Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China
-
摘要:目的林龄增长和气候变化是影响森林蓄积量变化的关键因素,研究这两种因素对区域尺度森林蓄积的影响具有重要意义。方法本文基于生态过程模型(3-PG)、森林资源规划设计调查数据及3种未来气候情景(BS、RCP4.5和RCP8.5),量化了林龄和气候变化对三峡库区马尾松林蓄积的影响。结果2009—2050年林龄促使三峡库区马尾松林蓄积年均增长2.60 × 106 m3/a或2.60 m3/(hm2·a);而气候变化对蓄积生长的促进作用较小,年均增量为1.70 × 105 ~ 2.00 × 105 m3/a或0.17 ~ 0.20 m3/(hm2·a),相当于林龄影响的6.55% ~ 7.67%。林龄和气候变化对马尾松林蓄积生长的促进作用在三峡库区中部最强,而在库区南部最弱。林龄促进马尾松林单位面积蓄积年均增长最高和最低的地区分别是万州区和巴南区,对应值为4.54 和1.17 m3/(hm2·a)。气候变化对开州区单位面积蓄积年均增长的促进作用最高,为0.40 m3/(hm2·a),而对涪陵区的促进作用最低,为0.03 m3/(hm2·a)。结论林龄和气候变化均促进马尾松林蓄积生长,其共同作用将使万州区和开州区马尾松林单位面积蓄积年均增量最高,而使巴南区蓄积年均增量最低。未来需重点关注巴南区马尾松林生长,通过加强抚育管理、调整林龄结构以维持区域森林资源增长。Abstract:ObjectiveBoth stand age and climate change are crucial factors influencing forest volume dynamics, and it is important to investigate their effects on forest volume on a regional scale.MethodBased on an ecological process model (3-PG), data from a forest resource planning and design survey and three future climate scenarios (BS, RCP4.5, and RCP8.5), this study quantified the effects of stand age and climate change on the volume growth of Pinus massoniana forests in the Three Gorges Reservoir Area (TGRA) of central China.ResultStand age was predicted to increase the annual average volume of the Pinus massoniana forests by 2.60 × 106 m3/year or 2.60 m3/(ha·year) in the TGRA during 2009 to 2050. While the effect of climate change was less pronounced than that of stand age, an annual volume increment of 1.70 × 105−2.00 × 105 m3/year or 0.17−0.20 m3/(ha·year) only accounted for 6.55%−7.67% of the effect of stand age. The effects of both stand age and climate change on volume growth in Pinus massoniana forests were predicted to be the strongest in the central part and the weakest in the southern part of the TGRA. The Wanzhou District was predicted to present the highest annual average increment of volume per hectare (4.54 m3/(ha·year)) owing to stand age; while Banan District, the lowest value (1.17 m3/(ha·year)). The promoting effects of climate change on volume growth were predicted to be the highest in Kaizhou District (0.40 m3/(ha·year)); the lowest in Fuling District (0.03 m3/(ha·year)).ConclusionBoth stand age and climate change are predicted to enhance the volume growth of the Pinus massoniana forests, and their combined effects would most increase the annual average volume increment per hectare in Wanzhou and Kaizhou Districts and least in Banan District. Studies are required to focus on the growth of Pinus massoniana forests in Banan District in the future through strengthening of forest management and adjustment of the forest age structure to maintain the development of regional forest resources.
-
Keywords:
- stand age /
- Pinus massoniana forests /
- natural driving force /
- climate change
-
-
图 2 三峡库区马尾松林的林龄结构
BN. 巴南区;FD. 丰都县;FL. 涪陵区;JJ. 江津区;DT. 主城区;WS. 巫山县;WX. 巫溪县;XS. 兴山县;YL. 夷陵区;YB. 渝北区;BD. 巴东县;SZ. 石柱土家族自治县;ZX. 忠县;WL. 武隆区;FJ. 奉节县;ZG. 秭归县;CS. 长寿区;YY. 云阳县;KZ. 开州区;WZ. 万州区。下同。BN, Banan District; FD, Fengdu County; FL, Fuling District; JJ, Jiangjin District; DT, Downtown; WS, Wushan County; WX, Wuxi County; XS, Xingshan County; YL, Yiling District; YB, Yubei District; BD, Dadong County; SZ, Shizhu Tujia Autonomous County; ZX, Zhongxian County; WL, Wulong District; FJ, Fengjie County; ZG, Zigui County; CS, Changshou District; YY, Yunyang County; KZ, Kaizhou District; WZ, Wanzhou District. Same as below.
