Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应

钟悦鸣, 王文娟, 王健铭, 王雨辰, 李景文, 袁冬, 蕃芸芸, 魏新成

钟悦鸣, 王文娟, 王健铭, 王雨辰, 李景文, 袁冬, 蕃芸芸, 魏新成. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
引用本文: 钟悦鸣, 王文娟, 王健铭, 王雨辰, 李景文, 袁冬, 蕃芸芸, 魏新成. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
Citation: Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128

极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应

基金项目: 国家自然科学基金项目(31570610)
详细信息
    作者简介:

    钟悦鸣。主要研究方向:恢复生态学及生物多样性保护。Email:ym_tsong@sina.com  地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    李景文,博士,教授。主要研究方向:生物多样性。Email:lijingwen@bjfu.edu.cn  地址:同上

  • 中图分类号: S718.43; S714.2

Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors

  • 摘要:
    目的极端干旱区绿洲是全球变化的敏感区域,特别是由于水资源短缺及水文过程的改变,绿洲土壤环境因此产生了强烈异质性。植物如何适应高度土壤异质性是绿洲植物多样性维持的关键性科学问题。而探究植物叶片这一对土壤异质性敏感器官的功能性状及其对土壤水盐因子的响应,有利于揭示全球变化背景下绿洲植物适应的根本策略。
    方法本研究以额济纳这一典型荒漠绿洲的常见植物叶片为研究对象,选择25种植物的8种叶功能性状,包括叶片厚度(LT)、叶干物质含量(LDMC)、比叶面积(SLA)、叶碳含量(LCC)、叶氮含量(LNC)、叶磷含量(LPC)、叶片碳氮比(C/N)、叶片氮磷比(N/P),分析了功能性状之间的相关性及其在群落水平上的特征,并探讨了叶功能性状对不同土壤水盐环境的响应。
    结果(1) 在不同土壤水盐环境中,各个叶功能性状具有不同程度的变异幅度,其中SLA最大,LCC最小。(2) 部分功能性状之间表现出显著的协同或权衡变化趋势。LT与SLA、LDMC与SLA、LPC与LDMC、LNC与C/N、LPC与N/P呈极显著负相关(P < 0.01);LCC与LT、LNC与LCC、C/N与N/P呈显著负相关(P < 0.05)。LDMC与C/N、SLA与LPC、LCC与C/N、N/P与LCC、LNC与N/P呈极显著正相关(P < 0.01);LDMC与LCC、SLA与LNC呈显著正相关(P < 0.05)。(3) 叶功能性状对土壤水盐因子的响应具有显著的差异。在低水低盐环境中,叶片通过提高LDMC、LNC、N/P,降低LPC、C/N来适应干旱胁迫为主的土壤环境。在低水高盐环境中,叶片通过降低LDMC、C/N、N/P,提高LNC、LPC来适应盐胁迫为主的土壤环境。在(相对)高水高盐环境中,叶片主要通过降低LNC、N/P,提高C/N来适应盐胁迫相对较低、水分含量相对充足的土壤环境。
    结论在额济纳绿洲区域内,植物群落叶功能性状通过一定程度的变异和某种协同−权衡的功能组合形式适应极端干旱的环境,并对土壤水盐因子的响应具有一定程度的差异,其中盐分含量对该环境下的群落叶功能性状的影响更为关键。本研究为进一步探究极端干旱区绿洲植物对土壤水盐因子的适应机制研究提供了科学依据。
    Abstract:
    ObjectiveExtremely arid oasis is a sensitive area of global change, especially water shortage and changes in hydrological processes had led to strong heterogeneity in the oasis soil environment. How plants adapt to high soil heterogeneity is a key scientific issue in the maintenance of oasis plant diversity. So investigating plant leaves, the most sensitive organ traits and their response to soil water and salt factors is helpful to reveal the fundamental strategies of plant adaptation under environmental heterogeneity conditions.
    MethodIn this study, the common plant leaves of Ejina, a typical desert oasis, were selected as research objects, and eight leaf functional traits of 25 plants were selected, including leaf thickness (LT), leaf dry matter content (LDMC), specific leaf area (SLA), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), leaf carbon to nitrogen ratio (C/N) and leaf nitrogen to phosphorus ratio (N/P). The correlations between functional traits and their characteristics at the community level were analyzed. And the response of leaf functional traits to different soil water and salt environments was discussed.
    ResultResults showed that: (1) each leaf functional trait had varying degrees of variation, among which SLA had the highest coefficient of variation and LCC had the smallest coefficient of variation. (2) There was a significant synergy or trade-off between some functional traits. LT and SLA, LDMC and SLA, LPC and LDMC, LNC and C/N, LPC and N/P were significantly negatively correlated (P < 0.01), and there was a significant negative correlation between LCC and LT, LNC and LCC, C/N and N/P (P < 0.05). LDMC and C/N, SLA and LPC, LCC and C/N, N/P and LCC, LNC and N/P were significantly positively correlated (P < 0.01), and there was a significantly positive correlation with LDMC and LCC, SLA and LNC (P < 0.05). (3) Leaf functional traits had a certain degree of difference in response to soil water and salt factors. In the low-water and low-salt environment, the leaves were adapted to drought-stressed soil environment by increasing LDMC, LNC, N/P, and lowering LPC and C/N. In the low-water and high-salt environment, the leaves improved LNC and LPC to reduce the soil environment dominated by salt stress by reducing LDMC, C/N and N/P. In the (relative) high-water and high-salt environment, the leaves were mainly adapted to the soil environment with relatively low salt stress and relatively sufficient water content by reducing LNC, N/P and increasing C/N.
    ConclusionIn the Ejina Oasis Region, the leaf functional traits of plant community adapted to the extreme arid environment through a certain degree of variation and a synergistic-balanced functional combination. The response to soil water and salt factors also had a certain degree of difference. Among them, the effect of salt content on the leaf functional traits of the plant community was more critical. This study provides a scientific basis for further research on the adaptation mechanism of oasis plants in extreme arid regions to soil water and salt factors.
  • 防浪林是种植于堤防迎水侧滩地上用于防浪护堤和抢险取材的专用林,既可以保持水土、调节气候、促进林业经济发展,又可以防浪消能、延长堤防寿命和减少堤防的维护费用,是堤防工程的重要组成部分[1-2]。目前我国各大江河堤岸的重要河段均种植了防浪林,且根据不同河段的实际情况,实施了不同的防浪林建设方案。物理模型实验是研究防浪林消浪机理的一个有效手段,对科学提出防浪林优化布局以及如何营造防浪林工程有重要理论指导意义和实用价值。目前已有很多学者进行了相关的物理实验研究。何飞等[3]在考虑植物根、茎、叶影响下设计水槽实验探究刚性植物的消浪特性,认为根、茎、叶均在不同程度上影响植物消浪特性。陈杰等[4]在研究刚性植物根、茎、叶对植物消波特性的影响中得出植物消波特性与植物淹没度有关,根、茎、叶的存在增加了植物拖曳力系数。陈杰等[5]还通过物理实验研究了规则波通过非淹没刚性植物波高的沿程变化,实验结果表明相比于矩形分布方式,三角形的分布方式消耗了更多的波能,消浪效果更明显。

