高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米纤维素表面聚丙烯酸丁酯原位修饰

王璇 贾园 宋立美

王璇, 贾园, 宋立美. 纳米纤维素表面聚丙烯酸丁酯原位修饰[J]. 北京林业大学学报, 2019, 41(10): 137-146. doi: 10.13332/j.1000-1522.20190201
引用本文: 王璇, 贾园, 宋立美. 纳米纤维素表面聚丙烯酸丁酯原位修饰[J]. 北京林业大学学报, 2019, 41(10): 137-146. doi: 10.13332/j.1000-1522.20190201
Wang Xuan, Jia Yuan, Song Limei. In-situ surface modification of cellulose nanofibril with poly(butyl acrylate)[J]. Journal of Beijing Forestry University, 2019, 41(10): 137-146. doi: 10.13332/j.1000-1522.20190201
Citation: Wang Xuan, Jia Yuan, Song Limei. In-situ surface modification of cellulose nanofibril with poly(butyl acrylate)[J]. Journal of Beijing Forestry University, 2019, 41(10): 137-146. doi: 10.13332/j.1000-1522.20190201

纳米纤维素表面聚丙烯酸丁酯原位修饰

doi: 10.13332/j.1000-1522.20190201
基金项目: 陕西省科技厅项目(2019JQ-893),西安市科技计划项目(2016CXWL01),陕西省科技厅项目(2018JM2021),西安市科技计划项目(2019KJWL10)
详细信息
    作者简介:

    王璇,博士,讲师。主要研究方向:功能高分子材料。Email:wangx512517@xawl.edu.cn  地址:710065 陕西省西安市雁塔区科技六路1号西安文理学院

  • 中图分类号: TQ35

In-situ surface modification of cellulose nanofibril with poly(butyl acrylate)

  • 摘要: 目的 由于强亲水的纳米纤维素与有机高分子材料之间的界面相容性差,使其作为一种有前景的增强剂应用受到限制。采用丙烯酸丁酯(BA)对纳米纤维素(CNF)表面进行原位乳液接枝聚合改性可以提高纳米纤维素与聚乳酸等高分子材料的相容性。方法本研究优化了纳米纤维素表面接枝聚丙烯酸丁酯(PBA)链接枝率的影响条件,并利用傅里叶红外光谱(FTIR)、X射线衍射光谱(XRD)、透射电镜(TEM)、热重(TG)、X射线光电子能谱(XPS)以及扫描电子显微镜−能量散射X射线微区(SEM-EDS)分析等手段对聚丙烯酸丁酯修饰前后的纳米纤维素进行了表征,利用扫描电子显微镜对改性纳米纤维素与聚乳酸基体的相容性进行了分析。结果改性纳米纤维素(PBA-g-CNF)在1 734 cm− 1出现了典型的羰基红外吸收;改性纳米纤维素的结晶度指数为48%,较纳米纤维素的61%有所下降;纳米纤维直径由50 nm增加至 80 ~ 100 nm;最大热失重温度由改性前的340 ℃增加至改性后的354 ℃;纳米纤维素中的C和O的原子数比为1.89,改性纳米纤维素的C和O的原子数比为3.76,C和O元素在改性前后纳米纤维素中分布均匀;改性纳米纤维素与聚乳酸的共混膜材料拉伸断面呈现出韧性断裂过程。结论 聚丙烯酸丁酯改性纳米纤维素是成功的,且改性过程主要发生在纳米纤维素的表面。改性后的纳米纤维素与聚乳酸之间展现了良好的界面相容性。

     

  • 图  1  纳米纤维素、酯化纳米纤维素和聚丙烯酸丁酯改性纳米纤维素的红外谱图

    Figure  1.  FTIR spectra of CNF, BA-g-CNF and PBA-g-CNF

    图  2  纳米纤维素、酯化纳米纤维素和聚丙烯酸丁酯改性纳米纤维素的XPS宽扫描谱图

    Figure  2.  XPS wide scan spectra of CNF, BA-g-CNF and PBA-g-CNF

    图  3  纳米纤维素、酯化纳米纤维素和聚丙烯酸丁酯改性纳米纤维素的C1s分峰图

    Figure  3.  XPS C1s spectra of CNF, BA-g-CNF and PBA-g-CNF

    图  4  纳米纤维素、酯化纳米纤维素和聚丙烯酸丁酯改性纳米纤维素的X射线衍射谱

    Figure  4.  X-ray diffraction of CNF, BA-CNF and PBA-g-CNF

    图  5  质量比、反应时间和反应温度对接枝率的影响

    Figure  5.  Effects of mass ratio, reaction time and reaction temperature on the graft yield