Figure 2. Stand age structure of Pinus massoniana forests in the TGRA
表 1 三峡库区马尾松林概况
Table 1 Description of Pinus massoniana forests in the TGRA
不同尺度
Different scale胸径范围
DBH range/cm树高范围
Tree height range/m林龄范围
Stand age range/a林分密度/(株·hm−2)
Stand density/(tree·ha−1)面积/hm2
Area/ha蓄积
Volume/m3个数
Number三峡库区马尾松林
Pinus massoniana forests
in the TGRA5.0 ~ 46.6 1.9 ~ 18.8 2 ~ 66 84 ~ 3 675 9.86 × 105 8.09 × 107 21 073 典型小班
Typical subclass5.0 ~ 46.6 1.9 ~ 18.8 2 ~ 66 105 ~ 3 214 0.03 ~ 36 17.0 ~ 494.6 566 实测样地
Measured plot6.1 ~ 23.0 5.1 ~ 20.0 15 ~ 52 975 ~ 3 475 0.04 ~ 0.06 31.4 ~ 366.4 41 表 2 3-PG模型参数修正值
Table 2 Modified 3-PG model parameters
参数 Parameter 值 Value 来源 Source 胸径2 cm时树叶与树干分配比 Foliage:stem partitioning ratio with DBH = 2 cm 0.346 9 F 胸径20 cm时树叶与树干分配比 Foliage:stem partitioning ratio with DBH = 20 cm 0.064 7 F 干生物量与胸径关系的常数值 Constant in the relation of stem mass and DBH 0.137 9 F 干生物量与胸径关系的幂值 Power in the relation of stem mass and DBH 2.343 6 F 净初级生产量分配给根的最大比例 Maximum fraction of NPP to roots 0.35 F 净初级生产量分配给根的最小比例 Minimum fraction of NPP to roots 0.25 [22] 生长最低气温 Minimum temperature for growth/℃ 0 [18] 生长最适气温 Optimum temperature for growth/℃ 17.5 [18] 生长最高气温 Maximum temperature for growth/℃ 40 [18] fq = 0.5时的水分亏缺比 Moisture ratio deficit for fq = 0.5 0.5 [18] 水分亏缺比的幂值 Power of moisture ratio deficit 9 D 大树的死亡速率 /(%·a− 1)Mortality rate for large tree/(%·year− 1) 1 D 死亡响应模型 Shape of mortality response 1 D 林分密度为1 000株/hm2时最大立木树干生物量/(kg·株− 1)
Max. stem mass per tree when stand density was 1 000 tree/ha/(kg·tree− 1)300 D 自疏函数中的幂值 Power in self-thinning rule 1.5 D 每株死木叶生物量损失比例 Fraction mean single-tree foliage biomass lost per dead tree 0 [18] 每株死木根生物量损失比例 Fraction mean single-tree root biomass lost per dead tree 0.2 [16] 每株死木干生物量损失比例 Fraction mean single-tree stem biomass lost per dead tree 0.2 [16] 林龄为0时的比叶面积 Specific leaf area at stand age was 0 6.4 [23] 成熟叶的比叶面积 Specific leaf area for mature leaves/(m2·kg− 1) 3.7 [23] 比叶面积为(SLA0 + SLA1)/2时的林龄/a Stand age at which specific leaf area was (SLA0 + SLA1)/2/year 3 [23] 消光系数 Extinction coefficient for absorption of PAR by canopy 0.5 D 冠层量子效率 Canopy quantum efficiency/(mol·mol− 1) 0.033 [18] 净初级生产力/总初级生产力 Ratio of NPP/GPP 0.47 D 最小冠层导度 Minimum canopy conductance/(m·s− 1) 0 [14] 最大冠层导度 Maximum canopy conductance/(m·s− 1) 0.02 [14] 最大冠层导度的LAI LAI for maximum canopy conductance 3 [18] 定义气孔对饱和水汽压差的响应 Defines stomatal response to VPD/(1·mBar− 1) 0.05 [18] 冠层边界层导度 Canopy boundary layer conductance/(m·s− 1) 0.2 [24] 树干材积关系中常数值 Constant in the stem volume relationship 0.000 181 4 F 树干材积关系中胸径的幂值 Power of DBH in the stem volume relationship 2.352 F 树干材积关系中材积的幂值 Power of stocking in the stem volume relationship 1 F 注:F为拟合参数;D为默认参数。 Notes: F means fitting parameters; D means default parameters. 表 3 2009—2050年3种气候情景的三峡库区马尾松林蓄积