    以上相关的物理实验研究主要是针对植被本身的特性以及排列方式对消浪效果的影响,缺乏对林带宽度、植被密度、滩地波高等因素的考虑,以及不规则波条件下植被对消浪效果的影响。

    本文以嫩江干流佰大街堤防为例,选取防浪林林带宽度、排列方式、密度、树型以及滩地波高作为影响因素,采用控制变量法,通过构建防浪林消浪物理模型研究其对消浪效果的影响,并提出合理的防浪林优化设计方案。

    嫩江干流佰大街堤防位于黑龙江省齐齐哈尔市泰来县境内,自汤池镇愚公堤经佰大街村至李地房子,堤防分为上、中、下3段,全长6.70 km。原佰大街堤上下段中间为高地相连,后因村民在高地附近修建民房,不断从高地取土,导致现有高地地面高程减少,最低处地面高程141.5 m,远低于此处河道50年一遇洪水位144 m,造成了防洪缺口。现状堤防属于扩建砂堤,筑堤土料比较松散,抗冲刷能力较弱,容易产生流土、管涌等现象。嫩江该河段高水位时,水面宽阔,堤前滩地现有防浪林1.0 km,多为5 ~ 8年生的杨树(Populus spp.)和少量柳树(Salix spp.)。预计规划新建防浪林10 km。该段堤防防洪标准目前仅为30 ~ 35年一遇。佰大街堤防如图1所示。

