高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油松地理种群针叶形态解剖与生理指标遗传变异分析

陈新宇 孟景祥 周先清 袁虎威 钮世辉 李悦

陈新宇, 孟景祥, 周先清, 袁虎威, 钮世辉, 李悦. 油松地理种群针叶形态解剖与生理指标遗传变异分析[J]. 北京林业大学学报, 2019, 41(7): 19-30. doi: 10.13332/j.1000-1522.20190170
引用本文: 陈新宇, 孟景祥, 周先清, 袁虎威, 钮世辉, 李悦. 油松地理种群针叶形态解剖与生理指标遗传变异分析[J]. 北京林业大学学报, 2019, 41(7): 19-30. doi: 10.13332/j.1000-1522.20190170
Chen Xinyu, Meng Jingxiang, Zhou Xianqing, Yuan Huwei, Niu Shihui, Li Yue. Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations[J]. Journal of Beijing Forestry University, 2019, 41(7): 19-30. doi: 10.13332/j.1000-1522.20190170
Citation: Chen Xinyu, Meng Jingxiang, Zhou Xianqing, Yuan Huwei, Niu Shihui, Li Yue. Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations[J]. Journal of Beijing Forestry University, 2019, 41(7): 19-30. doi: 10.13332/j.1000-1522.20190170

油松地理种群针叶形态解剖与生理指标遗传变异分析

doi: 10.13332/j.1000-1522.20190170
基金项目: 中央高校基本科研业务费专项资金项目(2015ZCQ-SW-02),国家自然科学基金项目(31600535)
详细信息
    作者简介:

    陈新宇。主要研究方向:森林遗传学与针叶树遗传改良。Email:chenxinyu2014@hotmail.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    李悦,博士,教授。主要研究方向:森林遗传学与针叶树遗传改良。Email:liyue@bjfu.edu.cn 地址:同上

  • 中图分类号: S791.254

Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations

  • 摘要: 目的针叶作为松树生命活动的重要器官,其不同地理种群的形态解剖特征与生理指标的关联尚待阐明,两者间联系可以为认识油松适应性变异提供新的视角。方法本研究在对来自油松全分布区不同生境的8个地理种群田间对比试验基础上,分析了4年生苗木次生针叶形态解剖指标、蒸腾与光合生理指标变异及两类指标间的相关关系。结果(1)针叶粗细、维管束、气孔和树脂道指标在地理群体间存在显著遗传变异;(2)各生理指标在地理种群间有极显著遗传差异;(3)针叶的净光合速率、蒸腾速率和胞间CO2浓度与形态解剖指标均存在不同紧密程度的正相关;(4)种群的胞间CO2浓度与产地年降水和1月均温与年降水比值呈显著正相关,气孔限制值与年降水量和1月均温/年降水量成显著负相关;(5)种群针叶的气孔线数与经度成显著正相关,而树脂道数与经度显著负相关,但与海拔成显著正相关;树脂道面积和叶肉面积比值与经度和纬度成显著负相关。结论遗传相对稳定的针叶形态解剖指标差异可在一定程度上反映地理种群间的光合生理差异,种群间存在针叶气孔量和调节能力随降水量及其维持力减低而提高趋势,树脂道数量及相对截面积随降水量降低而降低的适应性进化趋势。该发现为认识针叶形态解剖特性与光合生理指标关系,松种的适应性进化以及遗传改良提供了理论参考。

     

  • 图  1  针叶背面气孔线,徒手切片针叶截面

    Figure  1.  Stomal rows on convex side of needle,cross-section of the needle by unarmed slice

    表  1  油松种群采集地点

    Table  1.   Sampling population of P. tabuliformis

    采集地点 Collection site缩写 Abbreviation经度 Longitude纬度 Latitude海拔 Elevation/m
    1 九寨沟,四川 Jiuzhaigou, Sichuan JZGPT 103°47′E 33°18′N 2 393
    2 宁陕,陕西 Ningshan, Shaanxi NSPT 108°23′E 33°29′N 1 423
    3 卢氏,河南 Lushi, Henan LSPT 110°49′E 33°44′N 1 713
    4 灵空山,山西 Lingkongshan, Shanxi LKSPT 112°20′E 36°37′N 1 664
    5 互助,青海 Huzhu, Qinghai HZPT 102°58′E 36°58′N 2 299
    6 方山,陕西 Fangshan, Shaanxi FSPT 111°33′E 37°56′N 1 941
    7 松山,北京 Songshan, Beijing SSPT 115°49′E 40°31′N 885
    8 宁城,内蒙古 Ningcheng, Inner Mongolia NCPT 118°58′E 42°17′N 1 300
    下载: 导出CSV

