高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自攻螺钉与榫卯连接CLT墙体节点力学性能研究

林沁雨 文程生 刁玥 燕力榕 高颖

林沁雨, 文程生, 刁玥, 燕力榕, 高颖. 自攻螺钉与榫卯连接CLT墙体节点力学性能研究[J]. 北京林业大学学报, 2019, 41(11): 146-154. doi: 10.13332/j.1000-1522.20190209
引用本文: 林沁雨, 文程生, 刁玥, 燕力榕, 高颖. 自攻螺钉与榫卯连接CLT墙体节点力学性能研究[J]. 北京林业大学学报, 2019, 41(11): 146-154. doi: 10.13332/j.1000-1522.20190209
Lin Qinyu, Wen Chengsheng, Diao Yue, Yan Lirong, Gao Ying. Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons[J]. Journal of Beijing Forestry University, 2019, 41(11): 146-154. doi: 10.13332/j.1000-1522.20190209
Citation: Lin Qinyu, Wen Chengsheng, Diao Yue, Yan Lirong, Gao Ying. Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons[J]. Journal of Beijing Forestry University, 2019, 41(11): 146-154. doi: 10.13332/j.1000-1522.20190209

自攻螺钉与榫卯连接CLT墙体节点力学性能研究

doi: 10.13332/j.1000-1522.20190209
基金项目: 北京林业大学“国家级大学生创新创业训练计划”(201810022048)、国家重点研发计划(2017YFC0703503)、国家自然科学基金项目(31770602)、北京市支持中央在京高校共建项目(2015-共建)
详细信息
    作者简介:

    林沁雨。主要研究方向:木结构材料与工程。Email:kristin_lin@163.com  地址:100083 北京市海淀区清华东路35号北京林业大学森工楼

    责任作者:

    高颖,博士,副教授。主要研究方向:木结构材料与工程。Email:gaoying@bjfu.edu.cn  地址:同上

  • 中图分类号: TU366.2

Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons

  • 摘要: 目的正交胶合木(CLT)的出现使木结构建筑突破了以往的层高限制,但现在采用的金属连接件连接方式降低了CLT材料的使用效率,浪费了CLT材料的力学性能优势。因此,连接节点成为CLT研究的关键性问题。对榫卯连接在CLT墙体−墙体处的节点应用进行抗剪性能研究,并与自攻螺钉的连接性能相比较,以探究榫卯连接节点在CLT建筑中的应用提供科学依据。方法分别对自攻螺钉与燕尾榫连接的两类CLT墙体节点H型试件进行单调与低周反复加载试验,得到试件在纯剪作用下的荷载−位移曲线、滞回曲线、骨架曲线等参数,并结合破坏现象比较分析了两类试件的初始刚度、最大承载力、耗能、刚度退化、强度退化等力学特性。结果钉节点一般先于CLT材料破坏,并损坏连接处木材,而燕尾榫节点后于CLT材料发生破坏;在单调加载试验中,燕尾榫节点的延性略低于钉节点,但最大承载力、极限位移、屈服荷载、屈服位移与耗能分别高出钉节点313.50%、35.38%、370.80%、92.76%、459.64%;在低周反复加载试验中,钉节点延性较差,燕尾榫节点延性相对较好,燕尾榫正向加载的最大承载力高出钉节点455.54%,负向加载的最大承载力高出钉节点234.74%,且燕尾榫节点维持刚度和强度的能力,以及耗能能力均优于钉节点。结论与钉节点相比,燕尾榫节点可以更大地发挥CLT材料的优点,以推动CLT建筑的工程应用。

     

  • 图  1  试件详图

    Figure  1.  Details of specimens

    图  2  试件夹具与安装

    Figure  2.  Fixtures and set-up of specimens

    图  3  低周反复加载协议

    Figure  3.  The reversed-cyclic loading protocols

    图  4  单调荷载下钉节点破坏模式

    Figure  4.  Failure modes of self-tapping screw connections under monotonic load

    图  5  单调荷载下燕尾榫节点破坏模式

    Figure  5.  Failure modes of dovetail connections under monotonic load

    图  6  钉节点、燕尾榫节点荷载–位移曲线

    Figure  6.  Load-displacement curve of self-tapping screw (STS) and dovetail connections

    图  7  低周反复荷载下钉节点破坏模式

    Figure  7.  Failure modes of self-tapping screw connections under cyclic load

    图  8  低周反复荷载下燕尾榫节点破坏模式

    Figure  8.  Failure modes of dovetail connections under cyclic load

    图  9  钉节点、燕尾榫节点滞回曲线

    Figure  9.  Hysteresis curve of STS and dovetail connections

    图  10  钉节点、燕尾榫节点骨架曲线

    Figure  10.  Skeleton curve of STS and dovetail connections

    图  11  钉节点、燕尾榫节点刚度退化曲线

    Figure  11.  Stiffness degradation curve of self-tapping screw and dovetail connections