    图  1  佰大街堤防示意图
    Figure  1.  Schematic map of Baidajie Dike

    模型比尺的确定主要依据实验条件、波浪要素、造波机性能等因素,并综合考虑比尺效应带来的误差影响等。已有的物理模型实验研究中,王瑞雪[6]选择几何比尺1∶20,在长40 m× 宽0.5 m × 高0.8 m 的水槽中进行非刚性植物对波浪传播变形影响的实验研究;吉红香[7]选择几何比尺为1∶10,在长66 m × 宽1.0 m × 高1.6 m的水槽中研究滩地植物对波浪变形及消浪效果的影响。

    本实验是在不规则波浪水槽中进行。为了消除比尺效应,更好的模拟嫩江干流防浪林的消浪效果,依据实际条件下防浪林的植被生长能力、波浪要素以及现有实验设备条件,结合实验方案的设计,对比造波机实际可造波周期,依照周期比例确定模型几何比尺,并根据重力相似准则确定时间比尺,最终确定本模型采用的比尺为1∶10。其中比尺确定公式[8]如(1)所示。

    λ=lmlp,λt=λ1/2,λf=λ1/2λu=λ1/2,λF=λ3,λQ=λ5/2 (1)

    式中:λ为模型长度比尺;lp为原型长度;lm为模型长度;λt为时间比尺;λf为频率比尺;λu为速度比尺;λF为力比尺;λQ为流量比尺。

    关于植被消浪的物理模型实验设计方面,白玉川等[9]用裁减的桧柏(Sabina chinensis)枝模拟防浪林,研究了非破碎波条件下的防浪林消浪效果。胡嵋等[10]对于在堤岸上栽种植被消浪这一新的护岸工程,选取桧柏树枝作为防浪林的模型,择选出对消浪护岸具有主要影响的因素。王瑞雪[6]用PVC塑料圆管来模拟刚性植物树干进行波浪水槽物理模型实验。吴迪等[11]和曹海锦等[12]也分别利用聚乙烯仿真绿色植物模拟柔性植物进行柔性植物消浪及沿程阻流特性实验研究。通过不同的研究可以发现影响消浪效果的主要因素为防浪林林带宽度、排列方式、种植密度、林木高度等。

    针对不同的实际条件,物理模型的设计方案有一定的差异,需根据实际情况和需要来设计实验方案。本实验根据嫩江干流的实际条件及水文资料,推算佰大街堤防典型断面的多年一遇水位高程及波要素极值,对比分析不同条件下波浪沿程衰减的变化。由于防浪林消浪效果的影响因素较多,因而本模型实验采用控制单因素变量法,得出各因素对消浪效果的影响。本实验中设计的主要对比方案有:不同的防浪林林带宽度、不同的防浪林排列方式、不同的防浪林密度、不同树型的防浪林、以及不同的来波波高等的消浪实验方案。分析不同实验方案条件下的消浪效果,提出该段的防浪林优化布局方案。

    根据研究区实际防浪林植被的外形参数,包括树高、树干直径、树冠直径、树冠以下树干高度等,按照比尺计算模型树的外形参数,根据所需材料的尺寸对模型树进行修剪和黏合,植物树干采用圆形木棒模拟,植物树冠部分采用塑料仿真枝叶模拟,由此制作合适的模型树,如图2所示。

    图  2  人工模型树
    Figure  2.  Artificial model tree

    同时,为更好的定量分析防浪林消浪机理,定义q为防浪林植被消浪系数:

    q=(hh)/h (2)

    式中:h为无防浪林的波高,h为经过防浪林消波后的波高。

    佰大街断面50年一遇洪水条件下滩地平均水深为2.83 m,此时防浪林处于部分淹没状态。依据该断面多年一遇水位及波浪要素值的推算结果中50年一遇的波要素,得出该堤段波浪周期在2 ~ 4 s之间,平均波高在0.1 ~ 0.6 m之间。根据《海港水文规范》推算出相应的1/10大波(规则波)波高,Hs(不规则波)有效波高,分别进行了规则波和不规则波消浪效果的模拟实验,实验波要素分别为1/10波高1.16 m、有效波高0.91 m、平均波高0.57 m、平均周期3.01 m。此外,为进一步研究不同波要素条件下防浪林消浪效果的差异,选取了1.1倍和0.9倍50年一遇波高条件进行对比实验。