Table 3 Volumes of Pinus massoniana forests under 3 climate scenarios in the TGRA during 2009 to 2050
情景
Scenario蓄积 Volume/(106·m3) 单位面积蓄积/(m3·hm− 2) Volume per hectare/(m3·ha− 1) 2009 2050 平均值
Mean年均增量
Annual average increment2009 2050 平均值
Mean年均增量
Annual average incrementBS 48.22 153.51 130.26 2.60 48.89 155.65 132.08 2.60 RCP4.5 160.50 134.52 2.78 162.74 136.40 3.97 RCP8.5 161.71 135.33 2.81 163.96 137.21 4.00 表 4 林龄及气候变化对三峡库区马尾松林蓄积的影响
Table 4 Effects of stand age and climate change on Pinus massoniana forest volume in the TGRA
效应
Effect蓄积 Volume/(106·m3) 单位面积蓄积/(m3·hm− 2) Volume per hectare/(m3·ha− 1) 林龄的影响
Effect of stand age气候变化影响
Effect of climate change林龄的影响
Effect of stand age气候变化影响
Effect of climate change2009—2050期间总效应
Total effects during 2009 to 2050105.29 6.99 ~ 8.19 106.76 7.09 ~ 8.31 2009—2050期间年均效应
Annual average effects during 2009 to 20502.60 0.17 ~ 0.20 2.60 0.17 ~ 0.20 -
[1] 雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12):116−126. doi: 10.11707/j.1001-7488.20181213 Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
[2] Gschwantner T, Alberdi I, Balázs A, et al. Harmonisation of stem volume estimates in European National Forest Inventories[J]. Annals of Forest Science, 2019, 76(1): 24. doi: 10.1007/s13595-019-0800-8
[3] Kotivuori E, Maltamo M, Korhonen l, et al. Calibration of nationwide airborne laser scanning based stem volume models[J]. Remote Sensing of Environment, 2018, 210: 179−192. doi: 10.1016/j.rse.2018.02.069
[4] Lafortezza R, Giannico V. Combining high-resolution images and LiDAR data to model ecosystem services perception in compact urban systems[J]. Ecological Indicators, 2019, 96: 87−98. doi: 10.1016/j.ecolind.2017.05.014
[5] 赵匡记, 王利东, 王立军, 等. 华北落叶松蓄积量及生产力研究[J]. 北京林业大学学报, 2015, 37(2):24−31. Zhao K J, Wang L D, Wang L J, et al. Stock volume and productivity of Larix principis-rupprechtii in northern and northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(2): 24−31.
[6] Chrysafis I, Mallinis G, Tsakiri M, et al. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 77: 1−14. doi: 10.1016/j.jag.2018.12.004
[7] Mund M, Kummetz E, Hein M, et al. Growth and carbon stocks of a spruce forest chronosequence in central Europe[J]. Forest Ecology and Management, 2002, 171(3): 275−296. doi: 10.1016/S0378-1127(01)00788-5
[8] Pretzsch H, Biber P, Schütze G, et al. Forest stand growth dynamics in Central Europe have accelerated since 1870[J]. Nature Communications, 2014, 5: 4967. doi: 10.1038/ncomms5967
[9] Sampson D A, Wynne R H, Seiler J R. Edaphic and climate effects on forest stand development, net primary production, and net ecosystem productivity simulated for Coastal Plain loblolly pine in Virginia[J/OL]. Journal of Geophysical Research Biogeosciences, 2008, 113: G01003 [2019−03−15]. https://doi.org/10.1029/2006JG000270.