    表  2  油松针叶形态解剖指标

    Table  2.   Needle morphological and anatomical traits in P. tabuliformis

    指标 Trait 测量性状 Measrured trait
    形态指标 Morphological trait 针叶长 Needle long (NL)/cm
    针叶厚 Needle thickness (NT)/mm
    针叶宽 Needle width (NW)/mm
    针叶截面积 Needle section area (NSA)/mm2
    针叶截面周长 Needle section perimeter (NSP)/mm
    叶肉面积 Mesophyll area (MA)/mm2
    针叶背面气孔线数 Number of stomatal rows on convex side of needle (CSRN)
    针叶腹面气孔线数 Number of stomatal rows on flat side of needle (FSRN)
    针叶背面2 mm内气孔数 Number of stomata in a 2 mm depth on convex side of needle (CSR2N)
    针叶腹面2 mm内气孔数 Number of stomata in a 2 mm depth on flat side of needle (FSR2N)
    针叶背面2 mm内气孔密度 Stomata density in a 2 mm depth on convex side of needle (CSD)
    针叶腹面2 mm内气孔密度 Stomata density in a 2 mm depth on flat side of needle (FSD)
    针叶2 mm内平均气孔密度 Mean stomata density in a 2 mm depth of needle (MSD)
    解剖指标 Anatomical trait 维管束宽 Vascular bundle width (VBW)/mm
    维管束厚 Vascular bundle thickness (VBT)/mm
    维管束周长 Vascular bundle perimeter (VBP)/mm
    维管束面积 Vascular bundle area (VBA)/mm2
    树脂道个数 Resin canals number (RCN)
    树脂道面积 Resin canals area (RCA)/mm2
    树脂道周长 Resin canals perimeter (RCP)/mm
    树脂道面积/叶肉面积 Resin canals area/Mesophyll area (RCA/MA)
    叶肉面积/维管束面积 Mesophyll area/Vascular bundle area (MA/VBA)
    叶肉面积/树脂道面积 + 叶肉面积 Mesophyll area/Resin canals area + Vascular bundle area (MA/RCA + VBA)
    下载: 导出CSV