    本实验是在河海大学海岸工程实验大厅70 m长的不规则波浪水槽中进行,水槽宽1.0 m,高1.8 m,有效实验段宽1 m。水槽一端安装了推板式不规则生波机,通过电机系统控制推波板运动行程和频率[13]。数字波高仪采用YWS200-XX型,波高采集系统采用水工试验数据采集处理系统(DJ800型),精度为0.01 cm。所有量测信号均通过计算机采集、记录和分析,能模拟最大波高0.3 m、波周期0.5 ~ 5 s的不规则波,具备研究不规则波作用下的各种动力响应机制及波浪与建筑物相互作用关键技术和理论问题的能力。水槽底部铺设灰色混凝板,在灰塑料板上打孔用以固定植物模型。水槽左侧为造波机,波高传感器两个,分别布设在防浪林模型前后,采集波高的变化。最右侧为消波层,能够有效地吸收尾波的波能,避免波浪的反射对实验造成干扰(实验布置和实验实景图分别如图3图4所示)。

    图  3  实验布置
    Figure  3.  Experimental layout
    图  4  实验实景图
    Figure  4.  Experimental real scenery

    根据实验方案,进行了佰大街断面在不同排列方式(等边三角形、正方形及梅花形,如图5 ~ 7所示)条件下的消浪实验。由于模型比尺为1∶10,因此根据佰大街的种植现状,确定实验室条件下的防浪林植被密度为17株/m2,树干直径为0.7 cm,树干高度为16 cm,树冠直径为13 cm,树冠为高度8 cm。规则波和不规则波条件下的实验结果分别如图8图9所示。

    图  5  等边三角形排列布置图
    Figure  5.  Equilateral triangle arrangement layout
    图  7  梅花形排列布置图
    Figure  7.  Plum blossom arrangement layout
    图  8  不同排列方式规则波沿程消浪系数
    Figure  8.  Regular wave dissipation coefficient along the path of different arrangements
    图  9  不同排列方式不规则波沿程消浪系数
    Figure  9.  Irregular wave dissipation coefficient along the path of different arrangements
    图  6  正方形排列布置图
    Figure  6.  Square arrangement layout

    对比不同的防浪林排列方式下防浪林的消浪效果,可见在规则波条件下,当林带宽度在40 m以上时,等边三角形和梅花形排列的防浪林要明显优于正方形排列;在不规则波条件下,当林带宽度在40 m以上时,等边三角形和正方形排列的防浪林要明显优于梅花形排列。因此,等边三角形排列方式相对较优。这与陈杰等[5]通过物理实验研究规则波通过非淹没刚性植物波高的沿程变化中得出三角形分布方式消浪效果最明显的结论一致。对比相同防浪林林带宽度下的规则波和不规则的消浪效果,可以发现规则波条件下防浪林的消浪系数较大,但两者差距较小。而实际条件下的波浪为不规则波,因而不规则波的消浪系数更为接近实际条件。

    同时,还可以发现,不管是规则波还是不规则波条件下,随着林带宽度增加到30 m以后,防浪林的消浪系数对于林带宽度的敏感度降低,此时消浪效果提升空间很小。

    根据实验方案,进行了在不同密度的防浪林(实验室条件下8株/m2,17株/m2,27株/m2)条件下的消浪实验。其中实验室条件下树型为,树干直径0.7 cm,树干高度16 cm,树冠直径13 cm,树冠高度8 m。采用不规则波,实验结果如图10所示。

    图  10  不同密度不规则波沿程消浪系数
    Figure  10.  Irregular wave dissipation coefficient along the path of different densities

    对比不同密度的防浪林的消浪效果,可以发现,当防浪林林带宽度为10 m时,不同密度的防浪林消浪效果差别不大,均为8%左右;当防浪林林带宽度大于10 m时,防浪林的消浪效果随着密度的增加而增加,密度27株/m2比密度8株/m2的消浪系数大5%到10%。但过高的密度会影响防浪林树木的正常生长,而且种植成本较高。可见,当林带宽度为40 m,排列方式为等边三角形时,0.17株/m2(原型条件)是较为经济合理的植被密度方案。此时,当防浪林林带宽度进一步增大50 m时,防浪林的消浪系数仅增加3.04%。

    根据实地测量,选取了4种树型作为树干和树冠条件的组合,如表1所示,采用相对较优的等边三角形排列方式,实验室条件下防浪林密度为17株/m2。规则波和不规则波条件下的模型实验结果分别如图11图12所示。

