高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CLT墙体−楼板T型连接抗剪性能特征值分析方法对比研究

刁玥 贾贺然 孟鑫淼 高颖 张佳男

刁玥, 贾贺然, 孟鑫淼, 高颖, 张佳男. CLT墙体−楼板T型连接抗剪性能特征值分析方法对比研究[J]. 北京林业大学学报, 2019, 41(8): 147-153. doi: 10.13332/j.1000-1522.20190161
引用本文: 刁玥, 贾贺然, 孟鑫淼, 高颖, 张佳男. CLT墙体−楼板T型连接抗剪性能特征值分析方法对比研究[J]. 北京林业大学学报, 2019, 41(8): 147-153. doi: 10.13332/j.1000-1522.20190161
Diao Yue, Jia Heran, Meng Xinmiao, Gao Ying, Zhang Jianan. Comparison study on characteristic analysis methods of CLT wall-to-floor T connection under shear test[J]. Journal of Beijing Forestry University, 2019, 41(8): 147-153. doi: 10.13332/j.1000-1522.20190161
Citation: Diao Yue, Jia Heran, Meng Xinmiao, Gao Ying, Zhang Jianan. Comparison study on characteristic analysis methods of CLT wall-to-floor T connection under shear test[J]. Journal of Beijing Forestry University, 2019, 41(8): 147-153. doi: 10.13332/j.1000-1522.20190161

CLT墙体−楼板T型连接抗剪性能特征值分析方法对比研究

doi: 10.13332/j.1000-1522.20190161
基金项目: 国家重点研发计划(2017YFC0703503),国家自然科学基金(31770602),北京市支持中央在京高校共建项目(2015-共建)
详细信息
    作者简介:

    刁玥。主要研究方向:木结构材料与工程。Email:diaoyuerachel@126.com 地址:100083 北京市海淀区清华东路35号北京林业大学森工楼

    责任作者:

    高颖,博士,副教授。主要研究方向:木结构材料与工程。Email:gaoying@bjfu.edu.cn 地址:同上

  • 中图分类号: TU366.3

Comparison study on characteristic analysis methods of CLT wall-to-floor T connection under shear test

  • 摘要: 目的力学特征值分析法是评价结构力学性能的有效方法。在木结构领域,以北美ASTM E2126标准,欧洲EN 12512标准和日本Y&K法的3种评估方法接受度较高。正交胶合木(CLT)被认为是一种可建造多高层木结构建筑的重要木质复合材料,目前针对其材料本身特性的研究较为广泛,但是针对其连接系统的开发和研究尚处于初期阶段。方法本研究设计了一种用于CLT墙体和楼板连接的T型金属连接件,结合对该连接件构造的抗剪试件试验结果,分别采用上述3种分析方法对节点刚度、屈服点特性和延性系数等力学性能参数进行了对比分析。结果Y&K法所得屈服点性质与另两种方法所得点相差较大,EN法计算所得刚度值和延性值略大于另两种方法,ASTM法和EN法在屈服荷载数值的差异性受试验曲线特征影响较大。结论综合比较以上对比结果,对于本文设计的CLT墙体−楼板节点,以及其他力−变形曲线发展较为平缓、破坏模式为延性破坏的木结构节点,Y&K法分析结果更具有实际工程应用意义。

     

  • 图  1  3种力学特征值分析方法绘图过程

    Pmax为最大承载力;0.1Pmax、0.4Pmax、0.8Pmax、0.9Pmax分别为0.1、0.4、0.8和0.9倍最大承载力;Py为屈服荷载;Pu为极限荷载;Dmax为最大承载力对应位移;Dy为屈服位移;Du为极限位移;Dv为降伏点位移;α为EN法初始刚度所在直线与X轴夹角;β为EN法作图角度,数值上tgβ=1/6tgα;Ⅰ ~ Ⅴ为Y&K法作图时涉及的直线。Pmax, maximum load carrying capacity; 0.1Pmax, 0.4Pmax, 0.8Pmax, 0.9Pmax mean 0.1, 0.4, 0.8, 0.9 times maximum load carrying capacity, respectively; Py, yield load; Pu, ultimate load; Dmax, displacement correspond to the maximum load carrying capacity; Dy, yield displacement; Du, ultimate displacement; Dv, another yield displacement purposed in Y&K method; α, slope of initial stiffness; β, an angle parameter purposed in EN method, which tgβ =1/6tgα; Ⅰ−Ⅴ, lines required in Y&K method during analysis process.