    图  6  纳米纤维素和聚丙烯酸丁酯改性纳米纤维素的透射电镜图

    Figure  6.  TEM images of CNF and PBA-g-CNF

    图  7  纳米纤维素和聚丙烯酸丁酯改性纳米纤维素的热失重曲线图

    Figure  7.  Thermogravimetric curves of CNF and PBA-g-CNF

    图  8  纳米纤维素和聚丙烯酸丁酯改性纳米纤维素能谱分析图

    Figure  8.  EDS of CNF and PBA-g-CNF

    图  9  纳米纤维素的元素分布

    Figure  9.  EDS analysis results of element distribution in CNF

    图  10  聚丙烯酸丁酯改性纳米纤维素的元素分布

    Figure  10.  EDS analysis results of element distribution in PBA-g-CNF

    图  11  纳米纤维素表面原位聚合丙烯酸丁酯反应机理

    Figure  11.  Mechanism of in situ polymerization of PBA onto the surface of CNF

    图  12  聚乳酸及其复合材料的拉伸断面扫描电镜图

    Figure  12.  SEM images of fracture surface of PLA and its composites

    表  1  丙烯酸丁酯接枝共聚改性纳米纤维素的反应条件

    Table  1.   Reaction condition of CNF modified by graft copolymerization using butyl acrylate

    编号No.BA∶CNF 质量比
    BA∶CNF mass ratio
    反应时间
    Reaction time/h
    反应温度
    Reaction temperature/℃
    115460
    210670
    320880
    4301090
    下载: 导出CSV

    表  2  CNF、BA-g-CNF和PBA-g-CNF表面元素的原子浓度

    Table  2.   Atomic concentration of elements on the surface of CNF, BA-g-CNF and PBA-g-CNF

    样品
    Sample

    Carbon/%

    Oxygen/%
    碳氧原子比
    Ratio of carbon to oxygen
    CNF65.4734.531.89
    BA-g-CNF70.1929.812.35
    PBA-g-CNF79.0120.993.76
    下载: 导出CSV

    表  3  C1s信号分峰得出的CNF、BA-g-CNF和PBA-g-CNF的表面化学构成

    Table  3.   Surface chemical composition of CNF, BA-g-CNF and PBA-g-CNF from the deconvolution of the C1s signal

    变量
    Variable
    结合能
    Binding energy/eV
    CNFBA-g-CNFPBA-g-CNF
    C1(C–C/C–H)/%284.613.519.755.2
    C2(C–O)/%286.148.344.132.9
    C3(O–C–O/C=O)/%287.438.220.19.0
    C4(O–C=O)/%289.17.52.9
    C5(C=C)/%288.38.7
    下载: 导出CSV
  • [1] Brinchi L, Cotana F, Fortunati E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications[J]. Carbohydrate Polymers, 2013, 94(1): 154−169. doi: 10.1016/j.carbpol.2013.01.033
    [2] Frone A N, Berlioz S, Chailan J F, et al. Morphology and thermal properties of PLA-cellulose nanofibers composites[J]. Carbohydrate Polymers, 2013, 91(1): 377−384. doi: 10.1016/j.carbpol.2012.08.054
    [3] Yang J, Han C R, Duan J F, et al. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3199−3207.
    [4] Lee K Y, Aitomäki Y, Berglund L A, et al. On the use of nanocellulose as reinforcement in polymer matrix composites[J]. Composites Science and Technology, 2014, 105(4): 15−27.
    [5] Yin Y, Tian X, Jiang X, et al. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate[J]. Carbohydrate Polymers, 2016, 142(2): 206−212.
    [6] Rojas O J, Montero G A, Habibi Y. Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers[J]. Journal of Applied Polymer Science, 2009, 113(2): 927−935. doi: 10.1002/app.30011
    [7] Batmaz R, Mohammed N, Zaman M, et al. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes[J]. Cellulose, 2014, 21(3): 1655−1665. doi: 10.1007/s10570-014-0168-8
    [8] Montanari S, Roumani M, Heux L, et al. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation[J]. Macromolecules, 2005, 38(5): 1665−1671. doi: 10.1021/ma048396c
    [9] Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystals and related nanocomposites: review of some properties and challenges[J]. Journal of Polymer Science Part B: Polymer Physics, 2014, 52(12): 791−806. doi: 10.1002/polb.23490
    [10] Kan K H M, Li J, Wijesekera K, et al. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants[J]. Biomacromolecules, 2013, 14(9): 3130−3139. doi: 10.1021/bm400752k
    [11] 曲萍, 王璇, 白浩龙, 等. 纳米纤维素表面烷基化特性的研究[J]. 北京林业大学学报, 2014, 36(1):121−125.

