高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胡杨异形叶抗氧化能力的比较

李萍萍 曾明 李文海 赵媛媛 郑彩霞

李萍萍, 曾明, 李文海, 赵媛媛, 郑彩霞. 胡杨异形叶抗氧化能力的比较[J]. 北京林业大学学报, 2019, 41(8): 76-83. doi: 10.13332/j.1000-1522.20190134
引用本文: 李萍萍, 曾明, 李文海, 赵媛媛, 郑彩霞. 胡杨异形叶抗氧化能力的比较[J]. 北京林业大学学报, 2019, 41(8): 76-83. doi: 10.13332/j.1000-1522.20190134
Li Pingping, Zeng Ming, Li Wenhai, Zhao Yuanyuan, Zheng Caixia. Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2019, 41(8): 76-83. doi: 10.13332/j.1000-1522.20190134
Citation: Li Pingping, Zeng Ming, Li Wenhai, Zhao Yuanyuan, Zheng Caixia. Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2019, 41(8): 76-83. doi: 10.13332/j.1000-1522.20190134

胡杨异形叶抗氧化能力的比较

doi: 10.13332/j.1000-1522.20190134
基金项目: 国家自然科学基金面上项目(30371144、30671655)
详细信息
    作者简介:

    李萍萍。主要研究方向:木本植物生长与发育。Email:2423631419@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    郑彩霞,教授,博士生导师。主要研究方向:木本植物生长发育、水分生理及光合作用。Email:zhengcaixia@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.43

Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica

  • 摘要: 目的胡杨是我国西部荒漠地区抗逆性较强的树种,具有异叶性。前人的研究发现,胡杨叶片从披针形叶到锯齿卵圆形叶其结构趋于旱生性,且抗性逐渐增强。本文拟从活性氧清除机制着手,深入探讨胡杨异形叶的抗氧化能力,以期阐释其抗逆性的生化机制。方法以成年胡杨披针形叶、卵圆形叶和锯齿卵圆形叶3种典型形态叶为试验材料,对其·O2产生速率、MDA含量、抗氧化酶(SOD、POD、CAT、APX、GR)活性和抗氧化物质(黄酮、类胡萝卜素、AsA、GSH)含量随季节(5、7和9月)变化的规律进行了比较研究。结果(1)·O2产生速率随季节而变化,·O2产生速率在锯齿卵圆形与卵圆形叶中递增,在披针形叶中先增后减;MDA含量在锯齿卵圆形叶中递减,在卵圆形叶中先减后增,而在披针形叶中持续递增。值得注意的是,9月份披针形叶中·O2产生速率最低而MDA含量最高。(2)锯齿卵圆形叶与卵圆形叶的SOD活性先降后升而CAT活性先升后降,POD活性持续升高而GR活性递减。APX活性在锯齿卵圆形叶中先升后降,在卵圆形叶中一直升高。而披针形叶的SOD、POD、CAT、APX和GR活性均呈先升后降的变化趋势。整体而言,锯齿卵圆形叶的抗氧化酶活性 > 卵圆形叶 > 披针形叶。其中,POD活性差异最为明显。(3)黄酮和类胡萝卜素在7月份大量积累,9月份AsA含量最高而GSH含量最低。黄酮和类胡萝卜素含量在锯齿卵圆形与卵圆形叶中先增后减,在披针形叶中递增;AsA含量在锯齿卵圆形与卵圆形叶中递增,在披针形叶中先减后增;3种形态叶的GSH含量均递减。(4)锯齿卵圆形叶中·O2产生速率与POD活性及AsA含量呈极显著正相关(P < 0.01),卵圆形叶中·O2产生速率与POD和APX活性及类胡萝卜素和AsA含量存在极显著正相关(P < 0.01),披针形叶中·O2产生速率则与POD、CAT和APX活性及黄酮和类胡萝卜素含量都存在极显著正相关(P < 0.01)。结论胡杨3种形态叶的抗氧化能力不同。锯齿卵圆形叶抗氧化能力最强,卵圆形叶次之,披针形叶最弱。3种形态叶随季节变化的抗氧化应答机制也存在差异。夏季锯齿卵圆形叶与卵圆形叶中以POD、CAT和APX作为主要清除ROS的抗氧化酶,秋季则以高活性的SOD和POD作为主要的抗氧化酶。同时,秋季卵圆形叶中APX活性也维持在较高水平。而披针形叶中以SOD、POD、CAT、APX和GR协同清除ROS。此外夏季胡杨叶片大量积累黄酮和类胡萝卜素消除ROS;秋季则通过AsA-GSH循环清除更多的ROS。

