x
    [6] Konishi S, Izawa T, Lin S Y, et al. An SNP caused loss of seed shattering during rice domestication[J]. Science, 2006, 312: 1392−1396. doi: 10.1126/science.1126410
    [7] 覃成. 基于栽培辣椒和野生辣椒的全基因组测序揭示辣椒属的驯化与特异性[D]. 雅安: 四川农业大学, 2014.

    Qin C. The whole genome sequencing based on cultivated pepper and wild pepper reveals the domestication and specificity of caapsicum[D]. Yaan: Agricultural University, 2014.
    [8] Gao H H, Wang Y, Li W, et al. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans[J]. Experimental Botany, 2018, 69(21): 5089−5104. doi: 10.1093/jxb/ery291
    [9] Ma B, Chen J, Zheng H, et al. Comparative assessment of sugar and malic acid composition in cultivated and wild apples[J]. Food Chemistry, 2015, 172: 86−91. doi: 10.1016/j.foodchem.2014.09.032
    [10] Huang J, Zhang C, Zhao X, et al. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees[J/OL]. PLoS Genetics, 2016, 12(12): e1006433 [2019−02−25]. https://doi.org/10.1371/journal.pgen.1006433.
    [11] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585−595.
    [12] Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps[J]. Genome Research, 2010, 20(3): 393−402. doi: 10.1101/gr.100545.109
    [13] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases[J]. Proceedings of the National Academy of Sciences, 1979, 76(10): 5269−5273. doi: 10.1073/pnas.76.10.5269
    [14] Hudson R R, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data[J]. Genetics, 1987, 116(1): 153−159.
    [15] Weir B S, Cockerham C C. Estimating F-statistics for the analysis of population structure[J]. Evolution, 1984, 38(6): 1358−1370.
    [16] Flintgarcia S A, Thornsberry J M, Buckler E S, et al. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology, 2003, 54(4): 357−374.
    [17] 陈武. 枣核心种质表型多样性分析及基于GBS测序的裂果性状全基因组关联分析[D]. 北京: 北京林业大学, 2017.

    Chen W. Analysis of phenotypic diversity in a core collection of Ziziphus jujuba Mill. and genome-wide association study of fruit cracking by genotyping-by-sequencing[D]. Beijing: Beijing Forestry University, 2017.
    [18] Chen W, Hou L, Zhang Z, et al. Genetic diversity, population structure, and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by-sequencing and SSR markers[J/OL]. Frontiers in Plant Science, 2017, 8: 575 [2019−02−25]. https://doi.org/10.3389/fpls.2017.00575.
    [19] Heng L, Richard D. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25: 1754−1760. doi: 10.1093/bioinformatics/btp324
    [20] Liu M J, Zhao J, Cai Q L, et al. The complex jujube genome provides insights into fruit tree biology[J/OL]. Nature Communications, 2014, 5: 5315 [2019−02−25]. https://xs.scihub.ltd/https://doi.org/10.1038/ncomms6315.
    [21] Depristo M A, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data[J]. Nature genetics, 2011, 43(5): 491−498. doi: 10.1038/ng.806
    [22] Price M N, Dehal P S, Arkin A P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix[J]. Molecular Biology and Evolution, 2009, 26(7): 1641−1650. doi: 10.1093/molbev/msp077
    [23] Li M Z, Tian S, Jin L, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars[J]. Nature Genetics, 2013, 45(12): 1431−1438. doi: 10.1038/ng.2811
    [24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2− ΔΔCT method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [25] Doron F A, Stern A, Mayrose I, et al. Selecton: a server for detecting evolutionary forces at a single aminoacid site[J]. Bioinformatics, 2005, 21: 2101−2103. doi: 10.1093/bioinformatics/bti259
    [26] 罗元宇. 华南地方猪连锁不平衡分析及有效群体大小估计[D]. 广州: 华南农业大学, 2016.

    Luo Y Y. Analysis of lingkage disequilibrium and estimation of effective population size in southern Chinese indigenous pig breeds[D]. Guangzhou: South China Agricultural University, 2016.
    [27] 盛松柏. ‘中阳木枣’与'临黄1号’果实发育的遗传变异鉴定及细胞学分析[D]. 北京: 北京林业大学, 2017.

    Sheng S B. Identification of the genetic variation and cytological analysis of fruit development between ‘Zhongyangmuzao ’ and ‘Linhuang NO. 1’[D]. Beijing: Beijing Forestry University, 2017.
    [28] Lam H M, Xu X, Liu X, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nature Genetics, 2010, 42: 1053−1059. doi: 10.1038/ng.715
    [29] Lin T, Zhu G, Zhang G, et al. Genomic analyses provide insights into the history of tomato breeding[J]. Nature Genetics, 2014, 46(1): 1220−1226.
    [30] Xu X, Liu X, Ge S, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes[J]. Nature Biotechnology, 2012, 30(1): 105−111. doi: 10.1038/nbt.2050
    [31] Harada T, Kurahashi W, Yanai M, et al. Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species[J]. Scientia Horticulturae, 2005, 105(4): 447−456. doi: 10.1016/j.scienta.2005.02.006
    [32] Lu X, Li Q T, Xiong Q, et al. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication[J]. The Plant Journal, 2016, 86(6): 530−544. doi: 10.1111/tpj.13181
    [33] 闫会转. JAZ2和JAZ7调控茉莉酸介导的转录与代谢重编程的机理研究[D]. 杭州: 浙江大学, 2014.

    Yan H Z. Role of JAZ2 and JAZ7 in regiilatiiigjasmonic acid-mediated transcrlptioaal and metabolic reprogramming[D]. Hangzhou: Zhejiang University, 2014.
    [34] Dewitte W, Scofield S, Alcasabas A A, et al. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses[J]. Proceedings of the National Academy of Sciences, 2007, 104(36): 14537−14542. doi: 10.1073/pnas.0704166104
  • 加载中
图(4)
计量
  • 文章访问数:  2030
  • HTML全文浏览量:  875
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-28
  • 修回日期:  2019-03-07
  • 网络出版日期:  2019-10-10
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回