高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应

钟悦鸣 王文娟 王健铭 王雨辰 李景文 袁冬 蕃芸芸 魏新成

钟悦鸣, 王文娟, 王健铭, 王雨辰, 李景文, 袁冬, 蕃芸芸, 魏新成. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20-29. doi: 10.13332/j.1000-1522.20190128
引用本文: 钟悦鸣, 王文娟, 王健铭, 王雨辰, 李景文, 袁冬, 蕃芸芸, 魏新成. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20-29. doi: 10.13332/j.1000-1522.20190128
Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. doi: 10.13332/j.1000-1522.20190128
Citation: Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. doi: 10.13332/j.1000-1522.20190128

极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应

doi: 10.13332/j.1000-1522.20190128
基金项目: 国家自然科学基金项目(31570610)
详细信息
    作者简介:

    钟悦鸣。主要研究方向:恢复生态学及生物多样性保护。Email:ym_tsong@sina.com  地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    李景文,博士,教授。主要研究方向:生物多样性。Email:lijingwen@bjfu.edu.cn  地址:同上

  • 中图分类号: S718.43; S714.2

Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors

  • 摘要: 目的极端干旱区绿洲是全球变化的敏感区域,特别是由于水资源短缺及水文过程的改变,绿洲土壤环境因此产生了强烈异质性。植物如何适应高度土壤异质性是绿洲植物多样性维持的关键性科学问题。而探究植物叶片这一对土壤异质性敏感器官的功能性状及其对土壤水盐因子的响应,有利于揭示全球变化背景下绿洲植物适应的根本策略。方法本研究以额济纳这一典型荒漠绿洲的常见植物叶片为研究对象,选择25种植物的8种叶功能性状,包括叶片厚度(LT)、叶干物质含量(LDMC)、比叶面积(SLA)、叶碳含量(LCC)、叶氮含量(LNC)、叶磷含量(LPC)、叶片碳氮比(C/N)、叶片氮磷比(N/P),分析了功能性状之间的相关性及其在群落水平上的特征,并探讨了叶功能性状对不同土壤水盐环境的响应。结果(1) 在不同土壤水盐环境中,各个叶功能性状具有不同程度的变异幅度,其中SLA最大,LCC最小。(2) 部分功能性状之间表现出显著的协同或权衡变化趋势。LT与SLA、LDMC与SLA、LPC与LDMC、LNC与C/N、LPC与N/P呈极显著负相关(P < 0.01);LCC与LT、LNC与LCC、C/N与N/P呈显著负相关(P < 0.05)。LDMC与C/N、SLA与LPC、LCC与C/N、N/P与LCC、LNC与N/P呈极显著正相关(P < 0.01);LDMC与LCC、SLA与LNC呈显著正相关(P < 0.05)。(3) 叶功能性状对土壤水盐因子的响应具有显著的差异。在低水低盐环境中,叶片通过提高LDMC、LNC、N/P,降低LPC、C/N来适应干旱胁迫为主的土壤环境。在低水高盐环境中,叶片通过降低LDMC、C/N、N/P,提高LNC、LPC来适应盐胁迫为主的土壤环境。在(相对)高水高盐环境中,叶片主要通过降低LNC、N/P,提高C/N来适应盐胁迫相对较低、水分含量相对充足的土壤环境。结论在额济纳绿洲区域内,植物群落叶功能性状通过一定程度的变异和某种协同−权衡的功能组合形式适应极端干旱的环境,并对土壤水盐因子的响应具有一定程度的差异,其中盐分含量对该环境下的群落叶功能性状的影响更为关键。本研究为进一步探究极端干旱区绿洲植物对土壤水盐因子的适应机制研究提供了科学依据。

     

  • 图  1  不同水盐环境下叶功能性状特征

    M1为低水低盐环境;M2为低水高盐环境;M3为(相对)高水高盐环境。M1, low water, low salt environment; M2, low water, high salt environment; M3, (relative) high water, high salt environment.