    Qu P, Wang X, Bai H L, et al. Surface alkylation characters of cellulose nanofibrils[J]. Journal of Beijing Forestry University, 2014, 36(1): 121−125.
    [12] Kedzior S A, Graham L, Moorlag C, et al. Poly (methyl methacrylate) ‐ grafted cellulose nanocrystals: One ‐ step synthesis, nanocomposite preparation, and characterization[J]. Canadian Journal of Chemical Engineering, 2016, 94(5): 811−822. doi: 10.1002/cjce.22456
    [13] Rahimi S K, Otaigbe J U. The effects of the interface on microstructure and rheo-mechanical properties of polyamide 6/cellulose nanocrystal nanocomposites prepared by in-situ ring-opening polymerization and subsequent melt extrusion[J]. Polymer, 2017, 127(1): 269−285.
    [14] Miao C, Hamad W Y. In-situ polymerized cellulose nanocrystals (CNC)-poly (L-lactide) (PLLA) nanomaterials and applications in nanocomposite processing[J]. Carbohydrate Polymers, 2016, 153(2): 549−558.
    [15] Gazzotti S, Farina H, Lesma G, et al. Polylactide/cellulose nanocrystals: the in situ polymerization approach to improved nanocomposites[J]. European Polymer Journal, 2017, 94(4): 173−184.
    [16] Morelli C L, Belgacem M N, Branciforti M C, et al. Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion[J]. Polymer Engineering & Science, 2016, 56(12): 1339−1348.
    [17] Qu P, Wang X, Zhang L P. Preparation and characterization of cellulose nanowhiskers in N, N-dimethylacetamide[J]. Advanced Materials Research. 2012, 528(2): 35–38.
    [18] Miao J, Yu Y, Jiang Z, et al. One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid[J]. Cellulose, 2016, 23(2): 1209−1219. doi: 10.1007/s10570-016-0864-7
    [19] 陈钱宝, 史铁钧, 梅晓君. 聚丙烯酸丁酯/二氧化钛杂化薄膜的制备, 表征及紫外吸收性能[J]. 合成橡胶工业, 2011, 34(2):120−124. doi: 10.3969/j.issn.1000-1255.2011.02.010

    Chen Q B, Shi T J, Mei X J. Preparation, characterization and ultraviolet absorption property of poly (butyl acrylate)/titanium dioxide hybrid film[J]. China Synthetic Rubber Industry, 2011, 34(2): 120−124. doi: 10.3969/j.issn.1000-1255.2011.02.010
    [20] Wang X, Sun H, Bai H, et al. Thermal, mechanical, and degradation properties of nanocomposites prepared using lignin-cellulose nanofibers and poly (lactic acid)[J]. BioResources, 2014, 9(2): 3211−3224.
    [21] Cao X, Habibi Y, Lucia L A. One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites[J]. Journal of Materials Chemistry, 2009, 19(38): 7137−7145. doi: 10.1039/b910517d
    [22] Zhang X, Zhang J, Dong L, et al. Thermoresponsive poly(poly(ethylene glycol) methylacrylate)s grafted cellulose nanocrystals through SI-ATRP polymerization[J]. Cellulose, 2017, 24(10): 4189−4203. doi: 10.1007/s10570-017-1414-7
    [23] Xin P P, Huang Y B, Hse C Y, et al. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions[J]. Materials, 2017, 10(5): 526−539.
    [24] 刘治国, 高晓月, 王淑花, 等. 纤维素与己内酰胺的接枝共聚反应[J]. 功能高分子学报, 2011, 24(1):76−81.

    Liu Z G, Gao X Y, Wang S H, et al. Graft copolymerization of caprolactam on cellulose[J]. Journal of Functional Polymers, 2011, 24(1): 76−81.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1251
  • HTML全文浏览量:  482
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-26
  • 修回日期:  2019-06-14
  • 网络出版日期:  2019-08-19
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回