    表  1  树型尺寸
    Table  1.  Tree size
    项目
    Item
    树型1
    Tree type 1
    树型2
    Tree type 2
    树型3
    Tree type 3
    树型4
    Tree type 4
    树干高度
    Trunk height/m
    0.260.260.260.16
    树干半径
    Trunk radius/m
    0.025 0.015 0.015 0.007
    树冠高度
    Crown height/m
    0.350.350.350.08
    树冠直径
    Crown radius/m
    0.250.250.170.13
    下载: 导出CSV 
    | 显示表格
    图  11  不同树型规则波沿程消浪系数
    Figure  11.  Regular wave dissipation coefficient along the path of different tree types
    图  12  不同树型不规则波沿程消浪系数
    Figure  12.  Irregularwave dissipation coefficient along the path of different tree types

    由以上结果可见,不同树型的消浪效果有着明显的差异。树型1(成年树)树干较粗,树冠较为茂密,茂密的根、茎、叶存在增加了植物拖曳力系数,因而消浪能力显著,规则波条件下,20 m宽的防浪林其消浪系数即达60%左右,50 m宽防浪林的消浪系数可达到80%以上。

    树型2相对树型1的差别为树干半径较小,由消浪实验结果可见,树干的粗细对消浪效果的影响较小。树型3的消浪系数要小于树型2。而树型4(幼树)的消浪效果明显小于树型1、树型2和树型3。可见,不同防浪林树型对同一断面条件下的消浪效果有着重要的影响,对比其消浪系数可知,树冠的消浪作用要明显强于树干,因而在防浪林方案设计时,需考虑采用树冠消浪为主的方法。

    根据实验方案,进行了在不同来波波高(1.1倍50年一遇波高、50年一遇波高、0.9倍50年一遇波高)条件下的消浪实验。采用相对较优的等边三角形排列方式,实验室条件下,树干直径0.7 cm,树干高度16 cm,树冠直径13 cm,树冠高度8 cm。规则波和不规则波条件下的模型实验结果分别如图13图14所示。

    图  13  不同波高规则波沿程消浪系数
    Figure  13.  Regular wave dissipation coefficient along the path of different wave heights
    图  14  不同波高不规则波沿程消浪系数
    Figure  14.  Irregular wave dissipation coefficient along the path of different wave heights

    图13图14可见,不同波高条件下的消浪效果有所差异,但差异较小,且不规则波的消浪系数变化更为稳定。波高越大,消浪效果越好。

    嫩江干流佰大街堤防段,在合理的防浪林树型条件下,等边三角形排列的防浪林要优于梅花形和正方形排列方式;密度的增加对防浪林消浪效果有着一定的提高,但过高的密度会影响防浪林树木的正常生长;不同树型对不同断面条件的消浪效果有着重要的影响,且树冠的消浪作用要明显强于树干。不同波高条件下的消浪效果有所差异,但差异较小,且不规则波的消浪系数变化更为稳定。

  • 图  1   不同水盐环境下叶功能性状特征

    M1为低水低盐环境;M2为低水高盐环境;M3为(相对)高水高盐环境。M1, low water, low salt environment; M2, low water, high salt environment; M3, (relative) high water, high salt environment.

    Figure  1.   Characteristics of leaf functional traits in different water and salt environments

    图  2   叶功能性状与土壤水盐因子的RDA排序图

    Figure  2.   Biplots of RDA between leaf functional traits and soil water and salt factors

    表  1   不同水盐环境类型土壤水分及盐分含量

    Table  1   Soil water and salt content in different water and salt environments

    水盐梯度类型
    Water salt gradient type
    水盐环境
    Water and salt environment
    土壤含水率
    Water content/%
    土壤电导率
    Soil electrical conductivity/
    (ms·cm− 1)
    样地个数
    Sample plot number
    M1 低水低盐 Low water, low salt 5.236 ± 2.758 0.794 ± 1.003 12
    M2 低水高盐 Low water, high salt 6.853 ± 4.025 3.196 ± 4.001 27
    M3 (相对)高水高盐 (Relative) high water, high salt 17.504 ± 5.770 4.286 ± 4.080 21
    下载: 导出CSV