    表  3  针叶形态解剖指标方差分析表

    Table  3.   ANOVA of morphological and anatomical traits among populations

    性状
    Trait
    均方Mean square方差分量 Variance component/%群体遗传力(H2
    群体(7)
    Population (7)
    群体内个体(88)
    Individuals in population (88)
    残差(179)
    Residual (179)
    群体(7)
    Population (7)
    群体内个体(88)
    Individuals in population (88)
    残差(179)
    Residual (179)
    CSRN 11.037 4.756 0.946 11.422** 61.869** 26.709 0.910
    FSRN 14.056 3.538 0.653 18.411** 58.261** 23.328 0.950
    CSR2N 8.427 8.163 4.243 3.706* 45.121** 51.173 0.500
    FSR2N 7.936 7.151 3.483 4.104* 46.492** 49.404 0.560
    CSD 0.001 3.79 × 10− 4 1.75 × 10− 4 5.642* 47.374** 46.984 0.690
    FSD 0.001 2.42 × 10− 4 8.40 × 10− 5 13.404** 49.576** 37.020 0.900
    MSD 0.001 2.41 × 10− 4 7.36 × 10− 5 10.624** 53.961** 35.415 0.880
    NL 55.497 15.648 1.061 20.017** 70.148** 9.836 0.980
    NW 0.212 0.091 0.006 14.062** 75.887** 10.051 0.970
    NT 0.114 0.030 0.003 20.158** 66.020** 13.822 0.970
    NSA 0.241 0.103 0.009 13.460** 72.203** 14.337 0.960
    NSP 1.436 0.727 0.147 9.866** 62.794** 27.339 0.900
    MA 0.102 0.044 0.007 12.118** 65.788** 22.094 0.930
    VBA 0.031 0.014 0.001 13.255** 76.229** 10.516 0.970
    VBW 0.086 0.031 0.003 15.662** 71.914** 12.424 0.970
    VBT 0.044 0.013 0.001 17.931** 68.005** 14.065 0.970
    VBP 0.556 0.211 0.014 15.486** 73.834** 10.680 0.970
    RCN 14.056 3.538 0.653 18.078** 65.690** 16.232 0.970
    RCA 5.63 × 10− 6 2.50 × 10− 6 4.38 × 10− 7 11.482** 64.242** 24.276 0.970
    RCP 0.072 0.0617 0.058 2.961 32.072 64.967 0.190
    RCA/MA 2.84 × 10− 4 1.66 × 10− 4 3.45 × 10− 5 8.604** 63.408** 27.988 0.870
    MA/VBA + RCA 0.157 0.154 0.115 1.473 28.151 70.376 0.200
    VBA/RCA 410.920 642.240 381.510 1.775 21.547 76.678 0.230
    注: *P < 0.05; **P < 0.01。Notes: *P < 0.05; **P < 0.01.
    下载: 导出CSV

    表  4  不同种群间形态解剖指标的差异

    Table  4.   Difference of morphology and anatomical traits among populations

    项目 Item  FSPT HZPT JZGPT LKSPT LSPT NCPT NSPT SSPT
    CSRN 7.830±1.790 6.360±1.355 6.970±1.082 7.690±1.636 7.640±1.397 8.060±1.391 7.200±1.346 7.830±1.630
    FSRN 5.740±1.502 5.060±1.194 4.890±0.854 6.170±1.276 6.610±1.202 6.330±1.216 5.290±1.017 6.060±1.603
    CSR2N 21.340±2.363 21.690±2.012 21.830±2.524 21.860±2.38 22.330±2.330 22.390±2.193 21.140±2.158 22.110±2.681
    FSR2N 20.89±1.728 20.810±2.584 21.140±2.127 20.970±1.647 21.080±2.322 21.940±1.836 20.460±2.513 20.360±2.180
    CSD 0.078±0.021 0.071±0.015 0.071±0.014 0.080±0.015 0.071±0.016 0.078±0.014 0.071±0.014 0.074±0.014
    FSD 0.056±0.014 0.054±0.013 0.048±0.009 0.062±0.014 0.058±0.013 0.059±0.009 0.050±0.009 0.052±0.009
    MSD 0.067±0.016 0.063±0.011 0.060±0.009 0.071±0.011 0.064±0.012 0.068±0.010 0.061±0.009 0.063±0.009
    NL 144.030±22.481 123.030±26.691 146.610±21.459 134.640±20.913 164.580±13.586 141.840±29.551 132.660±30.076 150.030±24.685
    NW 1.096±0.224 0.977±0.134 1.078±0.143 1.052±0.204 1.217±0.142 1.172±0.181 1.082±0.167 1.173±0.218
    NT 0.683±0.136 0.610±0.066 0.723±0.088 0.660±0.110 0.759±0.083 0.777±0.097 0.671±0.106 0.749±0.136
    NSP 3.035±1.026 2.636±0.343 2.990±0.413 2.891±0.508 3.268±0.318 3.187±0.454 2.918±0.412 3.151±0.739
    NSA 0.611±0.292 0.447±0.110 0.593±0.165 0.544±0.210 0.681±0.134 0.672±0.190 0.541±0.155 0.672±0.237
    MA 4.032±2.435 2.961±0.774 3.656±0.907 3.489±1.403 4.399±0.983 4.312±1.234 3.386±1.020 4.344±1.326
    VBW 0.61±0.103 0.508±0.091 0.596±0.099 0.585±0.119 0.663±0.075 0.632±0.101 0.589±0.100 0.654±0.148
    VBT 0.395±0.076 0.338±0.048 0.437±0.064 0.385±0.072 0.427±0.067 0.447±0.066 0.398±0.071 0.426±0.089
    VBP 1.643±0.271 1.396±0.206 1.675±0.272 1.587±0.295 1.784±0.200 1.756±0.273 1.615±0.254 1.749±0.371
    VBA 0.198±0.067 0.144±0.041 0.214±0.071 0.188±0.075 0.231±0.053 0.233±0.074 0.192±0.061 0.227±0.104
    RCN 4.600±1.802 6.330±1.549 5.810±3.106 3.970±1.082 4.250±1.628 4.150±1.349 5.000±1.831 3.970±1.108
    RCP 0.257±0.56 0.131±0.021 0.183±0.042 0.160±0.035 0.179±0.036 0.169±0.042 0.162±0.036 0.251±0.396
    RCA 0.01±0.007 0.007±0.003 0.014±0.011 0.007±0.004 0.010±0.008 0.009±0.006 0.010±0.006 0.010±0.006
    RCA/MA 0.002±0.001 0.003±0.001 0.004±0.002 0.002±0.001 0.002±0.002 0.002±0.001 0.003±0.002 0.002±0.001
    MA/VBA 20.142±8.609 21.320±5.298 17.724±3.130 19.048±4.247 19.687±4.902 19.077±3.831 18.139±3.734 20.135±3.021
    MA/RCA+VBA 19.262±8.195 20.204±4.803 16.768±3.152 18.340±4.162 18.903±4.870 18.371±3.604 17.294±3.676 19.285±2.851
    下载: 导出CSV

