高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SSR标记的杨树新品种鉴定及核心引物筛选

王世杰 王雪婷 杜向前 陈洪刚 张会恰 杨敏生

王世杰, 王雪婷, 杜向前, 陈洪刚, 张会恰, 杨敏生. 基于SSR标记的杨树新品种鉴定及核心引物筛选[J]. 北京林业大学学报, 2019, 41(7): 101-110. doi: 10.13332/j.1000-1522.20190110
引用本文: 王世杰, 王雪婷, 杜向前, 陈洪刚, 张会恰, 杨敏生. 基于SSR标记的杨树新品种鉴定及核心引物筛选[J]. 北京林业大学学报, 2019, 41(7): 101-110. doi: 10.13332/j.1000-1522.20190110
Wang Shijie, Wang Xueting, Du Xiangqian, Chen Honggang, Zhang Huiqia, Yang Minsheng. Identification of new Populus varieties and screening of core primers based on SSR markers[J]. Journal of Beijing Forestry University, 2019, 41(7): 101-110. doi: 10.13332/j.1000-1522.20190110
Citation: Wang Shijie, Wang Xueting, Du Xiangqian, Chen Honggang, Zhang Huiqia, Yang Minsheng. Identification of new Populus varieties and screening of core primers based on SSR markers[J]. Journal of Beijing Forestry University, 2019, 41(7): 101-110. doi: 10.13332/j.1000-1522.20190110

基于SSR标记的杨树新品种鉴定及核心引物筛选

doi: 10.13332/j.1000-1522.20190110
基金项目: 河北省农业关键共性技术攻关专项(17226321D),国家林业局科技发展中心项目(2017006)
详细信息
    作者简介:

    王世杰。主要研究方向:林木遗传育种。Email:wangshijieyouxiang@126.com 地址:071000河北省保定市莲池区乐凯南大街2596号河北农业大学林学院

    责任作者:

    杨敏生,教授,博士生导师。主要研究方向:林木遗传育种。Email:yangms100@126.com 地址:同上

  • 中图分类号: S722.3; S792.11

Identification of new Populus varieties and screening of core primers based on SSR markers

  • 摘要: 目的利用经过长期筛选的11对SSR引物对50份杨树新品种(系)进行扩增,探究11对引物的品种鉴定能力和核心引物的筛选依据,为杨树新品种的鉴定、育种工作和核心引物的筛选工作奠定基础。方法使用毛细管电泳技术对扩增结果进行检测,计算等位重复序列数、Shannon信息指数和引物多态性信息指数等。按0/1矩阵记录扩增条带的有无,并通过非加权组平均法(UPGMA)进行聚类分析。计算单个引物和11对引物组合的遗传相似系数,分析遗传相似系数之间的相关性,剔除相关性较低的引物,再对剩余的引物组合进行聚类分析。结果11对引物共扩增出122个DNA片段,平均每对引物扩增的等位重复序列数为11.091个;不同引物PIC值的变化范围是0.530 ~ 0.908,平均值为0.803。11对引物的聚类结果显示,当支距为0.40时,参试样品可以分为2个大类;当支距为0.37时,可分为4个亚类,聚类结果与品种(系)的谱系来源基本吻合。在11对现有引物的基础上,通过分析单个引物和11对引物的遗传相似系数之间的相关性,优化得到9对核心引物。相关性分析和聚类分析表明,优化后的9对引物具有高效鉴定能力和亲缘关系聚类效果。结论本研究证实SSR分子标记可以有效鉴定杨树新品种,并较好反映品种之间的亲缘关系;同时,利用遗传相似系数的相关性可优化现有的引物,为杨树的育种及核心引物的筛选工作提供了参考。

     