    Figure  1.  Commonly used characteristic analysis methods

    图  2  T型连接件尺寸

    Figure  2.  Size of T-shape connector

    图  3  TTV-1和TTP-1组剖面图及试件图

    Figure  3.  Section views and assemblies of TTV-1 and TTP-1

    图  4  试验布置图

    Figure  4.  Test setup

    图  5  3种方法计算刚度值对比

    Figure  5.  Comparison of stiffness values calculated by three different methods

    图  6  荷载–位移试验曲线

    Figure  6.  Load-displacement curves

    图  7  不同分析方法屈服点与试验曲线位置关系

    Figure  7.  Yield point position and test curve according to different analysis methods

    图  8  3种方法计算屈服荷载值对比

    Figure  8.  Comparison of yield loads calculated by three different methods

    图  9  3种方法计算屈服位移值对比

    Figure  9.  Comparison of yield displacements calculated by three different methods

    图  10  3种方法计算屈服点斜率值对比

    Figure  10.  Comparison of the slope of the yield point calculated by three different methods

    图  11  3种方法计算延性系数对比

    Figure  11.  Comparison of ductility ratio calculated by three different methods

    表  1  屈服荷载、屈服位移和比值

    Table  1.   Results of yield load, yield displacement and ratio

    试件类型 Type of specimen物理量 ParameterASTMENY&K
    TTV-1  屈服荷载 Yield load /kN 23.33 23.33 15.57
     变异系数 Coefficient of variation 0.17 0.18 0.11
     屈服位移 Yield displacement /mm 20.79 18.69 13.77
     变异系数 Coefficient of variation 0.21 0.16 0.13
     屈服荷载与位移比值 Ratio between yield load and yield displacement 1.12 1.25 1.13
    TTP-1  屈服荷载 Yield load/kN 28.59 26.65 17.84
     变异系数 Coefficient of variation 0.06 0.06 0.13
     屈服位移 Yield displacement /mm 20.48 17.46 12.84
     变异系数 Coefficient of variation 0.11 0.13 0.17
     屈服荷载与位移比值 Ratio between yield load and yield displacement 1.40 1.53 1.39
    下载: 导出CSV
  • [1] American Society for Testing Materials (ASTM). ASTM E2126-11: Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings[S]. West Conshohocken: ASTM International, 2011.
    [2] European Committee for Standardization. EN 12512-2001: Timber structures–test methods–cyclic testing of joints made with mechanical fasteners[S]. Brussels: European Committee for Standardization, 2001.
    [3] Yasumura M, Kawai N. Estimating seismic performance of wood-framed structures: proceedings of 5th WCTE [C]. Montreux: Press Polytechniques et Universitaires Romandes, 1998: 564−571.
    [4] Jeong G Y, Song J K. Evaluation of structural properties of dovetail connections under tensile load using three methods of data analysis[J]. Journal of Materials in Civil Engineering, 2017, 29(10): 06017011. doi: 10.1061/(ASCE)MT.1943-5533.0001992
    [5] 刘慧芬, 何敏娟, 高承勇. 木结构销类连接的屈服点和延性定义方法比较[J]. 特种结构, 2015(3):1−5.

    Liu H F, He M J, Gao C Y. Comparison of determination methods of yield point and ductility for wood structure dowel type connection[J]. Special Structure, 2015(3): 1−5.
    [6] Muñoz W, Mohammad M, Salenikovich A, et al. Need for a harmonised approach for calculations of ductility of timber assemblies: proceedings of the 41th CIB W18 Meeting [C]. St. Andrews: Universität Karlsruhe, 2008.
    [7] Fragiacomo M, Dujic B, Sustersic I. Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions[J]. Engineering Structures, 2011, 33(11): 3043−3053. doi: 10.1016/j.engstruct.2011.05.020
    [8] Jorissen A, Fragiacomo M. General notes on ductility in timber structures[J]. Engineering Structures, 2011, 33(11): 2987−2997. doi: 10.1016/j.engstruct.2011.07.024
    [9] Brandner R, Flatscher G, Ringhofer A, et al. Cross laminated timber (CLT): overview and development[J]. European Journal of Wood and Wood Products, 2016, 74(3): 331−351. doi: 10.1007/s00107-015-0999-5
    [10] Gavric I, Fragiacomo M, Ceccotti A. Cyclic behavior of CLT wall systems: experimental tests and analytical prediction models[J]. Journal of Structural Engineering, 2015, 141(11): 04015034. doi: 10.1061/(ASCE)ST.1943-541X.0001246
    [11] 贾苑, 乔菁, 张佳男, 等. CLT墙体−楼板T型连接件节点力学性能研究[J]. 北京林业大学学报, 2018, 40(10):123−130.

    Jia Y, Qiao J, Zhang J N, et al. Mechanical performance of CLT wall-to-floor joints with T connector[J]. Journal of Beijing Forestry University, 2018, 40(10): 123−130.
    [12] American National Standards Institution (ANSI)/The Engineered Wood Association(APA). PRG 320-2012: Standards for performance-rated cross-laminated timber [S]. Tacoma: ANSI/APA, 2012.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1542
  • HTML全文浏览量:  606
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-05-14
  • 网络出版日期:  2019-07-01
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回