高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林龄和气候变化对三峡库区马尾松林蓄积量的影响

冯源 肖文发 朱建华 黄志霖 鄢徐欣 吴东

冯源, 肖文发, 朱建华, 黄志霖, 鄢徐欣, 吴东. 林龄和气候变化对三峡库区马尾松林蓄积量的影响[J]. 北京林业大学学报, 2019, 41(11): 11-21. doi: 10.13332/j.1000-1522.20190184
引用本文: 冯源, 肖文发, 朱建华, 黄志霖, 鄢徐欣, 吴东. 林龄和气候变化对三峡库区马尾松林蓄积量的影响[J]. 北京林业大学学报, 2019, 41(11): 11-21. doi: 10.13332/j.1000-1522.20190184
Feng Yuan, Xiao Wenfa, Zhu Jianhua, Huang Zhilin, Yan Xuxin, Wu Dong. Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China[J]. Journal of Beijing Forestry University, 2019, 41(11): 11-21. doi: 10.13332/j.1000-1522.20190184
Citation: Feng Yuan, Xiao Wenfa, Zhu Jianhua, Huang Zhilin, Yan Xuxin, Wu Dong. Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China[J]. Journal of Beijing Forestry University, 2019, 41(11): 11-21. doi: 10.13332/j.1000-1522.20190184

林龄和气候变化对三峡库区马尾松林蓄积量的影响

doi: 10.13332/j.1000-1522.20190184
基金项目: 国家公益性行业科研专项(GYHY201406035),国家重点研发计划项目(2016YFD0600200)
详细信息
    作者简介:

    冯源,博士生。主要研究方向:生态系统管理。Email:flyh0901@163.com 地址:100091北京市海淀区香山路东小府1号中国林业科学研究院森林生态环境与保护研究所

    责任作者:

    肖文发,研究员。主要研究方向:生态系统管理。Email:xiaowenf@caf.ac.cn 地址:同上

  • 中图分类号: S718.556

Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China

  • 摘要: 目的林龄增长和气候变化是影响森林蓄积量变化的关键因素,研究这两种因素对区域尺度森林蓄积的影响具有重要意义。方法本文基于生态过程模型(3-PG)、森林资源规划设计调查数据及3种未来气候情景(BS、RCP4.5和RCP8.5),量化了林龄和气候变化对三峡库区马尾松林蓄积的影响。结果2009—2050年林龄促使三峡库区马尾松林蓄积年均增长2.60 × 106 m3/a或2.60 m3/(hm2·a);而气候变化对蓄积生长的促进作用较小,年均增量为1.70 × 105 ~ 2.00 × 105 m3/a或0.17 ~ 0.20 m3/(hm2·a),相当于林龄影响的6.55% ~ 7.67%。林龄和气候变化对马尾松林蓄积生长的促进作用在三峡库区中部最强,而在库区南部最弱。林龄促进马尾松林单位面积蓄积年均增长最高和最低的地区分别是万州区和巴南区,对应值为4.54 和1.17 m3/(hm2·a)。气候变化对开州区单位面积蓄积年均增长的促进作用最高,为0.40 m3/(hm2·a),而对涪陵区的促进作用最低,为0.03 m3/(hm2·a)。结论林龄和气候变化均促进马尾松林蓄积生长,其共同作用将使万州区和开州区马尾松林单位面积蓄积年均增量最高,而使巴南区蓄积年均增量最低。未来需重点关注巴南区马尾松林生长,通过加强抚育管理、调整林龄结构以维持区域森林资源增长。

     

  • 图  1  三峡库区马尾松林分布示意图

    Figure  1.  Distribution of Pinus massoniana forests in the TGRA

    图  2  三峡库区马尾松林的林龄结构

    BN. 巴南区;FD. 丰都县;FL. 涪陵区;JJ. 江津区;DT. 主城区;WS. 巫山县;WX. 巫溪县;XS. 兴山县;YL. 夷陵区;YB. 渝北区;BD. 巴东县;SZ. 石柱土家族自治县;ZX. 忠县;WL. 武隆区;FJ. 奉节县;ZG. 秭归县;CS. 长寿区;YY. 云阳县;KZ. 开州区;WZ. 万州区。下同。BN, Banan District; FD, Fengdu County; FL, Fuling District; JJ, Jiangjin District; DT, Downtown; WS, Wushan County; WX, Wuxi County; XS, Xingshan County; YL, Yiling District; YB, Yubei District; BD, Dadong County; SZ, Shizhu Tujia Autonomous County; ZX, Zhongxian County; WL, Wulong District; FJ, Fengjie County; ZG, Zigui County; CS, Changshou District; YY, Yunyang County; KZ, Kaizhou District; WZ, Wanzhou District. Same as below.