     

  • 图  1  胡杨异形叶·O2产生速率和MDA含量的变化

    图中误差棒为平均值的标准偏差;同一月份内不同小写字母表示不同叶形在P < 0.05水平差异显著。下同。Error bars in figure represent standard deviation of the average value; different lowercase letters in the same month indicate significant difference among heteromorphic leaves at P < 0.05 level. The same as below.

    Figure  1.  Changes of·O2 production rate and MDA content of heteromorphic leaves of P. equhratica

    图  2  胡杨异形叶抗氧化酶活性的变化

    Figure  2.  Changes of antioxidant enzyme activities of heteromorphic leaves of P. equhratica

    图  3  胡杨异形叶中抗氧化物质含量的变化

    Figure  3.  Changes of antioxidant content of heteromorphic leaves of P. equhratica

  • [1] 王世绩, 陈炳浩, 李护群. 胡杨林[M]. 北京: 中国环境科学出版社, 1995: 141−144.

    Wang S J, Chen B H, Li H Q. Populus euphratica forest[M]. Beijing: China Environmental Science Press, 1995: 141−144.
    [2] 吴平, 赵健, 王文丽, 等. 额济纳绿洲胡杨生物生态学特性的调查[J]. 内蒙古草业, 2005, 17(3):4−6. doi: 10.3969/j.issn.2095-5952.2005.03.002

    Wu P, Zhao J, Wang W L, et al. Investigation on the biological and ecological characteristics of Populus euphratica in Ejina Oasis[J]. Inner Mongolia Prataculture, 2005, 17(3): 4−6. doi: 10.3969/j.issn.2095-5952.2005.03.002
    [3] Li Z X, Zheng C X. Structural characteristics and eco-adaptability of heteromorphic leaves of Populus euphratica[J]. Forestry Studies in China, 2005, 7(1): 11−15. doi: 10.1007/s11632-005-0050-8
    [4] Liu Y, Li X, Chen G, et al. Epidermal micromorphology and mesophyll structure of Populus euphratica heteromorphic leaves at different development stages[J/OL]. PloS One, 2015, 10(9): e137701 (2018−05−24) [2018−03−01]. http://doi.org/10.1371/journal.pone.0137701.
    [5] Hao J Q, Yue N, Zheng C X. Analysis of changes in anatomical characteristics and physiologic features of heteromorphic leaves in a desert tree, Populus euphratica[J/OL]. Acta Physiologiae Plantarum, 2017, 39(8) (2017−07−10) [2018−05−20]. https://dor.org/10.1007/s11738-017-246-9.
    [6] 陈少良, 李金克, 王天华, 等. 氯盐胁迫下胡杨木质部汁液ABA、离子浓度和叶片气体交换的变化[J]. 植物学报, 2003, 45(5):561−566. doi: 10.3321/j.issn:1672-9072.2003.05.009

    Chen S L, Li J K, Wang T H, et al. Gas exzhange, xylem ions and abscisic acid response to Na+-salts and Cl-salts in Populus equhratica[J]. Acta Botanica Sinica, 2003, 45(5): 561−566. doi: 10.3321/j.issn:1672-9072.2003.05.009
    [7] 郭学民, 刘挨枝, 王华芳. 胡杨种子微形态结构特征及其耐旱性[J]. 河北科技师范学院学报, 2013, 27(1):23−26. doi: 10.3969/J.ISSN.1672-7983.2013.01.005

    Guo X M, Liu A Z, Wang H F. Morphological characteristics of seed surface of Populus equhratica under scanning electron microscope and their drought resistance[J]. Collge of Life Science and Technology, Hebei Nonral University of Science & Technology, 2013, 27(1): 23−26. doi: 10.3969/J.ISSN.1672-7983.2013.01.005
    [8] 姚琨, 练从龙, 王菁菁, 等. 胡杨PePEX11基因参与调节盐胁迫下拟南芥的抗氧化能力[J]. 北京林业大学学报, 2018, 40(5):19−28.