  • 图  1  引物PMGC_2217在2个杨树品种中的电泳图谱

    Figure  1.  Electropherogram detected by PMGC_2217 for 2 poplar varieties

    图  2  基于SSR结果的50份杨树品种(系)的聚类树状图

    Figure  2.  Dendrogram of 50 poplar varieties(clone)based on SSR results

    图  3  遗传相似系数散点图

    Figure  3.  Scatter plot of genetic similarity coefficient

    图  4  基于9对引物的聚类树状图

    Figure  4.  Dendrogram of 50 poplar varieties based on 9 SSR results

    表  1  试验材料信息

    Table  1.   Information of experimental materials

    序号 No. 品种(系) Variety (Clone) 编码 Code 品种权号 Variety rights No.
    1 毅杨1号(P. tomentosa × P. bolleana) × P. tomentosa ‘Truncata’ YY1 20120160
    2 毅杨2号(P. tomentosa × P. bolleana) × P. tomentosa ‘Truncata’ YY2 20120161
    3 毅杨3号(P. tomentosa × P. bolleana) × P. tomentosa ‘LM50’ YY3 20120162
    4 景林2号Intraspecific crossing of P. tomentosa JL2 20160187
    5 景林4号Intraspecific crossing of P. tomentosa JL4 20160189
    6 景林5号Intraspecific crossing of P. tomentosa JL5 20160190
    7 景林6号 P. tomentosa ×(P. alba × P. glandulosa JL6 20160191
    8 锦茂杨 P. tomentosa JMY 20150077
    9 碧玉杨The hybrids of sect. Aigeiros and sect. Tacamahaca BYUY 20060001
    10 碧云杨The hybrids of sect. Aigeiros and sect. Tacamahaca BYUNY 20060002
    11 丹红杨 P. deltoides ‘55/65’ × P. deltoides ‘2KEN8’ DHY 20030003
    12 鲁白杨1号(P. alba × P. glandulosa) × P. alba var. pyramidalis LB1 20150127
    13 鲁白杨3号(P. alba × P. glandulosa) × P. alba var. pyramidalis LB3 20150129
    14 红霞杨 P. deltoides ‘I-69/55’ × P. deltoides ‘Shan Hai Guan’ HXY 20120156
    15 彩红杨 P. deltoides ‘I-69/55’ × P. deltoides ‘Shan Hai Guan’ CHY 20150163
    16 中红杨 P. deltoides ‘I-69/55’ × P. deltoides ‘Shan Hai Guan’ ZHY 20060007
    17 全红杨 P. deltoides ‘I-69/55’ × P. deltoides ‘Shan Hai Guan’ QHY 20110002
    18 靓红杨 P. deltoides ‘I-69/55’ × P. deltoides ‘Shan Hai Guan’ LHY 20160180
    19 林源1号 P. tomentosa ×(P. alba × P. glandulosa LY1 20160192
    20 林源3号 P. tomentosa ×(P. alba × P. glandulosa LY3 20160193
    21 林源4号 P. tomentosa ×(P. alba × P. glandulosa LY4 20160194
    22 林源5号 P. tomentosa ×(P. alba × P. glandulosa LY5 20160195
    23 青山杨 P. pseudo-cathayana × P. deltoides ‘Shan Hai Guan’ QSY
    24 黑青杨(Populus × euramericana ‘N3016’) × P. ussuriensis HQY 20130093
    25 鲁林3号杨 P. deltoides ‘I-69/55’ × P. deltoides ‘PE-3-71’ LL3 20080031
    26 鲁林9号杨 P. deltoides ‘L324’ × P. deltoides ‘S307-26’ LL9 20130122
    27 鲁林16号杨 P. deltoides ‘L323’ ×(Populus × euramericana ‘102/74’) LL16 20130121
    28 秦白杨1号 P. alba ×(P. alba × P. glandulosa QB1 20160183
    29 秦白杨2号 P. alba ×(P. alba × P. glandulosa QB2 20160184
    30 秦白杨3号 P. alba ×(P. alba × P. glandulosa QB3 20160185
    31 京2杨(P. deltoides ‘Shan Hai Guan’ × P. deltoides ‘I-63/51’) ×
    [(Populus × euramericana ‘I-72/58’) × P. deltoides ‘Shan Hai Guan’]
    J2Y 20050033
    32 南林415杨 P. deltoides ‘T120’ × P. deltoides ‘S3415’ NL415 20160166
    33 南林15杨 P. deltoides ‘I-69/55’ × P. deltoides ‘S3244’ NL15 20160164
    34 泗杨2号 P. deltoides ‘I-69/55’ × P. deltoides ‘S3239’ SY2 20160165
    35 北林1号(P. tomentosa × P. bolleana) ×(P. alba × P. glandulosa BL1 20090016
    36 北林2号(P. tomentosa × P. bolleana) ×(P. alba × P. glandulosa BL2 20090017
    37 北林3号(P. alba × P. glandulosa) × P. tomentosa BL3 20090030
    38 北林5号(P. alba × P. glandulosa) × P. tomentosa BL5 20090032
    39 北林7号(P. alba × P. glandulosa) × P. tomentosa BL7 20090033
    40 北林8号(P. alba × P. glandulosa) × P. tomentosa BL8 20090034
    41 北林9号(P. alba × P. glandulosa) × P. tomentosa BL9 20090035
    42 北林11号(P. alba × P. glandulosa) × P. tomentosa BL11 20090037
    43 G2杨 G2 poplar G2Y
    44 森海1号 P. deltoides ‘55/56’ × P. cathayana SH1 20070014
    45 森海2号 P. deltoides ‘55/56’ × P. cathayana SH2 20070015
    46 健杨94 Populus × euramericana ‘Robusta 94’ JY94 20070022
    47 17−31杨 17−31 poplar 17-31Y
    48 中成1号 P. deltoides ‘Danhong’ × P. deltoides ‘Nanyang’ ZC1 20130001
    49 276杨 276 poplar 276Y
    50 17−58杨 17−58 poplar 17-58Y
    下载: 导出CSV