    表  5  油松地理种群间针叶光合生理指标方差分析表

    Table  5.   ANOVA of photosynthesis traits among populations

    性状
    Trait
    均方 Mean square方差分量 Variance component/%群体
    遗传力
    H2
    群体(7)
    Population (7)
    群体内个体(88)
    Individuals in population (88)
    残差(192)
    Residual (192)
    群体(7)
    Population (7)
    群体内个体(88)
    Individuals in population (88)
    残差(192)
    Residual (192)
    Pn 2.672 0.215 0.129 29.563** 22.819 47.618 0.940
    Tr 0.600 0.068 0.012 42.231** 20.941 36.828 0.970
    Gs 0.001 2.91 × 10− 5 1.05 × 10− 5 8.282** 26.311 65.407 0.710
    Ci 3 2476 7 577 8 701 33.922** 37.048** 29.030 0.970
    Ls 0.221 0.051 0.058 8.401** 26.386 65.214 0.710
    WUE 5.572 1.470 0.987 9.521** 39.297** 51.182 0.810
    注:*P < 0.05;**P < 0.01。Notes: *P < 0.05; **P < 0.01.
    下载: 导出CSV

    表  6  不同种群间光合与蒸腾指标的差异

    Table  6.   Difference of photosynthesis and transpiration traits among populations

    项目 Item Pn Gs Ci Tr Ls WUE
    FSPT 2.041 ± 0.864 0.02 ± 0.009 193.907 ± 67.662 0.83 ± 0.273 0.496 ± 0.175 2.552 ± 0.99
    HZPT 1.838 ± 0.756 0.017 ± 0.007 168.596 ± 115.99 0.686 ± 0.217 0.562 ± 0.3 2.919 ± 1.609
    JZGPT 1.682 ± 0.651 0.015 ± 0.006 182.781 ± 54.292 0.692 ± 0.241 0.526 ± 0.14 2.569 ± 0.984
    LKSPT 1.918 ± 0.755 0.019 ± 0.008 194.091 ± 48.804 0.788 ± 0.286 0.496 ± 0.125 2.646 ± 1.103
    LSPT 2.372 ± 0.858 0.024 ± 0.01 196.833 ± 46.789 0.935 ± 0.283 0.488 ± 0.121 2.625 ± 0.847
    NCPT 1.844 ± 0.678 0.017 ± 0.007 181.829 ± 60.644 0.692 ± 0.221 0.528 ± 0.157 2.863 ± 1.232
    NSPT 1.454 ± 0.676 0.012 ± 0.006 108.102 ± 453.737 0.533 ± 0.249 0.719 ± 1.173 3.692 ± 4.469
    SSPT 2.039 ± 0.801 0.022 ± 0.011 201.971 ± 52.490 0.835 ± 0.311 0.474 ± 0.136 2.62 ± 1.163
    下载: 导出CSV