    图  12  钉节点、燕尾榫节点强度退化曲线

    Figure  12.  Strength degradation of self-tapping screw and dovetail connections

    图  13  钉节点、燕尾榫节点累计耗能曲线

    Figure  13.  Cumulative energy dissipation curve of self-tapping screw and dovetail connections

    图  14  钉节点在单调荷载下的荷载−位移曲线与低周反复荷载下的平均骨架曲线

    Figure  14.  Load-displacement curve and average skeleton curve of STS connections

    图  15  燕尾榫节点在单调荷载下的荷载−位移曲线与低周反复荷载下的平均骨架曲线

    Figure  15.  Load-displacement curve and average skeleton curve of dovetail connections

    表  1  钉节点、燕尾榫节点力学性能参数表

    Table  1.   Mechanical properties and statistics of self-tapping screw and dovetail connections

    试件组别
    Specimen
    初始刚度
    Initial stiffness/
    (kN·mm− 1)
    最大承载力
    Maximum load/kN
    最大承载力
    对应位移
    Displacement of
    maximum load/mm
    极限承载力
    Ultimate load/kN
    极限位移
    Ultimate displacement/mm
    屈服荷载
    Yield load/kN
    屈服位移
    Yield displacment/mm
    延性系数
    Ductility coefficient
    耗能
    Energy dissipation/
    (kN·mm− 1)
    钉节点组
    STS connections
    2.79 17.04 12.7 13.63 19.05 8.87 2.9 3.85 240.88
    燕尾榫组
    Dovetail
    connections
    7.22 70.46 12.49 55.32 25.79 41.76 5.59 2.96 1 348.06
    差值百分比
    Percentage of
    difference/%
    158.78 313.50 − 1.65 305.87 35.38 370.80 92.76 − 23.12 459.64
    注:差值百分比为燕尾榫节点组、钉节点组力学参数的差值与钉节点组力学特征值之比。下同。Notes: the percentage of difference is equated to the ratio of the difference of the mechanical parameters of dovetail and STS to the mechanical characteristic value of STS. The same below.
    下载: 导出CSV

    表  2  钉节点、燕尾榫节点力学性能参数表

    Table  2.   Mechanical properties and statistics of self-tapping screw and dovetail connections

    加载方向
    Loading direction
    试件组别
    Specimen
    最大承载力
    Maximum load/kN
    最大承载力对应位移
    Displacement of maximum load/mm
    极限承载力
    Ultimate load/kN
    极限位移
    Ultimate displacement/mm
    正向 Pushing 钉节点组
    STS connections
    16.87 4.29 13.50 7.43
    燕尾榫节点
    Dovetail
    connections
    93.72 8.00 74.98 24.85
    差值百分比
    Percentage of difference/%
    455.54 86.48 455.41 234.45
    负向 Pulling 钉节点组
    STS connections
    19.86 6.02 15.89 11.33
    燕尾榫组
    Dovetail
    connections
    66.48 9.20 63.86 25.04
    差值百分比
    Percentage of difference/%
    234.74 52.82 301.89 121.01
    下载: 导出CSV
  • [1] 加拿大木业. CLT(正交胶合木)简明介绍[J]. 国际木业, 2018(5):10−12. doi: 10.3969/j.issn.1671-4911.2018.05.005

    Canada Wood. A brief introduction of CLT (cross laminated timber)[J]. International Wood Industrial, 2018(5): 10−12. doi: 10.3969/j.issn.1671-4911.2018.05.005
    [2] Reynolds T, Casagrande D, Tomasi R. Comparison of multi-storey cross-laminated timber and timber frame buildings by in situ modal analysis[J]. Construction and Building Materials, 2016, 102: 1009−1017. doi: 10.1016/j.conbuildmat.2015.09.056
    [3] 李静, 徐洪澎, 郭夏斌, 等. 正交胶合木高层建筑的技术优势与局限[J]. 城市建筑, 2017(14):28−31. doi: 10.3969/j.issn.1673-0232.2017.14.007

    Li J, Xu H P, Guo X B, et al. Technical advantages and limitations of cross-laminated timber high-rise buildings[J]. Urbanism and Architecture, 2017(14): 28−31. doi: 10.3969/j.issn.1673-0232.2017.14.007
    [4] Hossain A, Popovski M, Tannert T. Cross-laminated timber connections assembled with a combination of screws in withdrawal and screws in shear[J]. Engineering Structures, 2018, 168: 1−11. doi: 10.1016/j.engstruct.2018.04.052
    [5] Hossain A, Danzig I, Tannert T. Cross-laminated timber shear connections with double-angled self-tapping screw assemblies[J]. Journal of Structural Engineering, 2016, 142(11): 1−9.
    [6] 董惟群, 姚悦, 宋焕, 等. 自攻螺钉连接正交胶合木抗剪承载力研究[J]. 木材工业, 2018, 32(5):1−5.