    Figure  2.  Stand age structure of Pinus massoniana forests in the TGRA

    图  3  2009—2050年三峡库区3种未来情景气候特征

    BS为基线情景;RCP4.5为中低浓度情景;RCP8.5为高浓度情景。BS, baseline scenario; RCP4.5, medium-low concentration scenario; RCP8.5, high concentration scenario.

    Figure  3.  Climate characteristics of 3 future scenarios in the TGRA during 2009 to 2050

    图  4  3-PG模拟值与样地实测蓄积的比较

    Figure  4.  Comparison between 3-PG model simulated volume and the plot measurement volume

    图  5  2009—2050年三峡库区马尾松林蓄积动态及自然驱动力的影响

    Figure  5.  Dynamics and the impacts of natural driving force on the volume of Pinus massoniana forests in the TGRA during 2009 to 2050

    图  6  自然驱动力对马尾松林蓄积影响的空间分布格局

    Figure  6.  Spatial distribution patterns of the effects of natural driving force on the Pinus massoniana forest volume

    图  7  自然驱动力对不同区县马尾松林蓄积的影响

    Figure  7.  Effects of natural driving force on the Pinus massoniana forest volume in different districts

    表  1  三峡库区马尾松林概况

    Table  1.   Description of Pinus massoniana forests in the TGRA

    不同尺度
    Different scale
    胸径范围
    DBH range/cm
    树高范围
    Tree height range/m
    林龄范围
    Stand age range/a
    林分密度/(株·hm−2
    Stand density/(tree·ha−1)
    面积/hm2
    Area/ha
    蓄积
    Volume/m3
    个数
    Number
    三峡库区马尾松林
    Pinus massoniana forests
    in the TGRA
    5.0 ~ 46.6 1.9 ~ 18.8 2 ~ 66 84 ~ 3 675 9.86 × 105 8.09 × 107 21 073
    典型小班
    Typical subclass
    5.0 ~ 46.6 1.9 ~ 18.8 2 ~ 66 105 ~ 3 214 0.03 ~ 36 17.0 ~ 494.6 566
    实测样地
    Measured plot
    6.1 ~ 23.0 5.1 ~ 20.0 15 ~ 52 975 ~ 3 475 0.04 ~ 0.06 31.4 ~ 366.4 41
    下载: 导出CSV

