高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青黑杨杂种三倍体花粉母细胞减数分裂染色体行为及其花粉变异研究

李代丽 商静 田菊 宋连君 刘春和 李迎春 康向阳 王君

李代丽, 商静, 田菊, 宋连君, 刘春和, 李迎春, 康向阳, 王君. 青黑杨杂种三倍体花粉母细胞减数分裂染色体行为及其花粉变异研究[J]. 北京林业大学学报, 2019, 41(7): 75-82. doi: 10.13332/j.1000-1522.20190099
引用本文: 李代丽, 商静, 田菊, 宋连君, 刘春和, 李迎春, 康向阳, 王君. 青黑杨杂种三倍体花粉母细胞减数分裂染色体行为及其花粉变异研究[J]. 北京林业大学学报, 2019, 41(7): 75-82. doi: 10.13332/j.1000-1522.20190099
Li Daili, Shang Jing, Tian Ju, Song Lianjun, Liu Chunhe, Li Yingchun, Kang Xiangyang, Wang Jun. Meiotic chromosome behavior of pollen mother cells and pollen variation in triploid hybrid between section Tacamahaca and sect. Aigeiros of Populus[J]. Journal of Beijing Forestry University, 2019, 41(7): 75-82. doi: 10.13332/j.1000-1522.20190099
Citation: Li Daili, Shang Jing, Tian Ju, Song Lianjun, Liu Chunhe, Li Yingchun, Kang Xiangyang, Wang Jun. Meiotic chromosome behavior of pollen mother cells and pollen variation in triploid hybrid between section Tacamahaca and sect. Aigeiros of Populus[J]. Journal of Beijing Forestry University, 2019, 41(7): 75-82. doi: 10.13332/j.1000-1522.20190099

青黑杨杂种三倍体花粉母细胞减数分裂染色体行为及其花粉变异研究

doi: 10.13332/j.1000-1522.20190099
基金项目: 国家自然科学基金项目(31470662),中央高校基本科研业务费专项资金(2018ZY30),北京市教育委员会林果业生态环境功能提升协同创新中心建设项目(PXM2018_014207_000024),2019年度北京林业大学一流学科建设项目(2019XKJS0308)
详细信息
    作者简介:

    李代丽。主要研究方向:林木倍性育种。Email:daili_81@126.com 地址:102601 北京市大兴区礼贤镇东黄垡村北北京市黄垡苗圃

    责任作者:

    王君,教授,博士生导师。主要研究方向:林木细胞遗传学与染色体工程育种。Email:wangjun@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学118信箱

  • 中图分类号: S722.3+5;S792.11

Meiotic chromosome behavior of pollen mother cells and pollen variation in triploid hybrid between section Tacamahaca and sect. Aigeiros of Populus

  • 摘要: 目的本研究通过分析青黑杨杂种三倍体的花粉母细胞减数分裂特征和配子变异规律,为进一步利用三倍体种质作为中介材料进行杨树染色体工程育种奠定基础。方法本研究以雌配子染色体加倍来源的‘哲引3号杨’ × ‘北京杨’杂种三倍体WT-21及杂种二倍体WD-2雄株为材料,基于醋酸洋红染色压片观察,比较分析了两者花粉母细胞减数分裂染色体行为及花粉形态变异。结果(1)无论是三倍体杂种WT-21还是二倍体杂种WD-2,其花粉母细胞减数分裂染色体行为均非常丰富,存在高频率的染色体提前分离、落后染色体、微核等异常现象,反映了亲本基因组间较强的异质性。(2)WT-21和WD-2花粉母细胞减数第二次分裂过程均存在平行纺锤体、融合纺锤体、三极纺锤体等异常定向,而且在WT-21中还发生胞质提前分裂,共同导致减数分裂产物中二分体、三分体等的产生。(3)三倍体WT-21的花粉空瘪率达44.55%,高于二倍体WD-2;WT-21饱满花粉的直径显著大于WD-2,从花粉直径分布可推测出WT-21能产生少量未减数花粉;WT-21的花粉生活力为(1.08 ± 0.44)%,显著低于二倍体WD-2(28.67% ± 2.04%)。结论由于倍性效应和杂合性的双重影响,青黑杨杂种三倍体的花粉母细胞减数分裂存在复杂的染色体行为,并对配子发育造成影响;利用三倍体的花粉进行授粉,可能获得非整倍体和四倍体后代,为杨树染色体操作奠定基础。

     

  • 图  1  杂种三倍体WT-21花粉母细胞减数的异常染色体行为

    A. 中期I,箭头指示提前分向两极的染色体;B. 后期I,箭头指示落后染色体;C. 后期I,箭头指示染色体桥;D. 末期I,箭头指示微核;E. 后期II,箭头指示落后染色体;F. 末期II,箭头指示微核。比例尺为10 μm。A, metaphase I, arrow shows the chromosome precociously migrated; B, anaphase I, arrow shows the lagging chromosomes; C, anaphase I, arrow shows the chromosome bridge; D, telophase I, arrow shows the micronuclei; E, anaphase II, arrow shows the lagging chromosomes; F, telophase II, arrow shows the micronuclei. Bar is 10 μm.