    表  2  11对SSR引物信息

    Table  2.   11 pairs of SSR primer information

    序号 No. 引物名称 Name of primer   引物序列 Primer sequence (5′−3′) 基序 Motif 退火温度 Annealing temperature/℃
    1 PMGC_2217 F:ATTAGCTTCTTCTAAAGCAGC
    R:TGACTGACTGTCTGTCTTCG
    GA 55
    2 PMGC_2607 F:TTAAAGGGTGGTCTGCAAGC
    R:CTTCTTGCACCTCGTTTTGAG
    GA 55
    3 PMGC_2885 F:CATGATCAAATTGGATTTGAATG
    R:AAAGATGAACATGGCTAGCTC
    GA 62
    4 GCPM_162 F:GCCCAAACTCTTATTTGATG
    R:TGGTGGAGGCTAGGATAGTA
    CTT 52
    5 GCPM_1255 F:GAACCTTAAAACCAGAACCC
    R:GAGCCACAGAAATACTGCTC
    AG 52
    6 PMGC_649 F:CATCCATGATATCAAACCAAATTAG
    R:TGTAATCCAAACATAAAATCCCAAG
    GA 50
    7 PMGC_2525 F:CGAGTCACAAGCTCCCAATAG
    R:GCAGGCTGTCCTATCTGCG
    GA 50
    8 GCPM_1599 F:AACAAAACCACCACACAAAT
    R:TGTAATGTTCCTACTCCGCT
    AG 50
    9 PMGC_2020 F:TAAGGCTCTGTTTGTTAGTCAG
    R:GAGATCTAATAAAGAAGGTCTTC
    GA 52
    10 PMGC_2030 F:TCCACAACTCTTGGCTAACC
    R:GGACTACAATGTGCGTGACC
    GA 52
    11 ORPM_248 F:TGTGTGTTTTCGGTGATTATGA
    R:CCAAAGCAAATGCCACATTA
    TTGG 50
    下载: 导出CSV

    表  3  11对SSR引物多态性分析

    Table  3.   Analysis of 11 pairs of SSR primer polymorphisms

    No. N Na Ng Ne I PIC
    1 50 13 21 7.974 2.296 0.863
    2 50 11 20 7.022 2.140 0.843
    3 48 12 21 5.984 2.028 0.815
    4 49 15 22 8.747 2.411 0.877
    5 49 17 21 11.655 2.584 0.908
    6 49 10 19 7.167 2.096 0.845
    7 49 11 21 5.254 2.019 0.794
    8 50 13 22 7.530 2.222 0.853
    9 50 11 23 7.310 2.125 0.848
    10 48 5 7 3.465 1.364 0.661
    11 49 4 5 2.474 1.031 0.530
    合计 Total 122 202 74.583 22.317 8.837
    均值 Mean 11.091 18.364 6.780 2.029 0.803
    注:N. 样本量;Na. 等位重复序列数;Ng. 基因型数;Ne. 有效等位重复序列数;I. Shannon信息指数;PIC. 多态信息指数。Notes: N, number of samples; Na, number of allelic repeat sequences; Ng, number of genotype; Ne, effective number of allelic repeat sequences; I, Shannon’s information index; PIC, polymorphic information content.
    下载: 导出CSV