    表  2   额济纳绿洲常见植物群落叶功能性状的特征

    Table  2   Parameters of community leaf functional traits in Ejina Oasis

    叶功能性状
    Leaf functional trait
    平均值
    Mean
    最小值
    Minimum
    最大值
    Maximum
    偏度
    Skewness
    峰度
    Kurtosis
    变异系数
    Coefficient of variation/%
    LT/mm 0.30 ± 0.08 0.16 0.46 0.23 − 0.43 25.60
    LDMC/(g·kg− 1) 316.23 ± 101.31 151.18 503.31 − 0.18 − 1.09 32.61
    SLA/(m2·kg− 1) 10.28 ± 4.90 4.08 29.57 2.99 10.03 47.65
    LCC/(g·kg− 1) 423.12 ± 49.95 293.57 514.58 − 0.51 0.17 11.80
    LNC/(g·kg− 1) 26.10 ± 5.84 14.40 40.84 0.43 − 0.40 22.39
    LPC/(g·kg− 1) 2.47 ± 0.97 0.91 4.64 0.83 − 0.07 39.40
    C/N 17.11 ± 4.50 8.10 28.07 0.05 − 0.48 26.31
    N/P 12.11 ± 5.06 5.33 25.13 0.66 − 0.33 41.82
    注:LT为叶片厚度;LDMC为叶干物质含量;SLA为比叶面积;LCC为叶碳含量;LNC为叶氮含量;LPC为叶磷含量;C/N为叶碳氮比;N/P为叶氮磷比。下同。Notes: LT, leaf thickness; LDMC, leaf dry matter content; SLA, specific leaf area; LCC, leaf carbon content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; C/N, leaf carbon to nitrogen ratio; N/P, leaf nitrogen to phosphorus ratio. Same as below.
    下载: 导出CSV

    表  3   额济纳绿洲常见植物群落叶功能性状相关性分析

    Table  3   Correlation analysis between community leaf functional traits in Ejina Oasis

    项目 ItemLTLDMCSLALCCLNCLPCC/N
    LDMC 0.005
    SLA − 0.536** − 0.420**
    LCC − 0.257* 0.274* 0.166
    LNC − 0.069 − 0.215 0.287* − 0.269*
    LPC − 0.233 − 0.572** 0.492** − 0.174 0.080
    C/N − 0.064 0.336** − 0.183 0.574** − 0.911** − 0.192
    N/P 0.016 0.407** − 0.189 0.048 0.472** − 0.776** − 0.324*
    注:**表示极显著相关P < 0.01,*表示显著相关P < 0.05。Notes: ** means correlation is significant at P < 0.01 level, * means correlation is significant at P < 0.05 level.
    下载: 导出CSV
  • [1]

    Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320: 1444−1449. doi: 10.1126/science.1155121

    [2] 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应[J]. 科学通报, 2018, 63(2):136−140.

    Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2): 136−140.

    [3]

    Schroter D. Ecosystem service supply and vulnerability to global change in Europe[J]. Science, 2005, 310: 1333−1337. doi: 10.1126/science.1115233

    [4]

    Ricklefs R E. A comprehensive framework for global patterns in biodiversity[J]. Ecology Letters, 2004, 7(1): 1−15. doi: 10.1046/j.1461-0248.2003.00554.x

    [5]

    Guittar J, Goldberg D, Klanderud K, et al. Can trait patterns along gradients predict plant community responses to climate change?[J]. Ecology, 2016, 97(10): 2791. doi: 10.1002/ecy.1500

    [6] 毛伟, 李玉霖, 张铜会, 等. 不同尺度生态学中植物叶性状研究概述[J]. 中国沙漠, 2012, 32(1):33−41.

    Mao W, Li Y L, Zhang T H, et al. Research advances of plant leaf traits at different ecology scales[J]. Journal of Desert Research, 2012, 32(1): 33−41.

    [7]

    Mooney K A, Halitschke R, Kessler A, et al. Evolutionary trade-offs in plants mediate the strength of trophic cascades[J]. Science, 2010, 327: 1642−1644. doi: 10.1126/science.1184814

    [8] 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019

    Meng T T, Ni J, Wang G H. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 2007, 31(1): 150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019

    [9]

    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and-low rainfall and high-and-low nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x

    [10] 苏培玺, 严巧娣. 内陆黑河流域植物稳定碳同位素变化及其指示意义[J]. 生态学报, 2008, 28(4):1616−1624. doi: 10.3321/j.issn:1000-0933.2008.04.032

    Su P X, Yan Q D. Stable carbon isotope variation in plants and their indicating significance along the inland Heihe River Basin of northwestern China[J]. Acta Ecologica Sinica, 2008, 28(4): 1616−1624. doi: 10.3321/j.issn:1000-0933.2008.04.032

    [11]

    Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. PNAS, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101

    [12] 李修鹏, 杨晓东, 余树全, 等. 基于功能性状的常绿阔叶植物防火性能评价[J]. 生态学报, 2013, 33(20):6604−6613.