    Yao K, Lian C L, Wang J J, et al. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19−28.
    [9] 夏振华, 陈亚宁, 朱成刚, 等. 干旱胁迫环境下的胡杨叶片气孔变化[J]. 干旱区研究, 2018, 35(5):1111−1117.

    Xia Z H, Chen Y N, Zhu C G, et al. Stomatal change in leaves of Population euphratica under drought stress[J]. Arid Zone Research, 2018, 35(5): 1111−1117.
    [10] 白雪, 张淑静, 郑彩霞, 等. 胡杨多态叶光合和水分生理的比较[J]. 北京林业大学学报, 2011, 33(6):47−52.

    Bai X, Zhang S J, Zheng C X, et al. Comparative study on photosynthesis and water physiology of polymorphic leaves of Populus equhratica[J]. Journal of Beijing Forestry University, 2011, 33(6): 47−52.
    [11] Zheng C X, Qiu J, Jiang C N, et al. Comparison of stomatal characteristics and photosynthesis of polymorphic Populus euphratica leaves[J]. Frontiers of Forestry in China, 2007, 2(1): 87−93. doi: 10.1007/s11461-007-0014-3
    [12] 郝建卿, 吕娜, 杨扬, 等. 内蒙乌海胡杨异形叶水分及叶绿素荧光参数的比较[J]. 北京林业大学学报, 2010, 32(5):41−44.

    Hao J Q, Lü N, Yang Y, et al. Comparative study of chlorophyll fluorescence parameters and water physiological characters of heteromorphic leaves for Populus euphratica[J]. Journal of Beijing Forestry University, 2010, 32(5): 41−44.
    [13] 蒋少伟, 周多多, 吴桂林, 等. 不同地下水埋深下胡杨枝条水力导度及其季节变化[J]. 干旱区研究, 2017, 34(3):648−654.

    Jiang S W, Zhou D D, Wu G L, et al. Hydraulic conductivity and its seasonal variation of Populus euphratica shoot at the sites with varying groundwater depths[J]. Arid Zone Research, 2017, 34(3): 648−654.
    [14] Li W H, Zheng C X, He S H. The analysis of xylem vessel structure of Populus euphratica Oliv. fresh branch by HRCT[J]. Communications in Soil Science and Plant Analysis, 2018, 50(1): 10−19.
    [15] 岳宁. 胡杨异形叶蛋白质表达的电泳分析[J]. 安徽农业科学, 2010, 38(32):18058−18061. doi: 10.3969/j.issn.0517-6611.2010.32.029

    Yue N. Electrophoresis analysis on the expressed proteins in heteromorphic leaves of Populus euphratica Oliv.[J]. Journal of Anhui Agricultural Sciences, 2010, 38(32): 18058−18061. doi: 10.3969/j.issn.0517-6611.2010.32.029
    [16] Zhang J, Jia H X, Li J B, et al. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar[J/OL]. Scientific Reports, 2016, 6 (2016−07−18) [2018−06−21]. https://dor.org/10.1038/srep30050.
    [17] 秦少伟, 李才林, 郭忠忠, 等. 参与胡杨异形叶发生的发育相关基因表达模式及作用[J]. 基因组学与应用生物学, 2017, 36(11):4785−4792.

    Qin S W, Li C L, Guo Z Z, et al. Expression patterns and functions of genes related to the development of Populus euphratica Oliv. heteromorphic leaves morphogenesis[J]. Genomics and Applied Biology, 2017, 36(11): 4785−4792.
    [18] Mittler R. ROS are good[J]. Trends in Plant Science, 2016, 22(1): 11−19.
    [19] Sharma S S, Dietz K J. The relationship between metal toxicity and cellular redox imbalance[J]. Trends in Plant Science, 2009, 14(1): 43−50. doi: 10.1016/j.tplants.2008.10.007
    [20] Anjum N A, Sofo A, Scopa A, et al. Lipids and proteins-major targets of oxidative modifications in abiotic stressed plants[J]. Environmental Science and Pollution Research, 2015, 22(6): 4099−4121. doi: 10.1007/s11356-014-3917-1
    [21] 郑清岭, 杨忠仁, 张凤兰, 等. 沙芥属植物活性氧清除系统对干旱胁迫的响应[J]. 西北植物学报, 2018, 38(9):1674−1682.