    Figure  1.  Characteristics of leaf functional traits in different water and salt environments

    图  2  叶功能性状与土壤水盐因子的RDA排序图

    Figure  2.  Biplots of RDA between leaf functional traits and soil water and salt factors

    表  1  不同水盐环境类型土壤水分及盐分含量

    Table  1.   Soil water and salt content in different water and salt environments

    水盐梯度类型
    Water salt gradient type
    水盐环境
    Water and salt environment
    土壤含水率
    Water content/%
    土壤电导率
    Soil electrical conductivity/
    (ms·cm− 1)
    样地个数
    Sample plot number
    M1 低水低盐 Low water, low salt 5.236 ± 2.758 0.794 ± 1.003 12
    M2 低水高盐 Low water, high salt 6.853 ± 4.025 3.196 ± 4.001 27
    M3 (相对)高水高盐 (Relative) high water, high salt 17.504 ± 5.770 4.286 ± 4.080 21
    下载: 导出CSV

    表  2  额济纳绿洲常见植物群落叶功能性状的特征

    Table  2.   Parameters of community leaf functional traits in Ejina Oasis

    叶功能性状
    Leaf functional trait
    平均值
    Mean
    最小值
    Minimum
    最大值
    Maximum
    偏度
    Skewness
    峰度
    Kurtosis
    变异系数
    Coefficient of variation/%
    LT/mm 0.30 ± 0.08 0.16 0.46 0.23 − 0.43 25.60
    LDMC/(g·kg− 1) 316.23 ± 101.31 151.18 503.31 − 0.18 − 1.09 32.61
    SLA/(m2·kg− 1) 10.28 ± 4.90 4.08 29.57 2.99 10.03 47.65
    LCC/(g·kg− 1) 423.12 ± 49.95 293.57 514.58 − 0.51 0.17 11.80
    LNC/(g·kg− 1) 26.10 ± 5.84 14.40 40.84 0.43 − 0.40 22.39
    LPC/(g·kg− 1) 2.47 ± 0.97 0.91 4.64 0.83 − 0.07 39.40
    C/N 17.11 ± 4.50 8.10 28.07 0.05 − 0.48 26.31
    N/P 12.11 ± 5.06 5.33 25.13 0.66 − 0.33 41.82
    注:LT为叶片厚度;LDMC为叶干物质含量;SLA为比叶面积;LCC为叶碳含量;LNC为叶氮含量;LPC为叶磷含量;C/N为叶碳氮比;N/P为叶氮磷比。下同。Notes: LT, leaf thickness; LDMC, leaf dry matter content; SLA, specific leaf area; LCC, leaf carbon content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; C/N, leaf carbon to nitrogen ratio; N/P, leaf nitrogen to phosphorus ratio. Same as below.
    下载: 导出CSV

    表  3  额济纳绿洲常见植物群落叶功能性状相关性分析

    Table  3.   Correlation analysis between community leaf functional traits in Ejina Oasis

    项目 ItemLTLDMCSLALCCLNCLPCC/N
    LDMC 0.005
    SLA − 0.536** − 0.420**
    LCC − 0.257* 0.274* 0.166
    LNC − 0.069 − 0.215 0.287* − 0.269*
    LPC − 0.233 − 0.572** 0.492** − 0.174 0.080
    C/N − 0.064 0.336** − 0.183 0.574** − 0.911** − 0.192
    N/P 0.016 0.407** − 0.189 0.048 0.472** − 0.776** − 0.324*
    注:**表示极显著相关P < 0.01,*表示显著相关P < 0.05。Notes: ** means correlation is significant at P < 0.01 level, * means correlation is significant at P < 0.05 level.
    下载: 导出CSV
  • [1] Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320: 1444−1449. doi: 10.1126/science.1155121
    [2] 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应[J]. 科学通报, 2018, 63(2):136−140.

    Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2): 136−140.
    [3] Schroter D. Ecosystem service supply and vulnerability to global change in Europe[J]. Science, 2005, 310: 1333−1337. doi: 10.1126/science.1115233
    [4] Ricklefs R E. A comprehensive framework for global patterns in biodiversity[J]. Ecology Letters, 2004, 7(1): 1−15. doi: 10.1046/j.1461-0248.2003.00554.x
    [5] Guittar J, Goldberg D, Klanderud K, et al. Can trait patterns along gradients predict plant community responses to climate change?[J]. Ecology, 2016, 97(10): 2791. doi: 10.1002/ecy.1500
    [6] 毛伟, 李玉霖, 张铜会, 等. 不同尺度生态学中植物叶性状研究概述[J]. 中国沙漠, 2012, 32(1):33−41.