    Dong W Q, Yao Y, Song H, et al. Shear strength of cross-laminated timber connected with self-tapping screws[J]. China Wood Industry, 2018, 32(5): 1−5.
    [7] Gavric I, Fragiacomo M, Ceccotti A. Cyclic behavior of typical screwed connections for cross-laminated (CLT) structures[J]. European Journal of Wood and Wood Products, 2015, 73(2): 179−191. doi: 10.1007/s00107-014-0877-6
    [8] Loss C, Hossain A, Tannert T. Simple cross-laminated timber shear connections with spatially arranged screws[J]. Engineering Structures, 2018, 173: 340−356. doi: 10.1016/j.engstruct.2018.07.004
    [9] Silva C, Branco J M, Ringhofer A, et al. The influences of moisture content variation, number and width of gaps on the withdrawal resistance of self tapping screws inserted in cross laminated timber[J]. Construction and Building Materials, 2016, 125: 1205−1215. doi: 10.1016/j.conbuildmat.2016.09.008
    [10] 高永林, 陶忠, 叶燎原, 等. 传统木结构典型榫卯节点基于摩擦机理特性的低周反复加载试验研究[J]. 建筑结构学报, 2015, 36(10):135−149.

    Gao Y L, Tao Z, Ye L Y, et al. Low-cycle reversed loading tests study on typical mortise-tenon connections of traditional timber building based on friction mechanism[J]. Journal of Building Structures, 2015, 36(10): 135−149.
    [11] 孙国军, 赵益峰, 薛素铎, 等. 复合榫卯节点连接特性拟静力试验研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(增刊 1):20−26.

    Sun G J, Zhao Y F, Xue S D, et al. Pseudo-static experimental study on the properties of unitized mortise-tenon connections[J]. Journal of Tianjin University (Science and Technology), 2018, 51(Suppl. 1): 20−26.
    [12] Tannert T, Lam F, Vallée T. Structural performance of rounded dovetail connections: experimental and numerical investigations[J]. European Journal of Wood and Wood Products, 2011, 69(3): 471−482. doi: 10.1007/s00107-010-0459-1
    [13] Tannert T. Improved performance of reinforced rounded dovetail connections[J]. Construction and Building Materials, 2016, 118: 262−267. doi: 10.1016/j.conbuildmat.2016.05.038
    [14] Tannert T, Lam F, Vallée T. Strength prediction for rounded dovetail connections considering size effects[J]. Journal of Engineering Mechanics, 2010, 136(3): 358−366. doi: 10.1061/(ASCE)0733-9399(2010)136:3(358)
    [15] Tannert T, Prion H, Lam F. Structural performance of rounded dovetail connections under different loading conditions[J]. Canadia Journal of Civil Engineering, 2007, 34(12): 1600−1605. doi: 10.1139/L07-076
    [16] Tannert T, Lam F. Performance of laminated strand lumber for rounded dovetail connections[J]. Forest Products Journal, 2007, 57(9): 63−67.
    [17] Tannert T, Haukaas T. Probabilistic models for structural performance of rounded dovetail connections[J]. Journal of Structural Engineering, 2013, 139(9): 1478−1488. doi: 10.1061/(ASCE)ST.1943-541X.0000744
    [18] Tannert T, Lam F. Self-tapping screws as reinforcement for rounded dovetail connections[J]. Structural Control & Health Monitoring, 2009, 16(3): 374−384.
    [19] Anastas H, Tannert T, Lam F, et al. Effect of manufacturing on the quality of rounded dovetail connections[C]// Gard W F, Van De Kuilen J W G. End user ’s needs for wood material and products. Delft, Netherlands: Cost, 2008: 51−58.
    [20] Stefanescu M. Lateral resistance of traditional Japanese post-and-beam frames under monotonic and cyclic loading conditions[D]. Vancouver, Canada: University of British Columbia, 2000.
    [21] 刘芳莲, 陶忠, 刘涛, 等. 榫头与卯口不同接触程度下大头榫节点的低周反复荷载试验[J]. 价值工程, 2018, 37(5):110−113.

    Liu F L, Tao Z, Liu T, et al. Low-cycle repetitive load test of damping capacity of big head and ditch under different tenon width[J]. Value Engineering, 2018, 37(5): 110−113.
    [22] Jeong G Y, Park M J, Park J S, et al. Predicting load-carrying capacity of dovetail connections using the stochastic finite element method[J]. Wood and Fiber Science, 2012, 44(4): 430−439.
    [23] Kunecký J, Arciszewska-Kędzior A, Sebera V, et al. Mechanical performance of dovetail connection related to the global stiffness of timber roof structures[J]. Materials and Structures, 2016, 49(6): 2315−2327. doi: 10.1617/s11527-015-0651-1
    [24] Pang S J, Oh J K, Park J S, et al. Moment-carrying capacity of dovetailed mortise and tenon connections with or without beam shoulder[J]. Journal of Structural Engineering, 2010, 137(7): 785−789.
    [25] ASTM. Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings: E2126-11[S]. West Conshohocken: ASTM International, 2011.
    [26] Japan 2 × 4 Home Builders Association. Structural design guidelines for wood frame construction[R]. Tokyo: Japan 2 × 4 HomeBuilders Association, 2002: 233−241.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1433
  • HTML全文浏览量:  708
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-06-04
  • 网络出版日期:  2019-09-12
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回