    表  7  光合指标与形态解剖指标相关性分析表

    Table  7.   Pearson correlation analysis between photosynthesis traits and needle morphological traits

    项目 Item Pn Gs Ci Tr Ls WUE
    FSRN 0.635** 0.561** − 0.205 0.570** 0.026 − 0.159
    CSRN 0.587** 0.529** − 0.197 0.575** − 0.002 − 0.220
    FSR2N 0.317* 0.267 0.009 0.250 − 0.161 − 0.190
    CSR2N 0.490** 0.415** − 0.055 0.371* − 0.149 − 0.215
    CSD 0.326 0.284 − 0.308 0.362 0.162 0.520
    FSD 0.459 0.441 − 0.206 0.460 0.132 0.722*
    MSD 0.428 0.397 − 0.268 0.447 0.153 0.674*
    NL 0.417** 0.475** 0.068 0.349* − 0.162 − 0.003
    NW 0.525** 0.489** − 0.113 0.561** − 0.060 − 0.261
    NT 0.514** 0.429** − 0.199 0.503** 0.047 − 0.234
    MA 0.510** 0.458** − 0.117 0.546** − 0.033 − 0.244
    NSA 0.531** 0.482** − 0.122 0.553** − 0.036 − 0.249
    NSP 0.545** 0.509** − 0.106 0.538** − 0.070 − 0.219
    VBA 0.526** 0.485** − 0.125 0.520** − 0.032 − 0.227
    VBT 0.451** 0.386** − 0.180 0.436** 0.041 − 0.213
    VBP 0.565** 0.516** − 0.141 0.550** − 0.033 − 0.249
    VBW 0.611** 0.555** − 0.140 0.585** − 0.054 − 0.268
    RCA 0.484** 0.444** − 0.051 0.485** − 0.095 − 0.245
    RCN − 0.136 0.031 0.009 0.039 − 0.044 − 0.055
    RCP 0.224 0.182 − 0.050 0.293* − 0.038 − 0.209
    MA/VBA 0.395 0.378 − 0.031 0.390 0.215 0.119
    RCA/MA 0.020 0.042 0.093 0.108 0.080 − 0.224
    MA/VBA + RCA 0.389 0.372 − 0.031 0.383 0.216 0.118
    VBA/TRCA 0.206 0.368 0.383 0.481 − 0.482 − 0.285
    注: *P<0.05; **P<0.01。n=40。Notes: *P<0.05; **P<0.01. n=40.
    下载: 导出CSV

    表  8  光合指标、形态解剖指标与地理环境、生长因子间相关性分析表

    Table  8.   Pearson correlation analysis among photosynthesis traits, morphological needle traits and environmental factors