    Mao W, Li Y L, Zhang T H, et al. Research advances of plant leaf traits at different ecology scales[J]. Journal of Desert Research, 2012, 32(1): 33−41.
    [7] Mooney K A, Halitschke R, Kessler A, et al. Evolutionary trade-offs in plants mediate the strength of trophic cascades[J]. Science, 2010, 327: 1642−1644. doi: 10.1126/science.1184814
    [8] 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019

    Meng T T, Ni J, Wang G H. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 2007, 31(1): 150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019
    [9] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and-low rainfall and high-and-low nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [10] 苏培玺, 严巧娣. 内陆黑河流域植物稳定碳同位素变化及其指示意义[J]. 生态学报, 2008, 28(4):1616−1624. doi: 10.3321/j.issn:1000-0933.2008.04.032

    Su P X, Yan Q D. Stable carbon isotope variation in plants and their indicating significance along the inland Heihe River Basin of northwestern China[J]. Acta Ecologica Sinica, 2008, 28(4): 1616−1624. doi: 10.3321/j.issn:1000-0933.2008.04.032
    [11] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. PNAS, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [12] 李修鹏, 杨晓东, 余树全, 等. 基于功能性状的常绿阔叶植物防火性能评价[J]. 生态学报, 2013, 33(20):6604−6613.

    Li X P, Yang X D, Yu S Q, et al. Functional trait-based evaluation of plant fireproofing capability for subtropical evergreen broad-leaved woody plant[J]. Acta Ecologica Sinica, 2013, 33(20): 6604−6613.
    [13] Roa-Fuentes L L, Templer P H, Campo J. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico[J]. Oecologia, 2015, 179(2): 585−597. doi: 10.1007/s00442-015-3354-y
    [14] Jin T T, Liu G H, Fu B J, et al. Assessing adaptability of planted trees using leaf traits: a case study with Robinia pseudoacacia L. in the Loess Plateau, China[J]. Chinese Geographical Science, 2011, 21(3): 290−303. doi: 10.1007/s11769-011-0470-4
    [15] 杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3):702−713.

    Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits woody plants and their relationships with environmental change: a review[J]. Chinese Journal of Ecology, 2012, 31(3): 702−713.
    [16] 祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007, 27(3):930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013

    Qi J, Ma K M, Zhang Y X. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations[J]. Acta Ecologica Sinica, 2007, 27(3): 930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013
    [17] 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21):5747−5758.

    Zhang H W, Ma J Y, Sun W, et al. Altitudinal variational in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China[J]. Acta Ecologica Sinica, 2010, 30(21): 5747−5758.
    [18] 冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J]. 植物生态学报, 2010, 34(6):619−627. doi: 10.3773/j.issn.1005-264x.2010.06.001

    Feng Q H, Shi Z M, Dong L L, et al. Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 619−627. doi: 10.3773/j.issn.1005-264x.2010.06.001
    [19] 张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3):736−749.

    Zhang K, Hou J H, He N P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecologica Sinica, 2017, 37(3): 736−749.
    [20] Ripley B, Frole K, Gilbert M. Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses[J]. Annals of Botany, 2010, 105(3): 493−503. doi: 10.1093/aob/mcp307
    [21] Conti G, Díaz S. Plant functional diversity and carbon storage: an empirical test in semi-arid forest ecosystems[J]. Journal of Ecology, 2013, 101(1): 18−28. doi: 10.1111/1365-2745.12012
    [22] Spasojevic M J, Grace J B, Harrison S, et al. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients[J]. Journal of Ecology, 2014, 102(2): 447−455. doi: 10.1111/1365-2745.12204
    [23] Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
    [24] Bagousse-Pinguet Y L, Gross N, Maestre F T, et al. Testing the environmental filtering concept in global drylands[J]. Journal of Ecology, 2017, 105(4): 1058−1069. doi: 10.1111/1365-2745.12735
    [25] Cornwell W K, Schwilk D W, Ackerly D D. A trait-based test for habitat filtering: convex hull volume[J]. Ecology, 2006, 87(6): 1465−1471. doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
    [26] 周欣, 左小安, 赵学勇, 等. 科尔沁沙地中南部34种植物叶功能性状及其相互关系[J]. 中国沙漠, 2015, 35(6):1489−1495. doi: 10.7522/j.issn.1000-694X.2014.00117

    Zhou X, Zuo X A, Zhao X Y, et al. Plant functional traits and interrelationships of 34 plant species in south central Horqin Sandy Land, China[J]. Journal of Desert Research, 2015, 35(6): 1489−1495. doi: 10.7522/j.issn.1000-694X.2014.00117
    [27] 刘金环, 曾德慧, Don Koo Lee. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8):921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010