    表  2  3-PG模型参数修正值

    Table  2.   Modified 3-PG model parameters

    参数 Parameter值 Value来源 Source
    胸径2 cm时树叶与树干分配比 Foliage:stem partitioning ratio with DBH = 2 cm 0.346 9 F
    胸径20 cm时树叶与树干分配比 Foliage:stem partitioning ratio with DBH = 20 cm 0.064 7 F
    干生物量与胸径关系的常数值 Constant in the relation of stem mass and DBH 0.137 9 F
    干生物量与胸径关系的幂值 Power in the relation of stem mass and DBH 2.343 6 F
    净初级生产量分配给根的最大比例 Maximum fraction of NPP to roots 0.35 F
    净初级生产量分配给根的最小比例 Minimum fraction of NPP to roots 0.25 [22]
    生长最低气温 Minimum temperature for growth/℃ 0 [18]
    生长最适气温 Optimum temperature for growth/℃ 17.5 [18]
    生长最高气温 Maximum temperature for growth/℃ 40 [18]
    fq = 0.5时的水分亏缺比 Moisture ratio deficit for fq = 0.5 0.5 [18]
    水分亏缺比的幂值 Power of moisture ratio deficit 9 D
    大树的死亡速率 /(%·a− 1)Mortality rate for large tree/(%·year− 1) 1 D
    死亡响应模型 Shape of mortality response 1 D
    林分密度为1 000株/hm2时最大立木树干生物量/(kg·株− 1
    Max. stem mass per tree when stand density was 1 000 tree/ha/(kg·tree− 1)
    300 D
    自疏函数中的幂值 Power in self-thinning rule 1.5 D
    每株死木叶生物量损失比例 Fraction mean single-tree foliage biomass lost per dead tree 0 [18]
    每株死木根生物量损失比例 Fraction mean single-tree root biomass lost per dead tree 0.2 [16]
    每株死木干生物量损失比例 Fraction mean single-tree stem biomass lost per dead tree 0.2 [16]
    林龄为0时的比叶面积 Specific leaf area at stand age was 0 6.4 [23]
    成熟叶的比叶面积 Specific leaf area for mature leaves/(m2·kg− 1) 3.7 [23]
    比叶面积为(SLA0 + SLA1)/2时的林龄/a Stand age at which specific leaf area was (SLA0 + SLA1)/2/year 3 [23]
    消光系数 Extinction coefficient for absorption of PAR by canopy 0.5 D
    冠层量子效率 Canopy quantum efficiency/(mol·mol− 1) 0.033 [18]
    净初级生产力/总初级生产力 Ratio of NPP/GPP 0.47 D
    最小冠层导度 Minimum canopy conductance/(m·s− 1) 0 [14]
    最大冠层导度 Maximum canopy conductance/(m·s− 1) 0.02 [14]
    最大冠层导度的LAI LAI for maximum canopy conductance 3 [18]
    定义气孔对饱和水汽压差的响应 Defines stomatal response to VPD/(1·mBar− 1) 0.05 [18]
    冠层边界层导度 Canopy boundary layer conductance/(m·s− 1) 0.2 [24]
    树干材积关系中常数值 Constant in the stem volume relationship 0.000 181 4 F
    树干材积关系中胸径的幂值 Power of DBH in the stem volume relationship 2.352 F
    树干材积关系中材积的幂值 Power of stocking in the stem volume relationship 1 F
    注:F为拟合参数;D为默认参数。 Notes: F means fitting parameters; D means default parameters.
    下载: 导出CSV

    表  3  2009—2050年3种气候情景的三峡库区马尾松林蓄积

    Table  3.   Volumes of Pinus massoniana forests under 3 climate scenarios in the TGRA during 2009 to 2050

    情景
    Scenario
    蓄积 Volume/(106·m3)单位面积蓄积/(m3·hm− 2) Volume per hectare/(m3·ha− 1)
    20092050平均值
    Mean
    年均增量
    Annual average increment
    20092050平均值
    Mean
    年均增量
    Annual average increment
    BS 48.22 153.51 130.26 2.60 48.89 155.65 132.08 2.60
    RCP4.5 160.50 134.52 2.78 162.74 136.40 3.97
    RCP8.5 161.71 135.33 2.81 163.96 137.21 4.00
    下载: 导出CSV

    表  4  林龄及气候变化对三峡库区马尾松林蓄积的影响

    Table  4.   Effects of stand age and climate change on Pinus massoniana forest volume in the TGRA

    效应
    Effect
    蓄积 Volume/(106·m3)单位面积蓄积/(m3·hm− 2) Volume per hectare/(m3·ha− 1)
    林龄的影响
    Effect of stand age
    气候变化影响
    Effect of climate change
    林龄的影响
    Effect of stand age
    气候变化影响
    Effect of climate change
    2009—2050期间总效应
    Total effects during 2009 to 2050
    105.29 6.99 ~ 8.19 106.76 7.09 ~ 8.31
    2009—2050期间年均效应
    Annual average effects during 2009 to 2050
    2.60 0.17 ~ 0.20 2.60 0.17 ~ 0.20
    下载: 导出CSV
  • [1] 雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12):116−126. doi: 10.11707/j.1001-7488.20181213

    Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
    [2] Gschwantner T, Alberdi I, Balázs A, et al. Harmonisation of stem volume estimates in European National Forest Inventories[J]. Annals of Forest Science, 2019, 76(1): 24. doi: 10.1007/s13595-019-0800-8
    [3] Kotivuori E, Maltamo M, Korhonen l, et al. Calibration of nationwide airborne laser scanning based stem volume models[J]. Remote Sensing of Environment, 2018, 210: 179−192. doi: 10.1016/j.rse.2018.02.069
    [4] Lafortezza R, Giannico V. Combining high-resolution images and LiDAR data to model ecosystem services perception in compact urban systems[J]. Ecological Indicators, 2019, 96: 87−98. doi: 10.1016/j.ecolind.2017.05.014
    [5] 赵匡记, 王利东, 王立军, 等. 华北落叶松蓄积量及生产力研究[J]. 北京林业大学学报, 2015, 37(2):24−31.

    Zhao K J, Wang L D, Wang L J, et al. Stock volume and productivity of Larix principis-rupprechtii in northern and northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(2): 24−31.
    [6] Chrysafis I, Mallinis G, Tsakiri M, et al. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 77: 1−14. doi: 10.1016/j.jag.2018.12.004
    [7] Mund M, Kummetz E, Hein M, et al. Growth and carbon stocks of a spruce forest chronosequence in central Europe[J]. Forest Ecology and Management, 2002, 171(3): 275−296. doi: 10.1016/S0378-1127(01)00788-5
    [8] Pretzsch H, Biber P, Schütze G, et al. Forest stand growth dynamics in Central Europe have accelerated since 1870[J]. Nature Communications, 2014, 5: 4967. doi: 10.1038/ncomms5967
    [9] Sampson D A, Wynne R H, Seiler J R. Edaphic and climate effects on forest stand development, net primary production, and net ecosystem productivity simulated for Coastal Plain loblolly pine in Virginia[J/OL]. Journal of Geophysical Research Biogeosciences, 2008, 113: G01003 [2019−03−15]. https://doi.org/10.1029/2006JG000270.
    [10] 周蕾, 王绍强, 周涛, 等. 1901— 2010年中国森林碳收支动态: 林龄的重要性[J]. 科学通报, 2016, 61(18):2064−2073.

    Zhou L, Wang S Q, Zhou T, et al. Carbon dynamics of China’s forests during 1901−2010: the importance of forest age[J]. Chinese Science Bulletin, 2016, 61(18): 2064−2073.
    [11] 王少杰, 邓华锋, 向玮, 等. 基于混合模型的油松林分蓄积量预测模型的建立[J]. 西北农林科技大学学报(自然科学版), 2018, 46(2):29−38.

    Wang S J, Deng H F, Xiang W, et al. Establishment of predicting models for Pinus tabulaeformis stands volume based on mixed models[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(2): 29−38.
    [12] 王海宾, 彭道黎, 高秀会, 等. 基于GF-1 PMS影像和k-NN方法的延庆区森林蓄积量估测[J]. 浙江农林大学学报, 2018, 35(6):87−95.

    Wang H B, Peng D L, Gao X H, et al. Forest stock volume estimates in Yanqing District based on GF-1 PMS images and k-NN method[J]. Journal of Zhejiang A&F University, 2018, 35(6): 87−95.
    [13] Landsberg J J, Waring R H. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning[J]. Forest Ecology and Management, 1997, 95(3): 209−228. doi: 10.1016/S0378-1127(97)00026-1
    [14] López-Serrano F R, Martínez-García E, Dadi T, et al. Biomass growth simulations in a natural mixed forest stand under different thinning intensities by 3-PG process-based model[J]. European Journal of Forest Research, 2015, 134(1): 167−185. doi: 10.1007/s10342-014-0841-3
    [15] Meyer G, Black T A, Jassal R S, et al. Measurements and simulations using the 3-PG model of the water balance and water use efficiency of a lodgepole pine stand following mountain pine beetle attack[J]. Forest Ecology and Management, 2017, 393: 89−104. doi: 10.1016/j.foreco.2017.03.019
    [16] Xie Y L, Wang H Y, Lei X D. Application of the 3-PG model to predict growth of Larix olgensis plantations in northeastern China[J]. Forest Ecology and Management, 2017, 406: 208−218. doi: 10.1016/j.foreco.2017.10.018
    [17] Zeng L X, He W, Teng M J, et al. Effects of mixed leaf litter from predominant afforestation tree species on decomposition rates in the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 639: 679−686. doi: 10.1016/j.scitotenv.2018.05.208
    [18] Zhao M F, Xiang W H, Peng C H, et al. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model[J]. Forest Ecology and Management, 2009, 257: 1520−1531. doi: 10.1016/j.foreco.2008.12.025
    [19] 冯源, 肖文发, 黄志霖, 等. 未来气候变化情景下三峡库区马尾松林生物量固碳动态与空间分异[J/OL]. 生态学杂志, 2019, 38(12) [2019−10−25]. https://doi.org/10.13292/j.1000-4890.201912.019.