    表  4  遗传相似系数相关性分析

    Table  4.   Correlation analysis of genetic similarity coefficient

    引物序号 Primer No. 1 2 3 4 5 6 7 8 9 10 11
    相关系数 Correlation coefficient 0.573** 0.369** 0.486** 0.473** 0.462** 0.466** 0.398** 0.403** 0.399** 0.292** 0.497**
    注:**P < 0.01水平上相关性极显著;*P < 0.05水平上相关性显著。Notes: ** means the correlation was extremely significant at P < 0.01 level; * means the correlation was significant at P < 0.05 level.
    下载: 导出CSV
  • [1] 张忠涛, 孙乐智. 我国的杨树资源与开发利用[J]. 林业建设, 2001(5):21−24. doi: 10.3969/j.issn.1006-6918.2001.05.007

    Zhang Z T, Sun L Z. Poplar resource and utilization in China[J]. Forestry Construction, 2001(5): 21−24. doi: 10.3969/j.issn.1006-6918.2001.05.007
    [2] 何承忠, 张志毅, 安新民, 等. 我国杨树育种现状及其展望[J]. 西南林学院学报, 2006, 26(4):86−89.

    He C Z, Zhang Z Y, An X M, et al. Present situation and prospect to poplar breeding in China[J]. Journal of Southwest Forestry College, 2006, 26(4): 86−89.
    [3] 栾鹖慧, 苏晓华, 张冰玉. 杨属(Populus L.)种质资源遗传学评价研究进展[J]. 植物学报, 2011, 46(5):586−595.

    Luan H H, Su X H, Zhang B Y. Research progress in genetic evaluation of Populus L. germplasm resources[J]. Chinese Bulletin of Botany, 2011, 46(5): 586−595.
    [4] 潘惠新. 杨树新品种选育研究[J]. 林业科技开发, 2002, 16(3):3−4. doi: 10.3969/j.issn.1000-8101.2002.03.001

    Pan H X. Research on selective breeding of new cultivars for poplar[J]. Forest Research, 2002, 16(3): 3−4. doi: 10.3969/j.issn.1000-8101.2002.03.001
    [5] 张鹤, 张文庆, 赵敬东. DNA分子标记在植物新品种保护中的应用现状及发展前景[J]. 安徽农业科学, 2009, 37(34):16897−16899. doi: 10.3969/j.issn.0517-6611.2009.34.022

    Zhang H, Zhang W Q, Zhao J D. Application status and development of DNA molecular marker in protection of new plant variety[J]. Journal of Anhui Agricultural Sciences, 2009, 37(34): 16897−16899. doi: 10.3969/j.issn.0517-6611.2009.34.022
    [6] 张德强, 张志毅, 杨凯. 杨树分子标记研究进展[J]. 北京林业大学学报, 2000, 22(6):79−84. doi: 10.3321/j.issn:1000-1522.2000.06.020

    Zhang D Q, Zhang Z Y, Yang K. Advances of molecular marker researches in poplar[J]. Journal of Beijing Forestry University, 2000, 22(6): 79−84. doi: 10.3321/j.issn:1000-1522.2000.06.020
    [7] 王和勇, 乔爱民, 陈敏, 等. 植物遗传标记的发展及应用[J]. 仲恺农业技术学院学报, 2000, 13(4):58−64.

    Wang H Y, Qiao A M, Chen M, et al. The development and application of plant genetic markers[J]. Journal of Zhongkai Agrotechnical College, 2000, 13(4): 58−64.
    [8] 李柱刚, 崔崇士, 马荣才, 等. 遗传标记在植物上的发展与应用[J]. 东北农业大学学报, 2001, 32(4):396−401. doi: 10.3969/j.issn.1005-9369.2001.04.013

    Li Z G, Cui C S, Ma R C, et al. Development and application of genetic markers in plants[J]. Journal of Northeast Agricultural University, 2001, 32(4): 396−401. doi: 10.3969/j.issn.1005-9369.2001.04.013
    [9] Castiglione S, Wang G, Damiani G, et al. RAPD fingerprints for identification and for taxonomic studies of elite poplar (Populus spp.) clones[J]. Theoretical & Applied Genetics, 1993, 87(1−2): 54−59.
    [10] 尹佟明, 孙晔, 易能君, 等. 美洲黑杨无性系AFLP指纹分析[J]. 植物学报, 1998, 40(8):778−780. doi: 10.3321/j.issn:1672-9072.1998.08.015