[10] 周蕾, 王绍强, 周涛, 等. 1901— 2010年中国森林碳收支动态: 林龄的重要性[J]. 科学通报, 2016, 61(18):2064−2073. Zhou L, Wang S Q, Zhou T, et al. Carbon dynamics of China’s forests during 1901−2010: the importance of forest age[J]. Chinese Science Bulletin, 2016, 61(18): 2064−2073.
[11] 王少杰, 邓华锋, 向玮, 等. 基于混合模型的油松林分蓄积量预测模型的建立[J]. 西北农林科技大学学报(自然科学版), 2018, 46(2):29−38. Wang S J, Deng H F, Xiang W, et al. Establishment of predicting models for Pinus tabulaeformis stands volume based on mixed models[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(2): 29−38.
[12] 王海宾, 彭道黎, 高秀会, 等. 基于GF-1 PMS影像和k-NN方法的延庆区森林蓄积量估测[J]. 浙江农林大学学报, 2018, 35(6):87−95. Wang H B, Peng D L, Gao X H, et al. Forest stock volume estimates in Yanqing District based on GF-1 PMS images and k-NN method[J]. Journal of Zhejiang A&F University, 2018, 35(6): 87−95.
[13] Landsberg J J, Waring R H. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning[J]. Forest Ecology and Management, 1997, 95(3): 209−228. doi: 10.1016/S0378-1127(97)00026-1
[14] López-Serrano F R, Martínez-García E, Dadi T, et al. Biomass growth simulations in a natural mixed forest stand under different thinning intensities by 3-PG process-based model[J]. European Journal of Forest Research, 2015, 134(1): 167−185. doi: 10.1007/s10342-014-0841-3
[15] Meyer G, Black T A, Jassal R S, et al. Measurements and simulations using the 3-PG model of the water balance and water use efficiency of a lodgepole pine stand following mountain pine beetle attack[J]. Forest Ecology and Management, 2017, 393: 89−104. doi: 10.1016/j.foreco.2017.03.019
[16] Xie Y L, Wang H Y, Lei X D. Application of the 3-PG model to predict growth of Larix olgensis plantations in northeastern China[J]. Forest Ecology and Management, 2017, 406: 208−218. doi: 10.1016/j.foreco.2017.10.018
[17] Zeng L X, He W, Teng M J, et al. Effects of mixed leaf litter from predominant afforestation tree species on decomposition rates in the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 639: 679−686. doi: 10.1016/j.scitotenv.2018.05.208
[18] Zhao M F, Xiang W H, Peng C H, et al. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model[J]. Forest Ecology and Management, 2009, 257: 1520−1531. doi: 10.1016/j.foreco.2008.12.025
[19] 冯源, 肖文发, 黄志霖, 等. 未来气候变化情景下三峡库区马尾松林生物量固碳动态与空间分异[J/OL]. 生态学杂志, 2019, 38(12) [2019−10−25]. https://doi.org/10.13292/j.1000-4890.201912.019. Feng Y, Xiao W F, Huang Z L, et al. Dynamics and spatial differentiation of biomass carbon sequestration of Pinus massoniana forests in the Three Gorges Reservoir Area under future climate change scenarios[J/OL]. Chinese Journal of Ecology, 2019, 38(12) [2019−10−25]. https://doi.org/10.13292/j.1000-4890.201912.019.