    Zheng Q L, Yang Z R, Zhang F L, et al. Responses of reactive oxygen species scavenging system to drought stress in Pugionium Gaertn.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(9): 1674−1682.
    [22] 常二梅, 史胜青, 刘建锋, 等. 古侧柏针叶活性氧产生及其清除机制[J]. 东北林业大学学报, 2011, 39(11):8−11. doi: 10.3969/j.issn.1000-5382.2011.11.003

    Chang E M, Shi S Q, Liu J F, et al. ROS production and its elimination in old Platycladus orientalis’s leaves[J]. Journal of Northeast Forestry University, 2011, 39(11): 8−11. doi: 10.3969/j.issn.1000-5382.2011.11.003
    [23] 施征, 史胜青, 姚洪军, 等. 植物线粒体中活性氧的产生及其抗氧化系统[J]. 北京林业大学学报, 2009, 31(1):150−154. doi: 10.3321/j.issn:1000-1522.2009.01.026

    Shi Z, Shi S Q, Yao H J, et al. Production of ROS and its antioxidant mechanism in plant mitochondria[J]. Journal of Beijing Forestry University, 2009, 31(1): 150−154. doi: 10.3321/j.issn:1000-1522.2009.01.026
    [24] 邵旭平, 万建宏, 万东石. 不同生态型胡杨异形叶对虫害的抗氧化反应[J]. 草业科学, 2011, 28(7):1396−1399.

    Shao X P, Wan J H, Wan D S. The anti-xidation responses of two ecotype leaves of diversifolious poplar (Populus euphratica) to pest[J]. Pratacultural Science, 2011, 28(7): 1396−1399.
    [25] 王海珍, 徐雅丽, 张翠丽, 等. 干旱胁迫对胡杨和灰胡杨幼苗渗透调节物质及抗氧化酶活性的影响[J]. 干旱区资源与环境, 2015, 29(12):125−130.

    Wang H Z, Xu Y L, Zhang C L, et al. Effects of drought stress on osmotic adjustment substances and antioxidant enzymes activity of Populus euphratica and Populus pruinosa seedlings[J]. Journal of Arid Land Resources & Environment, 2015, 29(12): 125−130.
    [26] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学报, 1990, 26(6):55−57.

    Wang A G, Luo G H. Quantiative relation between the reaicton of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Journal, 1990, 26(6): 55−57.
    [27] Heath R L, Lester P. Effect of light on lipid peroxidation in chloroplasts[J]. Biochemical and Biophysical Research Communications, 1965, 19(6): 716−720. doi: 10.1016/0006-291X(65)90316-5
    [28] Giannopolitis C N, Ries S K. Superoxide dismutases: Ⅰ. occurrence in higher plants[J]. Plant Physiology, 1977, 59(2): 309−314. doi: 10.1104/pp.59.2.309
    [29] 陈建勋, 王晓峰. 植物生理学实验指导 [M]. 2版. 广州: 华南理工大学出版社, 2002.

    Chen J X, Wang X F. Plant physiology experiment instruction[M]. 2nd ed. Guangzhou: South China University of Technology Press, 2002.
    [30] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5): 867−880.
    [31] Schaedle M. Chloroplast glutathione reductase[J]. Plant Physiology, 1977, 59(5): 1011−1012. doi: 10.1104/pp.59.5.1011
    [32] Kampfenkel K, Vanmontagu M, Inze D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J]. Analytical Biochemistry, 1995, 225(1): 165−167. doi: 10.1006/abio.1995.1127
    [33] 李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009: 100−102.