    Figure  1.  PMC abnormal meiotic chromosome behaviors of triploid hybrid WT-21

    图  2  杂种三倍体WT-21花粉母细胞减数第二次分裂的纺锤体定向与胞质分裂异常

    A. 中期II平行纺锤体;B. 中期II融合纺锤体;C. 中期II三极纺锤体;D. 发生胞质分裂提前的中期II细胞;E. 单分体;F. 二分体;G. 三分体;H. 带微小孢子(箭头)的二分体;I. 带微小孢子(箭头)的四分体。比例尺为10 μm。A, parallel spindles at metaphase II; B, fused spindles at metaphase II; C, tripolar spindles at metaphase II; D, metaphase II cell with precocious cytokinesis; E, monad; F, dyad; G, triad; H, dyad with microcyte(arrow); I, tetrad with microcyte(arrow). Bar is 10 μm.

    Figure  2.  Abnormal spindle orientation and cytokinesis during the PMC second meiotic division of triploid hybrid WT-21

    图  3  杂种三倍体WT-21与二倍体WD-2的花粉大小和生活力变异

    A. WT-21和WD-2花粉直径的直方图分布;B. WT-21和WD-2花粉直径的箱线图分布;C. WT-21花粉离体萌发测试;D. WD-2花粉离体萌发测试。C和D中标尺为100 μm。A,histogram distribution of pollen diameter of WT-21 and WD-2; B,boxplot distribution of pollen diameter of WT-21 and WD-2; C, in vitro germination test of WT-21 pollen; D, in vitro germination test of WD-2 pollen. Bars in C and D are equal to 100 μm.

    Figure  3.  Variation of pollen size between triploid hybrid WT-21 and diploid hybrid WD-2

    表  1  杂种三倍体WT-21与同组合二倍体WD-2的花粉母细胞减数分裂异常现象

    Table  1.   PMC meiotic abnormalities in triploid hybrid WT-21 and diploid hybrid WD-2

    减数分裂时期
    Meiotic stage
    减数分裂异常现象
    Abnormality of meiotic
    WT-21WD-2
    观察细胞个数
    Number of observed PMCs
    异常细胞比率
    Percentage of abnormal PMCs/%
    观察细胞个数
    Number of observed PMCs
    异常细胞比率
    Percentage of abnormal PMCs/%
    中期 I
    Metaphase I
    染色体提前分向两极
    Precocious chromosome migration
    451 56.54 734 57.49
    后期 I
    Anaphase I
    落后染色体
    Lagging chromosomes
    469 39.02 288 63.19
    染色体桥
    Chromosome bridge
    15.14 13.19
    末期 I
    Telophase I
    微核
    Micronuclei
    448 20.98 452 42.48
    中期 II
    Metaphase II
    胞质分裂提前
    Premature cytokinesis
    509 13.56 564 0.00
    平行纺锤体
    Parallel spindle
    29.27 25.53
    融合纺锤体
    Fused spindle
    1.38 1.24
    三极纺锤体
    Tripolar spindle
    29.67 0.18
    后期 II
    Anaphase II
    胞质分裂提前
    Premature cytokinesis
    358 20.11 356 0.00
    落后染色体
    Lagging chromosomes
    15.08 36.24
    染色体桥
    Chromosome bridge
    3.07 14.33
    末期 II
    Telophase II
    胞质分裂提前
    Premature cytokinesis
    472 6.99 516 0.00
    微核
    Micronuclei
    44.92 12.60
    减数分裂产物
    Meiotic products
    单分体
    Monad
    1 265 1.03 1 230 0.16
    具微小孢子的单分体
    Monad with microcytes
    1.03 0.00
    二分体
    Dyad
    6.72 3.33
    具微小孢子的二分体
    Dyad with microcytes
    25.22 0.57
    三分体
    Triad
    7.35 4.07
    具微小孢子的三分体
    Triad with microcytes
    9.17 0.33
    具微小孢子的四分体
    Tetrad with microcytes
    23.09 0.00
    减数分裂指数
    Meiotic index
    26.39 91.54
    下载: 导出CSV
  • [1] Köhler C, Scheid O M, Erilova A. The impact of the triploid block on the origin and evolution of polyploid plants[J]. Trends in Genetics, 2010, 26(3): 142−148. doi: 10.1016/j.tig.2009.12.006
    [2] Johnsson H. Cytological studies of diploid and triploid Populus tremula and of crosses between them[J]. Hereditas, 1940, 26(3−4): 321−352.
    [3] Winton L, Einspahr D W. Tetraploid aspen production using unreduced triploid pollen[J]. Forest Science, 1970, 16(2): 180−182.
    [4] Harder M L, Verhagen S, Winton L, et al. Tetraploid aspen production using unreduced pollen from triploid males[J]. Forest Science, 1976, 22(3): 329−330.
    [5] 康向阳, 毛建丰. 三倍体毛白杨配子育性及其子代形态变异研究[J]. 北京林业大学学报, 2001, 23(4):20−23.