[20] Wang W F, Peng C H, Zhang S Y, et al. Development of TRIPLEX-management model for simulating the response of forest growth to pre-commercial thinning[J]. Ecological Modelling, 2011, 222(14): 2249−2261. doi: 10.1016/j.ecolmodel.2010.09.019
[21] Räty O, Räisänen J, Ylhäisi J S. Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations[J]. Climate Dynamics, 2014, 42(9−10): 2287−2303. doi: 10.1007/s00382-014-2130-8
[22] 花利忠, 江希钿, 贺秀斌. 3-PG模型在华南尾叶桉人工林的应用研究[J]. 北京林业大学学报, 2007, 29(2):100−104. doi: 10.3321/j.issn:1000-1522.2007.02.017 Hua L Z, Jiang X D, He X B. Application of 3-PG model in Eucalyptus urophylla plantations of southern China[J]. Journal of Beijing Forestry University, 2007, 29(2): 100−104. doi: 10.3321/j.issn:1000-1522.2007.02.017
[23] 李轩然, 刘琪璟, 蔡哲, 等. 千烟洲针叶林的比叶面积及叶面积指数[J]. 植物生态学报, 2007, 31(1):93−101. doi: 10.3321/j.issn:1005-264X.2007.01.012 Li X R, Liu Q J, Cai Z, et al. Specific leaf area and leaf area index of conifer plantations in Qianyanzhou Station of subtropical China[J]. Journal of Plant Ecology (Chinese Version), 2007, 31(1): 93−101. doi: 10.3321/j.issn:1005-264X.2007.01.012
[24] Gonzalez-Benecke C A, Teskey R O, Martin T A, et al. Regional validation and improved parameterization of the 3-PG model for Pinus taeda stands[J]. Forest Ecology and Management, 2016, 361: 237−256. doi: 10.1016/j.foreco.2015.11.025
[25] 解雅麟, 王海燕, 雷相东. 基于过程模型的气候变化对长白落叶松人工林净初级生产力的影响[J]. 植物生态学报, 2017, 41(8):826−839. doi: 10.17521/cjpe.2016.0382 Xie Y L, Wang H Y, Lei X D. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling[J]. Chinese Journal of Plant Ecology, 2017, 41(8): 826−839. doi: 10.17521/cjpe.2016.0382
[26] 徐雨晴, 周波涛, 於琍, 等. 气候变化背景下中国未来森林生态系统服务价值的时空特征[J]. 生态学报, 2018, 38(6):1952−1963. Xu Y Q, Zhou B T, Yu L, et al. Temporal-spatial dynamic pattern of forest ecosystem service value affected by climate change in the future in China[J]. Acta Ecologica Sinica, 2018, 38(6): 1952−1963.
[27] Zhao M F, Xiang W H, Deng X W, et al. Application of TRIPLEX model for predicting Cunninghamia lanceolata, and Pinus massoniana, forest stand production in Hunan Province, southern China[J]. Ecological Modelling, 2013, 250: 58−71. doi: 10.1016/j.ecolmodel.2012.10.011
[28] 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应[J]. 科学通报, 2018, 63(2):136−140. Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2): 136−140.
[29] Alfaro-Sánchez R, Jump A S, Pino J, et al. Land use legacies drive higher growth, lower wood density and enhanced climatic sensitivity in recently established forests[J]. Agricultural and Forest Meteorology, 2019, 276−277: 107630. doi: 10.1016/j.agrformet.2019.107630
[30] 郭晓娜, 苏维词, 李强, 等. 三峡库区(重庆段)地表起伏度及其对生态系统服务价值的影响[J]. 生态与农村环境学报, 2016, 32(6):887−894. doi: 10.11934/j.issn.1673-4831.2016.06.004 Guo X N, Su W C, Li Q, et al. Surface relief degree and its effects on ecosystem service value in the Chongqing section of the Three Gorges Reservoir Region, China[J]. Journal of Ecology and Rural Environment, 2016, 32(6): 887−894. doi: 10.11934/j.issn.1673-4831.2016.06.004
[31] 张强, 万素琴, 毛以伟, 等. 三峡库区复杂地形下的气温变化特征[J]. 气候变化研究进展, 2005, 1(4):164−167. doi: 10.3969/j.issn.1673-1719.2005.04.005 Zhang Q, Wan S Q, Mao Y W, et al. Characteristics of temperature changes around the Three Gorges with complex topography[J]. Advances in Climate Change Research, 2005, 1(4): 164−167. doi: 10.3969/j.issn.1673-1719.2005.04.005
[32] 岳天祥, 范泽孟. 典型陆地生态系统对气候变化响应的定量研究[J]. 科学通报, 2014, 59(3):217−231. Yue T X, Fan Z M. A review of responses of typical terrestrial ecosystems to climate change[J]. Chinese Science Bulletin, 2014, 59(3): 217−231.