    项目 ItemLongitudeLatitudeElevationATAPATJAT/APATJ/AP
    Pn 0.409 0.419 − 0.376 − 0.226 − 0.261 − 0.593 − 0.039 − 0.472
    Gs 0.462 0.276 − 0.359 − 0.037 − 0.046 − 0.421 − 0.040 − 0.251
    Ci − 0.192 − 0.721* 0.372 0.443 0.804** 0.716* − 0.303 0.870**
    Ls 0.007 0.653 − 0.205 − 0.623 − 0.831** − 0.674* 0.160 − 0.833**
    Tr 0.504 0.306 − 0.336 − 0.042 − 0.058 − 0.456 − 0.030 − 0.263
    WUE 0.406 0.565 − 0.465 − 0.127 − 0.525 − 0.558 0.350 − 0.598
    FSRN 0.797* 0.506 − 0.606 0.245 − 0.168 − 0.479 0.427 − 0.412
    CSRN 0.845** 0.575 − 0.664 0.343 − 0.213 − 0.523 0.529 − 0.452
    FSR2N 0.259 0.376 0.031 0.030 − 0.419 − 0.281 0.495 − 0.426
    CSR2N 0.378 0.547 − 0.415 − 0.089 − 0.494 − 0.510 0.381 − 0.607
    FSD 0.546 0.462 − 0.208 0.021 − 0.344 − 0.474 0.383 − 0.441
    CSD 0.581 0.659 − 0.332 − 0.013 − 0.566 − 0.673* 0.488 − 0.638
    MSD 0.599 0.586 − 0.281 0.008 − 0.473 − 0.600 0.460 − 0.564
    NT 0.551 0.351 − 0.504 0.344 − 0.088 − 0.215 0.448 − 0.239
    NW 0.593 0.287 − 0.575 0.335 0.058 − 0.227 0.290 − 0.196
    NL 0.313 − 0.195 − 0.255 0.496 0.497 0.214 0.020 0.309
    MA 0.627 0.428 − 0.510 0.192 − 0.120 − 0.398 0.307 − 0.333
    NSP 0.594 0.298 − 0.502 0.337 0.026 − 0.248 0.315 − 0.207
    NSA 0.597 0.357 − 0.511 0.293 − 0.049 − 0.297 0.338 − 0.253
    RCP 0.438 0.269 − 0.391 0.119 − 0.011 − 0.322 0.057 − 0.150
    RCA 0.446 0.090 − 0.480 0.507 0.205 − 0.039 0.257 0.010
    RCN − 0.910** − 0.474 0.720* − 0.517 0.066 0.337 − 0.595 0.233
    VBW 0.614 0.273 − 0.590 0.399 0.083 − 0.227 0.301 − 0.170
    VBT 0.468 0.205 − 0.430 0.499 0.040 − 0.037 0.471 − 0.076
    VBA 0.557 0.252 − 0.513 0.454 0.055 − 0.140 0.401 − 0.131
    VBP 0.576 0.243 − 0.532 0.454 0.084 − 0.151 0.370 − 0.129
    RCA/MA − 0.849** − 0.746* 0.527 − 0.031 0.475 0.641 − 0.557 0.560
    MA/VBA + RCA 0.037 0.017 0.019 − 0.369 0.045 − 0.185 0.003 − 0.012
    MA/VBA 0.039 0.019 0.013 − 0.368 0.044 − 0.188 0.002 − 0.007
    注:*P < 0.05;**P < 0.01。n = 8。Longitude为 经度(E),Latitude为纬度(N),Elevation为海拔(m),AT为年均温(℃),AP为年降水量(mm),ATJ为1月均温(℃),AT/AP为年均温/年降水量的值,ATJ/AP为1月均温/年降水量的值。Notes: * means P < 0.05; ** means P < 0.01; n = 8. Longitude, longitude (E); latitude, latitude (N); elevation, elevation (m); AT, annual temperature (℃); AP, annual precipitation (mm); ATJ, average temperature of January; AT/AP, annual temperature/annual precipitation; ATJ/AP, average temperature of January/annual precipitation.
    下载: 导出CSV
  • [1] 张凯. 油松各器官功能性状及其对环境因子响应的研究[D]. 北京: 北京林业大学, 2016.

    Zhang K. The functional tratis of different organs of Pinus tabulaeformis and their response to environment[D]. Beijing: Beijing Forestry University, 2016.
    [2] Meng J X, Chen X Y, Huang Y J, et al. Environmental contribution to needle variation among natural populations of Pinus tabuliformis[J]. Journal of Forestry Research, 2019, 30(4): 1311−1322.
    [3] Xing F Q, Mao J F, Meng J X, et al. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis[J]. Ecology & Evolution, 2014, 4(10): 1890−1902.
    [4] McKown A D, Guy R D, Klápště J, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa[J]. New Phytologist, 2014, 201(4): 1263−1276. doi: 10.1111/nph.12601
    [5] Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation[J]. Journal of Evolutionary Biology, 2010, 22(7): 1435−1446.
    [6] 高琼, 王维有, 孟景祥, 等. 油松 × 云南松杂种与亲本种和高山松的光合特性比较[J]. 北京林业大学学报, 2016, 38(2):37−43.

