高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水曲柳磨削的砂带磨损机理研究

杨雅琦 汪生莹 耿金光 刘炀 张健 罗斌

杨雅琦, 汪生莹, 耿金光, 刘炀, 张健, 罗斌. 水曲柳磨削的砂带磨损机理研究[J]. 北京林业大学学报, 2019, 41(8): 138-146. doi: 10.13332/j.1000-1522.20190136
引用本文: 杨雅琦, 汪生莹, 耿金光, 刘炀, 张健, 罗斌. 水曲柳磨削的砂带磨损机理研究[J]. 北京林业大学学报, 2019, 41(8): 138-146. doi: 10.13332/j.1000-1522.20190136
Yang Yaqi, Wang Shengying, Geng Jinguang, Liu Yang, Zhang Jian, Luo Bin. Abrasive belt wear mechanism of sanding Manchurian ash[J]. Journal of Beijing Forestry University, 2019, 41(8): 138-146. doi: 10.13332/j.1000-1522.20190136
Citation: Yang Yaqi, Wang Shengying, Geng Jinguang, Liu Yang, Zhang Jian, Luo Bin. Abrasive belt wear mechanism of sanding Manchurian ash[J]. Journal of Beijing Forestry University, 2019, 41(8): 138-146. doi: 10.13332/j.1000-1522.20190136

水曲柳磨削的砂带磨损机理研究

doi: 10.13332/j.1000-1522.20190136
基金项目: 北京林业大学大学生创新项目(s201810022077)
详细信息
    作者简介:

    杨雅琦。主要研究方向:木材加工装备与自动化。Email:1250014713@qq.com  地址:100083北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    罗斌,讲师,博士。主要研究方向:木材加工装备与自动化。Email:luobincl@bjfu.edu.cn 地址:同上

  • 中图分类号: TS652

Abrasive belt wear mechanism of sanding Manchurian ash

  • 摘要: 目的砂带磨削是木材加工行业的一项重要工艺。分析砂带磨削过程中的砂带磨损机理及其对材料去除率、磨削表面质量的影响,旨在进一步完善木材切削理论,推动新型砂带研发制造。方法本研究以水曲柳为实验材料,通过测定磨削过程中的试件质量变化和表面形貌,就砂带磨损对试件材料去除率和表面粗糙度的影响进行分析,结合试件材料去除率、磨削过程中砂带的质量变化和表面形貌探究砂带的磨损机理,并采用灰色模型预测磨削长度与材料去除率、磨削表面粗糙度之间的定量关系。结果横纹磨削时,材料去除率整体大于顺纹磨削的材料去除率。整体而言,材料去除率与砂带质量随磨削次数的增加而不断减小,试件表面粗糙度呈先增大后减小的趋势。磨削过程中,砂带磨粒出现磨损、破碎以及脱落的现象,造成砂带质量不断减小,磨粒等高性逐渐增加。顺纹方向磨削对砂带磨粒的磨损大于横纹方向磨削。磨粒磨损程度越大,材料去除率越小。当材料去除率降低至3%时,可认为已基本达到砂带使用寿命。结论磨削过程中,等高性越差,材料去除率越高。随磨削次数增加,砂带材料去除能力不断下降,试件表面粗糙度则呈先增大后减小的趋势。均值GM(1,1)灰色预测模型的平均模拟相对误差都在20%以内,适用于水曲柳砂带磨削过程中磨削长度与材料去除率、表面粗糙度之间的预测。

     

  • 图  1  砂带磨削实验装置示意图

    1. 气缸Cylinder;2. 机架Framework;3. 砂带Abrasive belt;4. 张紧轮Tensile wheel;5. 水平滑轨Horizontal slideway; 6. 驱动系统Driver system;7. 竖直滑轨Vertical slideway;8. 夹紧装置Fasten device;9. 试件Sample;10. 夹具Fixture.