[33] 赵志江. 川西亚高山岷江冷杉与紫果云杉对气候的响应[D]. 北京: 北京林业大学, 2013. Zhao Z J. The response of Abies faxoniana and Picea purpurea to climate factors in subalpine of western Sichuan Province, China[D]. Beijing: Beijing Forestry University, 2013.
[34] 郭灵辉, 郝成元, 吴绍洪, 等. 21世纪上半叶内蒙古草地植被净初级生产力变化趋势[J]. 应用生态学报, 2016, 27(3):803−814. Guo L H, Hao C Y, Wu S H, et al. Projected changes in vegetation net primary productivity of grassland in Inner Mongolia, China during 2011−2050[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 803−814.
[35] Agne M C, Beedlow P A, Shaw D C, et al. Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U. S. A.[J]. Forest Ecology and Management, 2018, 409: 317−332. doi: 10.1016/j.foreco.2017.11.004
[36] Wu J S, Wang T, Pan K Y, et al. Assessment of forest damage caused by an ice storm using multi-temporal remote-sensing images: a case study from Guangdong Province[J]. International Journal of Remote Sensing, 2016, 37(13): 3125−3142. doi: 10.1080/01431161.2016.1194544
[37] Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J]. Forest Ecology and Management, 2010, 259(8): 1363−1375. doi: 10.1016/j.foreco.2009.12.029
[38] Augustynczik A L D, Hartig F, Minunno F, et al. Productivity of Fagus sylvatica under climate change: a Bayesian analysis of risk and uncertainty using the model 3-PG[J]. Forest Ecology and Management, 2017, 401: 192−206. doi: 10.1016/j.foreco.2017.06.061
[39] Schurman J S, Babst F, Björklund J, et al. The climatic drivers of primary Picea forest growth along the Carpathian are changing under rising temperatures[J]. Global Change Biology, 2019, 25(9): 3136−3150. doi: 10.1111/gcb.14721
[40] Büntgen U, Krusic P J, Piermattei A, et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming[J]. Nature Communications, 2019, 10(1): 2171. doi: 10.1038/s41467-019-10174-4
-
期刊类型引用(8)
1. 袁江龙,刘晓煌,李洪宇,邢莉圆,雒新萍,王然,王超,赵宏慧. 1990—2050年黄河中游伊洛河流域不同土地利用类型碳储量时空分异特征. 现代地质. 2024(03): 559-573 . 百度学术
2. 冼丽铧,朱薪蓉,卢德浩,陈红跃,古德泉. 联合运用多光谱和激光雷达技术构建的林分生物量估算模型. 东北林业大学学报. 2024(08): 85-94 . 百度学术
3. 于艺,姚鸿文,温小荣,汪求来,叶金盛. 无人机激光雷达杉木人工林碳储量估测. 西北林学院学报. 2024(04): 131-137 . 百度学术
4. 丁相元,陈尔学,赵磊,刘清旺,范亚雄,赵俊鹏,徐昆鹏. 几种林场总体森林蓄积量密度均值估计方法的比较评价. 北京林业大学学报. 2023(02): 11-23 . 本站查看
5. 李康杰,胡中岳,刘萍,徐正春. 基于Landsat-8 Oli影像的珠三角森林生物量估测. 中南林业科技大学学报. 2023(03): 73-81 . 百度学术
6. 吴新宇,廖廓,李勇波,李欣欣,王若琦. 基于无人机LiDAR数据的马尾松碳储量估测. 海峡科学. 2023(02): 43-49 . 百度学术
7. 王鸿飞,程学军,王建平. 激光雷达云数据视场交迭异常监测系统. 电子器件. 2023(04): 1128-1133 . 百度学术
8. 武晓康,王浩宇,冯宝坤,王成,张高腾. 基于无人机LiDAR的单木生物量估测. 科学技术与工程. 2022(34): 15028-15035 . 百度学术
其他类型引用(12)