    Kang X Y, Mao J F. Gamete fertility and morphological variations in offspring of triploid clones Populus tomentosa[J]. Journal of Beijing Forestry University, 2001, 23(4): 20−23.
    [6] Wang J, Huo B, Liu W, et al. Abnormal meiosis in an intersectional allotriploid of Populus and segregation of ploidy levels in 2x × 3x progeny[J/OL]. PLoS One, 2017, 12(7): e0181767 [2018−12−08]. https://doi.org/10.1371/journal.pone.0181767.
    [7] 赵天锡, 陈章水. 中国杨树集约栽培[M]. 北京: 中国科学技术出版社, 1994.

    Zhao T X, Chen Z S. Intensive poplar cultivation in China[M]. Beijing: China Science & Technology Press, 1994.
    [8] Wang J, Kang X Y, Li D L, et al. Induction of diploid eggs with colchicine during embryo sac development in Populus[J]. Silvae Genetica, 2010, 59(1): 40−48.
    [9] Wang J, Li D L, Kang X Y. Induction of unreduced megaspores with high temperature during megasporogenesis in Populus[J]. Annals of Forest Science, 2012, 69(1): 59−67. doi: 10.1007/s13595-011-0152-5
    [10] Tian J, Wang J H, Dong L, et al. Pollen variation as a response to hybridisation in Populus L. section Aigeiros Duby[J]. Euphytica, 2015, 206(2): 433−443. doi: 10.1007/s10681-015-1507-z
    [11] R Development Core Team. R: a language and environment for statistical computing[M]. Vienna: Austria R Foundation for Statistical Computing, 2007.
    [12] Wang J, Kang X Y, Zhu Q. Variation in pollen formation and its cytological mechanism in an allotriploid white poplar[J]. Tree Genetics & Genomes, 2010, 6(2): 281−290.
    [13] Zhang Z H, Kang X Y, Zhang P D, et al. Incidence and molecular markers of 2n pollen in Populus tomentosa Carr.[J]. Euphytica, 2007, 154(1−2): 145−152. doi: 10.1007/s10681-006-9280-7
    [14] Zhang J F, Wei Z Z, Li D, et al. Using SSR markers to study the mechanism of 2n pollen formation in Populus × euramericana (Dode) Guinier and P. × popularis[J/OL]. Annals of Forest Science, 2009, 66(5): 506 [2018−12−08]. https://www.afs-journal.org/articles/forest/pdf/2009/05/f08222.pdf.
    [15] Mok D W S, Peloquin S J. Three mechanisms of 2n pollen formation in diploid potatoes[J]. Canadian Journal of Genetics and Cytology, 1975, 17(2): 217−225. doi: 10.1139/g75-029
    [16] Bretagnolle F, Thompson J D. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants[J]. New Phytologist, 1995, 129(1): 1−22. doi: 10.1111/nph.1995.129.issue-1
    [17] Ramanna M S. A re-examination of the mechanisms of 2n gametes formation in potato and its implications for breeding[J]. Euphytica, 1979, 28(3): 537−561. doi: 10.1007/BF00038921
    [18] Vorsa N, Bingham E T. Cytology of 2n pollen formation in diploid alfalfa, Medicago sativa[J]. Canadian Journal of Genetics and Cytology, 1979, 21: 525−530. doi: 10.1139/g79-057
    [19] Becerra Lopez-Lavalle L A, Orjeda G. Occurrence and cytological mechanism of 2n pollen formation in a tetraploid accession of Ipomoea batatas (sweet potato)[J]. Journal of Heredity, 2002, 93(3): 185−192. doi: 10.1093/jhered/93.3.185
    [20] Carputo D, Cardi T, Frusciante L, et al. Male fertility and cytology of triploid hybrids between tetraploid Solanum commersonii (2n−4x−48, 2EBN) and Phureja-Tuberosum haploid hybrids (2n−2x−24, 2EBN)[J]. Euphytica, 1995, 83(2): 123−129. doi: 10.1007/BF01678039
    [21] Zhang Z, Kang X. Cytological characteristics of numerically unreduced pollen production in Populus tomentosa Carr.[J]. Euphytica, 2010, 173(2): 151−159. doi: 10.1007/s10681-009-0051-0
    [22] De Storme N, Geelen D. Sexual polyploidization in plants-cytological mechanisms and molecular regulation[J]. New Phytologist, 2013, 198(3): 670−684. doi: 10.1111/nph.12184
    [23] Risso-Pascotto C, Pagliarini M S, Borges do Valle C, et al. Asynchronous meiotic rhythm as the cause of selective chromosome elimination in an interspecific Brachiaria hybrid[J]. Plant Cell Reports, 2004, 22(12): 945−950.
    [24] Ramsey J, Schemske D W. Pathways, mechanisms, and rates of polyploid formation in flowering plants[J]. Annual Review of Ecology and Systematics, 1998, 29(1): 467−501. doi: 10.1146/annurev.ecolsys.29.1.467
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  885
  • HTML全文浏览量:  417
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-28
  • 修回日期:  2019-05-04
  • 网络出版日期:  2019-07-01
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回