    Gao Q, Wang W Y, Meng J X, et al. Comparison of growth traits and photosynthetic physiology in Pinus tabuliformis from eight provenances of China[J]. Journal of Beijing Forestry University, 2016, 38(2): 37−43.
    [7] 蒋万杰, 欧晓岚, 刘艳红. 北京松山油松当年生与往年生针叶光合生理特性[J]. 生态科学, 2018, 37(1):121−127.

    Jiang W J, Ou X L, Liu Y H. Photosynthetic characteristics in current and previous-year needles of Pinus tabulaeformis in the Songshan, Beijing, China[J]. Ecological Science, 2018, 37(1): 121−127.
    [8] Wang M B, Gao F Q. Genetic variation in Chinese pine (Pinus tabulaeformis), a woody species endemic to China[J]. Biochemical Genetics, 2009, 47(1-2): 154−164. doi: 10.1007/s10528-009-9225-7
    [9] Li W, Wang X, Li Y. Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr. over a 12-year span[J/OL]. PLoS One, 2011, 6(8) (2011−08−24) [2018−10−20]. https://doi.org/10.1371/journal.pone.0023544.
    [10] Wang B S, Mao J F, Gao J, et al. Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata[J]. Molecular Ecology, 2011, 20: 3796−3811. doi: 10.1111/mec.2011.20.issue-18
    [11] 续九如, 李颖岳. 林业试验设计[M]. 北京: 中国农业出版社, 2014.

    Xu J R, Li Y Y. Experiments design in forestry[M]. Beijing: China Agricultural Press, 2014.
    [12] Sultan S E. Evolutionary implications of phenotypic plasticity in plants[M]. New York: Springer, 1987: 127−178.
    [13] Körner C, Neumayer M, Menendez-Riedl S P, et al. Functional morphology of mountain plants[J]. Flora, 1989, 182(5−6): 353−383. doi: 10.1016/S0367-2530(17)30426-7
    [14] Beerling D, Kelly C. Evolutionary comparative analyses of the relationship between leaf structure and function[J]. New Phytologist, 1996, 134(1): 35−51. doi: 10.1111/nph.1996.134.issue-1
    [15] 黄雨洁. 云南松针叶与油松种实性状的种群变异研究[D]. 北京: 北京林业大学, 2015.

    Huang Y J. Population genetic variation of Pinus yunnanensis needle and Pinus tabuliformis cone and seed taits[D]. Beijing: Beijing Forestry University, 2015.
    [16] 郭丽丽, 张茜茜, 郝立华, 等. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报, 2019, 45(6):949−956.

    Guo L L, Zhang X X, Hao L H, et al. Responses of leaf gas exchange to high temperature and drought combination as well as re-watering of winter wheat under doubling atmospheric CO2 concentration[J]. Acta Agronomica Sinica, 2019, 45(6): 949−956.
    [17] 张明明. 不同地区日本落叶松叶片解剖结构比较研究[D]. 哈尔滨: 东北林业大学, 2012.

    Zhang M M. Comparative study on leaf anatomical structure of Japanses larch in different areas[D]. Harbin: Northeast Forestry University, 2012.
    [18] Xie Z S, Du H R, Xiang D F, et al. The changes of anatomical structure of vascular bundles and water transport in blueberry fruit during different growth and development stages[J]. Plant Physiology Journal, 2018, 54(1): 45−53.
    [19] Peak D, Mott K A. A new, vapour-phase mechanism for stomatal responses to humidity and temperature[J]. Plant Cell & Environment, 2015, 34(1): 162−178.
    [20] Hultine K R, Marshall J D. A comparison of three methods for determining the stomatal density of pine needles[J]. Journal of Experimental Botany, 2001, 52(355): 369−373. doi: 10.1093/jexbot/52.355.369
    [21] Gilbert M E, Zwieniecki M A, Holbrook N M. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought[J]. Journal of Experimental Botany, 2011, 62(8): 2875−2887. doi: 10.1093/jxb/erq461
    [22] Pensa M, Aalto T, Jalkanen R. Variation in needle-trace diameter in respect of needle morphology in five conifer species[J]. Trees, 2004, 18(3): 307−311. doi: 10.1007/s00468-003-0307-6
    [23] Cole K L, Fisher J, Arundel S T, et al. Geographical and climatic limits of needle types of one-and two-needled pinyon pines[J]. Journal of Biogeography, 2008, 35(2): 257−269.
    [24] 代剑峰, 高琼, 刘灏, 等. 高山松与亲本种多种群在高海拔生境下的苗期适应性研究[J]. 北京林业大学学报, 2012, 34(5):15−24.