    Liu J H, Zeng D H, Lee D K. Leaf traits and their interrelationships of main plant species in southeast Horqin Sandy Land[J]. Chinese Journal of Ecology, 2006, 25(8): 921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010
    [28] Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155−162. doi: 10.1046/j.1469-8137.1999.00427.x
    [29] Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora[J]. Functional Ecology, 2001, 15(3): 351−359. doi: 10.1046/j.1365-2435.2001.00522.x
    [30] Wang R L, Yu G R, He N P, et al. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China[J]. Journal of Geographical Sciences, 2016, 26(1): 15−26. doi: 10.1007/s11442-016-1251-x
    [31] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403
    [32] Cornelissen J H C, Aerts R, Cerabolini B, et al. Carbon cycling traits of plant species are linked with mycorrhizal strategy[J]. Oecologia, 2001, 129(4): 611−619. doi: 10.1007/s004420100752
    [33] 李永华, 罗天祥, 卢琦, 等. 青海省沙珠玉治沙站17种主要植物叶性因子的比较[J]. 生态学报, 2005, 25(5):994−999. doi: 10.3321/j.issn:1000-0933.2005.05.008

    Li Y H, Luo T X, Lu Q, et al. Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province[J]. Acta Ecologica Sinica, 2005, 25(5): 994−999. doi: 10.3321/j.issn:1000-0933.2005.05.008
    [34] 施宇, 温仲明, 龚时慧, 等. 黄土丘陵区植物功能性状沿气候梯度的变化规律[J]. 水土保持研究, 2012, 19(1):107−111, 116.

    Shi Y, Wen Z M, Gong S H, et al. Trait variations along a climatic gradient in hilly area of Loess Plateau[J]. Research of Soil and Water Conservation, 2012, 19(1): 107−111, 116.
    [35] Wright I J, Westoby M. Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs, leaf function in 28 Australian woody species[J]. Functional Ecology, 2000, 14(1): 97−107. doi: 10.1046/j.1365-2435.2000.00393.x
    [36] Güsewell S. N : P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2010, 164(2): 243−266.
    [37] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [38] Mclean E H, Prober S M, Stock W D, et al. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa[J]. Plant, Cell & Environment, 2014, 37(6): 1440−1451.
    [39] 韩玲, 赵成章, 徐婷, 等. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5):529−538. doi: 10.17521/cjpe.2016.0123

    Han L, Zhao C Z, Xu T, et al. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China[J]. Chinese Journal of Plant Ecology, 2017, 41(5): 529−538. doi: 10.17521/cjpe.2016.0123
    [40] 盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581−1589.

    Pan Y F, Chen X B, Jiang Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecologica Sinica, 2018, 38(5): 1581−1589.
    [41] 郄亚栋, 蒋腊梅, 吕光辉, 等. 温带荒漠植物叶片功能性状对土壤水盐的响应[J]. 生态环境学报, 2018, 27(11):2000−2010.

    Qie Y D, Jiang L M, Lü G H, et al. Response of plant leaf functional traits to soil aridity and salinity in temperate desert ecosystem[J]. Ecology and Environmental Sciences, 2018, 27(11): 2000−2010.
    [42] McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719−739. doi: 10.1111/j.1469-8137.2008.02436.x
    [43] 李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系[J]. 植物生理学报, 2013, 49(2):153−160.

    Li S J, Su P X, Zhang H N, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants[J]. Plant Physiology Journal, 2013, 49(2): 153−160.
    [44] 祁建, 马克明, 张育新. 北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J]. 生态学报, 2008, 28(1):122−128. doi: 10.3321/j.issn:1000-0933.2008.01.014

    Qi J, Ma K M, Zhang Y X. Comparisons on leaf traits of Quercus liaotungensis Koidz. on different slope positions in Dongling Moutain of Beijing[J]. Acta Ecologica Sinica, 2008, 28(1): 122−128. doi: 10.3321/j.issn:1000-0933.2008.01.014
    [45] 安慧. 放牧干扰对荒漠草原植物叶性状及其相互关系的影响[J]. 应用生态学报, 2012, 23(11):2991−2996.

    An H. Effects of grazing disturbance on leaf traits and their interrelationships of plants in desert steppe[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 2991−2996.
    [46] Vendramini F, Sandra D, Gurvich D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytologist, 2002, 154(1): 147−157. doi: 10.1046/j.1469-8137.2002.00357.x
    [47] 李玉霖, 崔建垣, 苏永中. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J]. 生态学报, 2005, 25(2):304−311. doi: 10.3321/j.issn:1000-0933.2005.02.019

    Li Y L, Cui J H, Su Y Z. Specific leaf area and leaf dry matter content of some plants in different dune habitats[J]. Acta Ecologica Sinica, 2005, 25(2): 304−311. doi: 10.3321/j.issn:1000-0933.2005.02.019
    [48] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1):2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002
    [49] Franco A C, Bustamante M, Caldas L S, et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit[J]. Trees, 2005, 19(3): 326−335. doi: 10.1007/s00468-004-0394-z
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  684
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-12
  • 修回日期:  2019-04-17
  • 网络出版日期:  2019-09-28
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回