    Figure  1.  Schematic of abrasive belt sanding apparatus

    图  2  横纹磨削时水曲柳表面形貌与磨粒磨损示意图

    Figure  2.  Surface topography and grit wear diagram during transverse sanding

    图  3  横纹磨削时砂带表面三维形貌图

    Figure  3.  Three-dimensional topography of the belt surface during transverse sanding

    图  4  横纹磨削水曲柳时材料去除率与砂带质量变化

    Figure  4.  Material removal rate of workpiece and the mass variation of abrasive belt during transverse sanding

    图  5  横纹磨削时试件、砂带的表面粗糙度

    Figure  5.  Surface roughness of workpiece and abrasive belt during transverse sanding

    图  6  顺纹磨削时的砂带表面三维形貌图

    Figure  6.  Three-dimensional topography of the belt surface during longitudinal sanding

    图  7  顺纹磨削时水曲柳表面形貌和磨削过程示意图

    Figure  7.  Surface topography and the schematic diagram for workpiece during longitudinal sanding process

    图  8  顺纹磨削水曲柳时材料去除率、砂带质量变化

    Figure  8.  Material removal rate of workpiece and the mass variation of abrasive belt during longitudinal sanding

    图  9  顺纹磨削时试件、砂带的表面粗糙度

    Figure  9.  Surface roughness of workpiece and abrasive belts during longitudinal sanding

    图  10  磨削过程中灰色预测系统因果图

    Figure  10.  Grey prediction system causal map during sanding

    图  11  实际数值与模拟数值

    Figure  11.  Experimental value and analog value

    表  1  横纹磨削模型数据

    Table  1.   Model data of transverse sanding

    序号
    No.
    磨削长度
    Sanding length/m
    表面粗糙度
    Surface roughness/μm
    材料去除率
    Material removal rate/%
    1 200 41.178 15.11
    2 400 39.723 13.48
    3 600 40.546 15.71
    4 800 51.551 7.27
    5 1 000 54.409 12.66
    6 1 200 63.536 11.39
    7 1 400 60.472 8.35
    8 1 600 67.846 9.61
    注:为提高所建灰色模型的预测精度,选取数据均在砂带最佳使用寿命范围内。下同。Notes: to improve the precision of the established gray model, the selected data is located in the range of optimal abrasive belt life. Same as below.
    下载: 导出CSV

    表  2  顺纹磨削模型数据

    Table  2.   Model data of longitudinal sanding

    序号
    No.
    磨削长度
    Sanding length/m
    表面粗糙度
    Surface roughness /μm
    材料去除率
    Material removal rate/%
    1 100 42.572 14.57
    2 200 78.737 14.96
    3 300 69.976 11.70
    4 400 79.229 12.13
    5 500 71.151 7.43
    6 600 79.812 11.40
    7 700 81.305 8.46
    8 800 81.221 5.77
    9 900 74.79 6.53
    10 1 000 78.662 4.86
    下载: 导出CSV
  • [1] 任青剑, 万宏强, 王斐. 300M超高强度钢的切入式磨削加工性[J]. 兵工自动化, 2017, 36(9):61−65.

    Ren Q J, Wan H Q, Wang F. Plunge grinding machining performance of 300M ultra high strength steel[J]. Ordnance Industry Automation, 2017, 36(9): 61−65.
    [2] Torrance A A. The effect of grit size and asperity blunting on abrasive wear[J]. Wear, 2002, 253: 813−819. doi: 10.1016/S0043-1648(02)00103-5
    [3] 刘博, 李黎, 杨永福. 木材与中密度纤维板的磨削力研究[J]. 北京林业大学学报, 2009, 31(增刊 1):197−201.