    Dai J F, Gao Q, Liu H, et al. Seedling adaptation of hybrid pine Pinus densata and its parental species in the high elevation habitat[J]. Journal of Beijing Forestry University, 2012, 34(5): 15−24.
    [25] Roberntz P, Stockfors J. Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees[J]. Tree Physiology, 1998, 18(4): 233−241. doi: 10.1093/treephys/18.4.233
    [26] Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes[J]. Tree Physiology, 2012, 32(2): 219−231. doi: 10.1093/treephys/tpr141
    [27] Caird M A, Richards J H, Donovan L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007, 143(1): 4−10. doi: 10.1104/pp.106.092940
    [28] 罗彬莹, 刘卫东, 吴际友, 等. 干旱胁迫对樟树幼苗光合特性和水分利用的影响[J]. 中南林业科技大学学报, 2019, 39(5):49−55.

    Luo B Y, Liu W D, Wu J Y, et al. Effect of drought stress on photosynthetic characteristics and water use of Cinnamomum camphora seedlings[J]. Journal of Central South University of Forestry & Technology, 2019, 39(5): 49−55.
    [29] 叶子飘, 郑卓, 康华靖, 等. 自然条件下中熟籼稻初穗期剑叶光合的气孔和非气孔限制特征[J]. 生态学杂志, 2019, 38(4):1004−1012. doi: 10.3969/j.issn.1674-3075.2014.02.001

    Ye Z P, Zheng Z, Kang H J, et al. Stomatal and non-stomatal limitations on photosynthesis of flag leaf of medium mature indica rice at early earring stage under natural conditions[J]. Chinese Journal of Ecology, 2019, 38(4): 1004−1012. doi: 10.3969/j.issn.1674-3075.2014.02.001
    [30] 潘瑞炽, 王晓菁, 李娘辉, 等. 植物生理学[M]. 北京: 高等教育出版社, 2012.

    Pan R C, Wang X J, Li N H, et al. Plant physiology[M]. Beijing:Higher Education Press, 2012.
    [31] Sultan S. Phenotypic plasticity and plant adaptation[J]. Acta botanica neerlandica, 1995, 44(4): 363−383. doi: 10.1111/plb.1995.44.issue-4
    [32] 张丹. 环境因子对红松光合作用及次生代谢产物的影响[D]. 哈尔滨: 东北林业大学, 2016.

    Zhang D. Effects of environment on photosynthesis and secondary metabolitesr of Korean pine[D]. Harbin: Northeast Forestry University, 2016.
    [33] 赵海燕, 魏宁, 孙聪聪, 等. NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J]. 北京林业大学学报, 2018, 40(11):28−41.

    Zhao H Y, Wei N, Sun C C, et al. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28−41.
    [34] 冮慧欣, 王嘉琪, 黄春岩, 等. 8种绿化树种光合特性及叶片解剖结构比较[J]. 植物研究, 2019, 39(1):10−16.

    Jiang H X, Wang J Q, Huang C Y, et al. Photosynthetic characteristics and leaf anatomical structure of eight tree species[J]. Bulletin of Botanical Research, 2019, 39(1): 10−16.
    [35] 刘力铭, 孙志虎, 李开隆, 等. 养分添加对白桦叶片气孔和气体交换异质性影响研究[J]. 中南林业科技大学学报, 2019, 39(4):72−78.

    Liu L M, Sun Z H, Li K L, et al. Effects of nutrient addition on stomata and gas exchange heterogeneity of Betula platyplylla leaves[J]. Journal of Central South University of Forestry & Technology, 2019, 39(4): 72−78.
  • 加载中
图(1) / 表(8)
计量
  • 文章访问数:  1862
  • HTML全文浏览量:  779
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-04-29
  • 网络出版日期:  2019-07-08
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回