    Li L. Plant physiology module experiment instruction[M]. Beijing: Science Press, 2009: 100−102.
    [34] 冯涛, 曹东旭, 吕晓玲. 竹叶总黄酮含量的测定[J]. 中国食品添加剂, 2002(6):85−87, 35. doi: 10.3969/j.issn.1006-2513.2002.06.022

    Feng T, Cao D X, Lü X L. The determination of bamboo leaves total flavonoids content[J]. China Food Additives, 2002(6): 85−87, 35. doi: 10.3969/j.issn.1006-2513.2002.06.022
    [35] Li X, Yang Y, Sun X, et al. Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought[J/OL]. PloS One, 2014, 9(9) (2014−09−09) [2018−03−09]. http://doi.org/10.1371/journal.pone.0107605.
    [36] Solti A, Sárvári E, Szöllősi E, et al. Stress hardening under long-term cadmium treatment is correlated with the activation of antioxidative defence and iron acquisition of chloroplasts in Populus[J]. Zeitschrift für Naturforschung C, 2016, 71(9−10): 323−334. doi: 10.1515/znc-2016-0092
    [37] 张淑静, 王强, 郑彩霞, 等. 文冠果花药发育与活性氧平衡的关系[J]. 农业科学, 2012, 2(3):37−42. doi: 10.3969/j.issn.1009-2196.2012.03.008

    Zhang S J, Wang Q, Zheng C X, et al. Studies on the relationship between anther development and reactive oxygen balancing in Xanthoceras sorbifolia Bunge[J]. Hans Journal of Agricultural Science, 2012, 2(3): 37−42. doi: 10.3969/j.issn.1009-2196.2012.03.008
    [38] 马剑, 刘贤德, 孟好军, 等. 水分胁迫对文冠果幼苗生长及生理特性的影响[J]. 干旱区资源与环境, 2018, 32(1):128−132.

    Ma J, Liu X D, Meng H J, et al. Effects of water stress on growth and physiological characteristics of seedlings of the Xanthoceras sorbifolia[J]. Journal of Arid Land Resources & Environment, 2018, 32(1): 128−132.
    [39] Saini R K, Keum Y S. Progress in microbial carotenoids production[J]. Indian Journal of Microbiology, 2017, 57(1): 129−130. doi: 10.1007/s12088-016-0637-x
    [40] Nan J, Andrea D, Erich G. Flavones: from biosynthesis to health benefits[J/OL]. Plants, 2016, 5(2): 27 (2016−06−15)[2017−10−23]. https://dor.org/10.3390/plants5020027.
    [41] Gest N, Gautier H, Stevens R. Ascorbate as seen through plant evolution: the rise of a successful molecule[J]. Journal of Experimental Botany, 2013, 64(1): 33−53. doi: 10.1093/jxb/ers297
    [42] Gallie D R. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth[J]. Journal of Experimental Botany, 2013, 64(2): 433−443. doi: 10.1093/jxb/ers330
    [43] 韩刚, 党青, 赵忠. 干旱胁迫下沙生灌木花棒的抗氧化保护响应研究[J]. 西北植物学报, 2008, 28(5):1007−1013. doi: 10.3321/j.issn:1000-4025.2008.05.024

    Han G, Dang Q, Zhao Z. Response of antioxidation protection system of Hedysarum scoparium to drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(5): 1007−1013. doi: 10.3321/j.issn:1000-4025.2008.05.024
    [44] 张涛, 安黎哲, 陈拓, 等. 不同海拔青海云杉与祁连圆柏叶片抗氧化系统[J]. 植物生态学报, 2009, 33(4):802−811. doi: 10.3773/j.issn.1005-264x.2009.04.019

    Zhang T, An L Z, Chen T, et al. Antioxidative system in leaves of Picea crassifolia and Sabina przewalskii along an altitudinal gradient[J]. Chinese Journal of Plant Ecology, 2009, 33(4): 802−811. doi: 10.3773/j.issn.1005-264x.2009.04.019
  • 加载中
图(3)
计量
  • 文章访问数:  1878
  • HTML全文浏览量:  607
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-11
  • 修回日期:  2019-04-19
  • 网络出版日期:  2019-06-17
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回