    Liu B, Li L, Yang Y F. Sanding force of wood and medium density fiberboard[J]. Journal of Beijing Forestry University, 2009, 31(Suppl. 1): 197−201.
    [4] Tian M, Li L. Study on influencing factors of sanding efficiency of abrasive belts in wood materials sanding[J]. Wood Research, 2014, 59(5): 835−842.
    [5] Ferguson D C, Kolecki J C, Siebert M W, et al. Evidence for Martian electrostatic charging and abrasive wheel wear from the wheel abrasion experiment on the Pathfinder Sojourner Rover[J]. Journal of Geophysical Research, 1999, 104(4): 8747−8789.
    [6] Malinov L S, Malysheva I E, Klimov E S, et al. Effect of particular combinations of quenching, tempering and carburization on abrasive wear of low-carbon manganese steels with metastable austenite[J]. Materials Science Forum, 2019, 945: 574−578. doi: 10.4028/www.scientific.net/MSF.945
    [7] Guo X L, Zhu Z L, Ekevad M, et al. The cutting performance of Al2O3 and Si3N4 ceramic cutting tools in the milling plywood[J]. Advances in Applied Ceramics, 2018, 117(1): 16−22. doi: 10.1080/17436753.2017.1368946
    [8] Yuan C Q, Guo Z W, Tao W, et al. Effects of different grain sized sands on wear behaviours of NBR/ casting copper alloys[J]. Wear, 2017, 384−385: 185−191. doi: 10.1016/j.wear.2017.02.019
    [9] Ding W F, Zhu Y J, Zhang L C, et al. Stress characteristics and fracture wear of wear of brazed CBN grains in monolayer grinding wheels[J]. Wear, 2015, 332−333: 800−809. doi: 10.1016/j.wear.2014.12.008
    [10] Eder S J, Cihak-Bayr U, Pauschitz A. Nanotribological simulations of multi-grit polishing and grinding[J]. Wear, 2015, 340−341: 25−30. doi: 10.1016/j.wear.2015.03.006
    [11] 罗斌, 李黎, 刘红光. 木材磨削力和影响磨削力的因素[J]. 木材加工机械, 2012(1):6−10. doi: 10.3969/j.issn.1001-036X.2012.01.002

    Luo B, Li L, Liu H G. Wood sanding force and the factors of sanding force[J]. Wood Processing Machinery, 2012(1): 6−10. doi: 10.3969/j.issn.1001-036X.2012.01.002
    [12] 时萌蒙, 雷亚芳, 肖建平, 等. 几种木材与人造板带式磨削的加工质量[J]. 木材加工机械, 2016(3):41−45.

    Shi M M, Lei Y F, Xiao J P, et al. Abrasive belt grinding quality of several solid wood and wood-based board[J]. Wood Processing Machinery, 2016(3): 41−45.
    [13] 罗斌.木质材料砂带磨削磨削力及磨削参数优化研究[D]. 北京: 北京林业大学, 2015.

    Luo B. Study on sanding force and optimal sanding parameters in the belt sanding process of wood materials[D]. Beijing: Beijing Forestry University, 2015.
    [14] 刘博.木材及中密度纤维板磨削力的研究[D]. 北京: 北京林业大学, 2008.

    Liu B. Study on sanding force of wood and medium density fiberboard[D]. Beijing: Beijing Forestry University, 2008.
    [15] Poulachon G, Moisan A, Jawahir I S. Tool-wear mechanisms in hard turning with polycrystalline cubic boron nitride tools[J]. Wear, 2001, 250: 576−586. doi: 10.1016/S0043-1648(01)00609-3
    [16] 杨华龙, 刘金霞, 郑斌. 灰色预测GM(1, 1)模型的改进及应用[J]. 数学的实践与认识, 2011, 41(23):39−46.

    Yang H L, Liu J X, Zheng B. Improvement and application of grey prediction GM(1, 1) model[J]. Mathematics in Practice and Theory, 2011, 41(23): 39−46.
    [17] 孔雪, 王丽, 冯益华. 灰色预测GM(1, 1) 模型应用现状与展望[J]. 齐鲁工业大学学报, 2018, 32(6):49−53.

    Kong X, Wang L, Feng Y H. Review and prospects of the application status of GM(1, 1)[J]. Journal of Qilu University of Technology, 2018, 32(6): 49−53.
    [18] 谢乃明, 刘思峰. 离散GM(1, 1)模型与灰色预测模型建模机理[J]. 系统工程理论与实践, 2005(1):93−99. doi: 10.3321/j.issn:1000-6788.2005.01.014

    Xie N M, Liu S F. Discrete GM(1, 1) and mechanism of grey forecasting model[J]. Systems Engineering:Theory & Practice, 2005(1): 93−99. doi: 10.3321/j.issn:1000-6788.2005.01.014
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  2271
  • HTML全文浏览量:  664
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-04-09
  • 网络出版日期:  2019-06-24
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回