    Feng Y, Xiao W F, Huang Z L, et al. Dynamics and spatial differentiation of biomass carbon sequestration of Pinus massoniana forests in the Three Gorges Reservoir Area under future climate change scenarios[J/OL]. Chinese Journal of Ecology, 2019, 38(12) [2019−10−25]. https://doi.org/10.13292/j.1000-4890.201912.019.
    [20] Wang W F, Peng C H, Zhang S Y, et al. Development of TRIPLEX-management model for simulating the response of forest growth to pre-commercial thinning[J]. Ecological Modelling, 2011, 222(14): 2249−2261. doi: 10.1016/j.ecolmodel.2010.09.019
    [21] Räty O, Räisänen J, Ylhäisi J S. Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations[J]. Climate Dynamics, 2014, 42(9−10): 2287−2303. doi: 10.1007/s00382-014-2130-8
    [22] 花利忠, 江希钿, 贺秀斌. 3-PG模型在华南尾叶桉人工林的应用研究[J]. 北京林业大学学报, 2007, 29(2):100−104. doi: 10.3321/j.issn:1000-1522.2007.02.017

    Hua L Z, Jiang X D, He X B. Application of 3-PG model in Eucalyptus urophylla plantations of southern China[J]. Journal of Beijing Forestry University, 2007, 29(2): 100−104. doi: 10.3321/j.issn:1000-1522.2007.02.017
    [23] 李轩然, 刘琪璟, 蔡哲, 等. 千烟洲针叶林的比叶面积及叶面积指数[J]. 植物生态学报, 2007, 31(1):93−101. doi: 10.3321/j.issn:1005-264X.2007.01.012

    Li X R, Liu Q J, Cai Z, et al. Specific leaf area and leaf area index of conifer plantations in Qianyanzhou Station of subtropical China[J]. Journal of Plant Ecology (Chinese Version), 2007, 31(1): 93−101. doi: 10.3321/j.issn:1005-264X.2007.01.012
    [24] Gonzalez-Benecke C A, Teskey R O, Martin T A, et al. Regional validation and improved parameterization of the 3-PG model for Pinus taeda stands[J]. Forest Ecology and Management, 2016, 361: 237−256. doi: 10.1016/j.foreco.2015.11.025
    [25] 解雅麟, 王海燕, 雷相东. 基于过程模型的气候变化对长白落叶松人工林净初级生产力的影响[J]. 植物生态学报, 2017, 41(8):826−839. doi: 10.17521/cjpe.2016.0382

    Xie Y L, Wang H Y, Lei X D. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling[J]. Chinese Journal of Plant Ecology, 2017, 41(8): 826−839. doi: 10.17521/cjpe.2016.0382
    [26] 徐雨晴, 周波涛, 於琍, 等. 气候变化背景下中国未来森林生态系统服务价值的时空特征[J]. 生态学报, 2018, 38(6):1952−1963.

    Xu Y Q, Zhou B T, Yu L, et al. Temporal-spatial dynamic pattern of forest ecosystem service value affected by climate change in the future in China[J]. Acta Ecologica Sinica, 2018, 38(6): 1952−1963.
    [27] Zhao M F, Xiang W H, Deng X W, et al. Application of TRIPLEX model for predicting Cunninghamia lanceolata, and Pinus massoniana, forest stand production in Hunan Province, southern China[J]. Ecological Modelling, 2013, 250: 58−71. doi: 10.1016/j.ecolmodel.2012.10.011
    [28] 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应[J]. 科学通报, 2018, 63(2):136−140.

    Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2): 136−140.
    [29] Alfaro-Sánchez R, Jump A S, Pino J, et al. Land use legacies drive higher growth, lower wood density and enhanced climatic sensitivity in recently established forests[J]. Agricultural and Forest Meteorology, 2019, 276−277: 107630. doi: 10.1016/j.agrformet.2019.107630
    [30] 郭晓娜, 苏维词, 李强, 等. 三峡库区(重庆段)地表起伏度及其对生态系统服务价值的影响[J]. 生态与农村环境学报, 2016, 32(6):887−894. doi: 10.11934/j.issn.1673-4831.2016.06.004

    Guo X N, Su W C, Li Q, et al. Surface relief degree and its effects on ecosystem service value in the Chongqing section of the Three Gorges Reservoir Region, China[J]. Journal of Ecology and Rural Environment, 2016, 32(6): 887−894. doi: 10.11934/j.issn.1673-4831.2016.06.004
    [31] 张强, 万素琴, 毛以伟, 等. 三峡库区复杂地形下的气温变化特征[J]. 气候变化研究进展, 2005, 1(4):164−167. doi: 10.3969/j.issn.1673-1719.2005.04.005

    Zhang Q, Wan S Q, Mao Y W, et al. Characteristics of temperature changes around the Three Gorges with complex topography[J]. Advances in Climate Change Research, 2005, 1(4): 164−167. doi: 10.3969/j.issn.1673-1719.2005.04.005
    [32] 岳天祥, 范泽孟. 典型陆地生态系统对气候变化响应的定量研究[J]. 科学通报, 2014, 59(3):217−231.

    Yue T X, Fan Z M. A review of responses of typical terrestrial ecosystems to climate change[J]. Chinese Science Bulletin, 2014, 59(3): 217−231.
    [33] 赵志江. 川西亚高山岷江冷杉与紫果云杉对气候的响应[D]. 北京: 北京林业大学, 2013.

    Zhao Z J. The response of Abies faxoniana and Picea purpurea to climate factors in subalpine of western Sichuan Province, China[D]. Beijing: Beijing Forestry University, 2013.
    [34] 郭灵辉, 郝成元, 吴绍洪, 等. 21世纪上半叶内蒙古草地植被净初级生产力变化趋势[J]. 应用生态学报, 2016, 27(3):803−814.

    Guo L H, Hao C Y, Wu S H, et al. Projected changes in vegetation net primary productivity of grassland in Inner Mongolia, China during 2011−2050[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 803−814.
    [35] Agne M C, Beedlow P A, Shaw D C, et al. Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U. S. A.[J]. Forest Ecology and Management, 2018, 409: 317−332. doi: 10.1016/j.foreco.2017.11.004
    [36] Wu J S, Wang T, Pan K Y, et al. Assessment of forest damage caused by an ice storm using multi-temporal remote-sensing images: a case study from Guangdong Province[J]. International Journal of Remote Sensing, 2016, 37(13): 3125−3142. doi: 10.1080/01431161.2016.1194544
    [37] Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J]. Forest Ecology and Management, 2010, 259(8): 1363−1375. doi: 10.1016/j.foreco.2009.12.029
    [38] Augustynczik A L D, Hartig F, Minunno F, et al. Productivity of Fagus sylvatica under climate change: a Bayesian analysis of risk and uncertainty using the model 3-PG[J]. Forest Ecology and Management, 2017, 401: 192−206. doi: 10.1016/j.foreco.2017.06.061
    [39] Schurman J S, Babst F, Björklund J, et al. The climatic drivers of primary Picea forest growth along the Carpathian are changing under rising temperatures[J]. Global Change Biology, 2019, 25(9): 3136−3150. doi: 10.1111/gcb.14721
    [40] Büntgen U, Krusic P J, Piermattei A, et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming[J]. Nature Communications, 2019, 10(1): 2171. doi: 10.1038/s41467-019-10174-4
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1163
  • HTML全文浏览量:  580
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-10-28
  • 网络出版日期:  2019-11-01
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回