    Li X P, Yang X D, Yu S Q, et al. Functional trait-based evaluation of plant fireproofing capability for subtropical evergreen broad-leaved woody plant[J]. Acta Ecologica Sinica, 2013, 33(20): 6604−6613.

    [13]

    Roa-Fuentes L L, Templer P H, Campo J. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico[J]. Oecologia, 2015, 179(2): 585−597. doi: 10.1007/s00442-015-3354-y

    [14]

    Jin T T, Liu G H, Fu B J, et al. Assessing adaptability of planted trees using leaf traits: a case study with Robinia pseudoacacia L. in the Loess Plateau, China[J]. Chinese Geographical Science, 2011, 21(3): 290−303. doi: 10.1007/s11769-011-0470-4

    [15] 杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3):702−713.

    Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits woody plants and their relationships with environmental change: a review[J]. Chinese Journal of Ecology, 2012, 31(3): 702−713.

    [16] 祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007, 27(3):930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013

    Qi J, Ma K M, Zhang Y X. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations[J]. Acta Ecologica Sinica, 2007, 27(3): 930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013

    [17] 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21):5747−5758.

    Zhang H W, Ma J Y, Sun W, et al. Altitudinal variational in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China[J]. Acta Ecologica Sinica, 2010, 30(21): 5747−5758.

    [18] 冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J]. 植物生态学报, 2010, 34(6):619−627. doi: 10.3773/j.issn.1005-264x.2010.06.001

    Feng Q H, Shi Z M, Dong L L, et al. Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 619−627. doi: 10.3773/j.issn.1005-264x.2010.06.001

    [19] 张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3):736−749.

    Zhang K, Hou J H, He N P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecologica Sinica, 2017, 37(3): 736−749.

    [20]

    Ripley B, Frole K, Gilbert M. Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses[J]. Annals of Botany, 2010, 105(3): 493−503. doi: 10.1093/aob/mcp307

    [21]

    Conti G, Díaz S. Plant functional diversity and carbon storage: an empirical test in semi-arid forest ecosystems[J]. Journal of Ecology, 2013, 101(1): 18−28. doi: 10.1111/1365-2745.12012

    [22]

    Spasojevic M J, Grace J B, Harrison S, et al. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients[J]. Journal of Ecology, 2014, 102(2): 447−455. doi: 10.1111/1365-2745.12204

    [23]

    Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124

    [24]

    Bagousse-Pinguet Y L, Gross N, Maestre F T, et al. Testing the environmental filtering concept in global drylands[J]. Journal of Ecology, 2017, 105(4): 1058−1069. doi: 10.1111/1365-2745.12735

    [25]

    Cornwell W K, Schwilk D W, Ackerly D D. A trait-based test for habitat filtering: convex hull volume[J]. Ecology, 2006, 87(6): 1465−1471. doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2

    [26] 周欣, 左小安, 赵学勇, 等. 科尔沁沙地中南部34种植物叶功能性状及其相互关系[J]. 中国沙漠, 2015, 35(6):1489−1495. doi: 10.7522/j.issn.1000-694X.2014.00117

    Zhou X, Zuo X A, Zhao X Y, et al. Plant functional traits and interrelationships of 34 plant species in south central Horqin Sandy Land, China[J]. Journal of Desert Research, 2015, 35(6): 1489−1495. doi: 10.7522/j.issn.1000-694X.2014.00117

    [27] 刘金环, 曾德慧, Don Koo Lee. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8):921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010

    Liu J H, Zeng D H, Lee D K. Leaf traits and their interrelationships of main plant species in southeast Horqin Sandy Land[J]. Chinese Journal of Ecology, 2006, 25(8): 921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010

    [28]

    Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155−162. doi: 10.1046/j.1469-8137.1999.00427.x

    [29]

    Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora[J]. Functional Ecology, 2001, 15(3): 351−359. doi: 10.1046/j.1365-2435.2001.00522.x

    [30]

    Wang R L, Yu G R, He N P, et al. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China[J]. Journal of Geographical Sciences, 2016, 26(1): 15−26. doi: 10.1007/s11442-016-1251-x

    [31]

    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403

    [32]

    Cornelissen J H C, Aerts R, Cerabolini B, et al. Carbon cycling traits of plant species are linked with mycorrhizal strategy[J]. Oecologia, 2001, 129(4): 611−619. doi: 10.1007/s004420100752

    [33] 李永华, 罗天祥, 卢琦, 等. 青海省沙珠玉治沙站17种主要植物叶性因子的比较[J]. 生态学报, 2005, 25(5):994−999. doi: 10.3321/j.issn:1000-0933.2005.05.008

    Li Y H, Luo T X, Lu Q, et al. Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province[J]. Acta Ecologica Sinica, 2005, 25(5): 994−999. doi: 10.3321/j.issn:1000-0933.2005.05.008

    [34] 施宇, 温仲明, 龚时慧, 等. 黄土丘陵区植物功能性状沿气候梯度的变化规律[J]. 水土保持研究, 2012, 19(1):107−111, 116.