    Yin T M, Sun Y, Yi N J, et al. Genome fingerprinting analysis in Populus deltoids[J]. Acta Botanica Sinica, 1998, 40(8): 778−780. doi: 10.3321/j.issn:1672-9072.1998.08.015
    [11] 崔国惠, 倪中福, 刘志勇, 等. 小麦杂种优势群研究Ⅲ普通小麦和斯卑尔脱小麦微卫星分子标记遗传差异的研究[J]. 农业生物技术学报, 1999, 7(4):333−338. doi: 10.3969/j.issn.1674-7968.1999.04.007

    Cui G H, Ni Z F, Liu Z Y, et al. Study on wheat heterotic group Ⅲ genetic diversity revealed by microsatellite marker in wheat (Triticum aestivum L.) and spelt (Triticum spelta L.)[J]. Journal of Agricultural Biotechnology, 1999, 7(4): 333−338. doi: 10.3969/j.issn.1674-7968.1999.04.007
    [12] 卫尊征, 张金凤, 张德强, 等. 白、青杨派间杂交幼胚培养及杂种子代的分子鉴定[J]. 北京林业大学学报, 2008, 30(5):73−77. doi: 10.3321/j.issn:1000-1522.2008.05.012

    Wei Z Z, Zhang J F, Zhang D Q, et al. Immature ovule culture of inter-sectional hybrids between (Populus tomentosa × P. bolleana) and P. simonii and molecular identification of the hybrid filial generation[J]. Journal of Beijing Forestry University, 2008, 30(5): 73−77. doi: 10.3321/j.issn:1000-1522.2008.05.012
    [13] 姚俊修, 毛秀红, 李善文, 等. 基于荧光SSR标记的白杨派种质资源遗传多样性研究[J]. 北京林业大学学报, 2018, 40(6):92−100.

    Yao J X, Mao X H, Li S W, et al. Genetic diversity of germplasm resources of Leuce based on SSR fluorescent marker[J]. Journal of Beijing Forestry University, 2018, 40(6): 92−100.
    [14] 韩志校, 张军, 左力辉, 等. 基于SSR和ITS标记的杨树多态性及聚类分析[J]. 中国农业科技导报, 2017, 19(7):36−43.

    Han Z X, Zhang J, Zuo L H, et al. Populus polymorphism and cluster analysis based on SSR and ITS markers[J]. Journal of Agricultural Science and Technology, 2017, 19(7): 36−43.
    [15] 梁海永, 刘彩霞, 杨敏生, 等. 杨树品种的SSR分析及鉴定[J]. 河北农业大学学报, 2005, 28(4):27−31. doi: 10.3969/j.issn.1000-1573.2005.04.007

    Liang H Y, Liu C X, Yang M S, et al. Simple sequence repeat (SSR) analysis and identify of different cultivars in Populus L.[J]. Journal of Agricultural University of Hebei, 2005, 28(4): 27−31. doi: 10.3969/j.issn.1000-1573.2005.04.007
    [16] 王辉, 杨敏生, 朱建峰. 利用SSR对杨属部分种及杂种的分析鉴定[J]. 东北林业大学学报, 2008, 36(12):4−6. doi: 10.3969/j.issn.1000-5382.2008.12.002

    Wang H, Yang M S, Zhu J F. SSR analysis of some species and hybrids in Populus[J]. Journal of Northeast Agricultural University, 2008, 36(12): 4−6. doi: 10.3969/j.issn.1000-5382.2008.12.002
    [17] 赵双菁, 刘莹莹, 魏敏静, 等. 标记引物数量对白桦遗传多样性的影响[J]. 防护林科技, 2016(4):6−10, 26.

    Zhao S J, Liu Y Y, Wei M J, et al. Effects of number of labeling primers on genetic diversity of Betula platyphylla[J]. Protection Forest Science and Technology, 2016(4): 6−10, 26.
    [18] 苏龙, 徐志健, 乔卫华, 等. 广西药用野生稻遗传多样性分析及SSR引物数量对遗传多样性结果的影响研究[J]. 植物遗传资源学报, 2017, 18(4):603−610.