    Shi Y, Wen Z M, Gong S H, et al. Trait variations along a climatic gradient in hilly area of Loess Plateau[J]. Research of Soil and Water Conservation, 2012, 19(1): 107−111, 116.

    [35]

    Wright I J, Westoby M. Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs, leaf function in 28 Australian woody species[J]. Functional Ecology, 2000, 14(1): 97−107. doi: 10.1046/j.1365-2435.2000.00393.x

    [36]

    Güsewell S. N : P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2010, 164(2): 243−266.

    [37]

    Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x

    [38]

    Mclean E H, Prober S M, Stock W D, et al. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa[J]. Plant, Cell & Environment, 2014, 37(6): 1440−1451.

    [39] 韩玲, 赵成章, 徐婷, 等. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5):529−538. doi: 10.17521/cjpe.2016.0123

    Han L, Zhao C Z, Xu T, et al. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China[J]. Chinese Journal of Plant Ecology, 2017, 41(5): 529−538. doi: 10.17521/cjpe.2016.0123

    [40] 盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581−1589.

    Pan Y F, Chen X B, Jiang Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecologica Sinica, 2018, 38(5): 1581−1589.

    [41] 郄亚栋, 蒋腊梅, 吕光辉, 等. 温带荒漠植物叶片功能性状对土壤水盐的响应[J]. 生态环境学报, 2018, 27(11):2000−2010.

    Qie Y D, Jiang L M, Lü G H, et al. Response of plant leaf functional traits to soil aridity and salinity in temperate desert ecosystem[J]. Ecology and Environmental Sciences, 2018, 27(11): 2000−2010.

    [42]

    McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719−739. doi: 10.1111/j.1469-8137.2008.02436.x

    [43] 李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系[J]. 植物生理学报, 2013, 49(2):153−160.

    Li S J, Su P X, Zhang H N, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants[J]. Plant Physiology Journal, 2013, 49(2): 153−160.

    [44] 祁建, 马克明, 张育新. 北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J]. 生态学报, 2008, 28(1):122−128. doi: 10.3321/j.issn:1000-0933.2008.01.014

    Qi J, Ma K M, Zhang Y X. Comparisons on leaf traits of Quercus liaotungensis Koidz. on different slope positions in Dongling Moutain of Beijing[J]. Acta Ecologica Sinica, 2008, 28(1): 122−128. doi: 10.3321/j.issn:1000-0933.2008.01.014

    [45] 安慧. 放牧干扰对荒漠草原植物叶性状及其相互关系的影响[J]. 应用生态学报, 2012, 23(11):2991−2996.

    An H. Effects of grazing disturbance on leaf traits and their interrelationships of plants in desert steppe[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 2991−2996.

    [46]

    Vendramini F, Sandra D, Gurvich D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytologist, 2002, 154(1): 147−157. doi: 10.1046/j.1469-8137.2002.00357.x

    [47] 李玉霖, 崔建垣, 苏永中. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J]. 生态学报, 2005, 25(2):304−311. doi: 10.3321/j.issn:1000-0933.2005.02.019

    Li Y L, Cui J H, Su Y Z. Specific leaf area and leaf dry matter content of some plants in different dune habitats[J]. Acta Ecologica Sinica, 2005, 25(2): 304−311. doi: 10.3321/j.issn:1000-0933.2005.02.019

    [48] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1):2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    [49]

    Franco A C, Bustamante M, Caldas L S, et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit[J]. Trees, 2005, 19(3): 326−335. doi: 10.1007/s00468-004-0394-z

图(2)  /  表(3)
计量
  • 文章访问数:  1526
  • HTML全文浏览量:  858
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-11
  • 修回日期:  2019-04-16
  • 网络出版日期:  2019-09-27
  • 发布日期:  2019-09-30

目录

/

返回文章
返回