    Su L, Xu Z J, Qiao W H, et al. Study on genetic diversity of Oryza officinalis in Guangxi Province and the effect of the number of SSR primers on genetic diversity analysis[J]. Journal of Plant Genetic Resources, 2017, 18(4): 603−610.
    [19] Allen G C, Flores-Vergara M A, Krasynanski S, et al. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide[J]. Nature Protocols, 2006, 1(5): 2320−2325. doi: 10.1038/nprot.2006.384
    [20] Peakall R, Smouse P E. GenAlEx 6.5: genetic analysis in Excel. population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(28): 2537−2539.
    [21] Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 2010, 16(5): 1099−1106.
    [22] 李亚玲, 韩国民, 何沙娥, 等. 基于DNA分子标记数据构建系统进化树的新策略[J]. 生物信息学, 2008, 6(4):168−170. doi: 10.3969/j.issn.1672-5565.2008.04.007

    Li Y L, Han G M, He S E, et al. A new strategy for construction of phylogenetic tree based on DNA molecular mark data[J]. China Journal of Bioinformatics, 2008, 6(4): 168−170. doi: 10.3969/j.issn.1672-5565.2008.04.007
    [23] Botstein D. A theory of modular evolution for bacteriophages[J]. Annals of the New York Academy of Sciences, 2010, 354(1): 484−491.
    [24] 刘峰, 冯雪梅, 钟文, 等. 适合棉花品种鉴定的SSR核心引物的筛选[J]. 分子植物育种, 2009, 7(6):1160−1168.

    Liu F, Feng X M, Zhong W, et al. Screening of SSR core primer pairs for identificating cotton cultivar[J]. Molecular Plant Breeding, 2009, 7(6): 1160−1168.
    [25] 贾会霞, 姬慧娟, 胡建军, 等. 杨树新品种的SSR指纹图谱构建和倍性检测[J]. 林业科学, 2015, 51(2):69−79.

    Jia H X, Ji H J, Hu J J, et al. Fingerprints of SSR markers and ploidy detection for new Populus varieties[J]. Scientia Silvae Sinicae, 2015, 51(2): 69−79.
    [26] 高伟, 王坤波, 刘方, 等. SSR引物及多态性位点数对陆地棉野生种系聚类结果的影响[J]. 植物遗传资源学报, 2013, 14(2):237−242. doi: 10.3969/j.issn.1672-1810.2013.02.008

    Gao W, Wang K B, Liu F, et al. Effection of the quantity of SSR primer and allele on cluster analysis of Gossypium hirsutum Linn races[J]. Journal of Plant Genetic Resources, 2013, 14(2): 237−242. doi: 10.3969/j.issn.1672-1810.2013.02.008
    [27] 王彪, 常汝镇, 陶莉, 等. 分析中国栽培大豆遗传多样性所需SSR引物的数目[J]. 分子植物育种, 2003, 1(1):82−88. doi: 10.3969/j.issn.1672-416X.2003.01.012

    Wang B, Chang R Z, Tao L, et al. Identification of SSR primer numbers for analyzing genetic diversity of chinese soybean cultivated soybean[J]. Molecular Plant Breeding, 2003, 1(1): 82−88. doi: 10.3969/j.issn.1672-416X.2003.01.012
    [28] 李瑾. 基于两种毛细管电泳系统检测呼吸道病毒的多重PCR技术的建立及应用[D]. 北京: 中国疾病预防控制中心, 2012.

    Li J. Development of two novel multiplex RT-PCR assays for simultaneous detection of 16 human respiratory virus types/subtypes based on capillary electrophoresis[D]. Beijing: Chinese Center for Disease Control and Prevention, 2012.
    [29] 肖璐. 7种猪病毒性疫病QIAxcel及Bio-Plex检测方法的建立与初步应用[D]. 成都: 四川农业大学, 2017.

    Xiao L. Simultaneous typing of seven porcine virus pathogens by QIAxcel and Bio-Plex and its preliminary application[D]. Chengdu: Sichuan Agricultural University, 2017.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  2031
  • HTML全文浏览量:  921
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 修回日期:  2019-04-06
  • 网络出版日期:  2019-07-05
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回