• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

聚乙烯醇--碱木质素发泡材料的制备与性能

罗华超, 任世学, 马艳丽, 方桂珍

罗华超, 任世学, 马艳丽, 方桂珍. 聚乙烯醇--碱木质素发泡材料的制备与性能[J]. 北京林业大学学报, 2015, 37(4): 127-134. DOI: DOI:10.13332/j.1000-1522.20140347
引用本文: 罗华超, 任世学, 马艳丽, 方桂珍. 聚乙烯醇--碱木质素发泡材料的制备与性能[J]. 北京林业大学学报, 2015, 37(4): 127-134. DOI: DOI:10.13332/j.1000-1522.20140347
LUO Hua-chao, REN Shi-xue, MA Yan-li, FANG Gui-zhen. Preparation and properties of polyvinyl alcohol-alkali lignin foam material (PLFM)[J]. Journal of Beijing Forestry University, 2015, 37(4): 127-134. DOI: DOI:10.13332/j.1000-1522.20140347
Citation: LUO Hua-chao, REN Shi-xue, MA Yan-li, FANG Gui-zhen. Preparation and properties of polyvinyl alcohol-alkali lignin foam material (PLFM)[J]. Journal of Beijing Forestry University, 2015, 37(4): 127-134. DOI: DOI:10.13332/j.1000-1522.20140347

聚乙烯醇--碱木质素发泡材料的制备与性能

基金项目: 

“十二五”国家科技支撑计划项目(2012BAD24B0403)、国家自然科学基金项目(30901135)。

详细信息
    作者简介:

    第一作者: 罗华超。主要研究方向:天然高分子化学。Email:1075168344@qq.com 地址:150040黑龙江省哈尔滨市和兴路26号东北林业大学材料科学与工程学院。责任作者: 任世学,博士,副教授。主要研究方向:天然高分子化学。Email:renshixue@nefu.eud.cn 地址:同上。

    第一作者: 罗华超。主要研究方向:天然高分子化学。Email:1075168344@qq.com 地址:150040黑龙江省哈尔滨市和兴路26号东北林业大学材料科学与工程学院。责任作者: 任世学,博士,副教授。主要研究方向:天然高分子化学。Email:renshixue@nefu.eud.cn 地址:同上。

Preparation and properties of polyvinyl alcohol-alkali lignin foam material (PLFM)

  • 摘要: 为改善发泡材料存在的力学性能较差、成本高的现状,同时增加碱木质素的利用率,制备高性能的发泡材料,以聚乙烯醇(PVA)和碱木质素为原料,甲醛为交联剂,采用无机发泡原理,制备了聚乙烯醇--碱木质素发泡材料(PLFM),并测定其相关性能。结果表明:相对于PVA用量,碱木质素质量分数为33%、甲醛4/5(mL/g)、硫酸6/5(mL/g),固化温度为120℃时制备的发泡材料拉伸强度最大为25.91MPa,比纯聚乙烯醇泡沫材料的4.32MPa有了显著提升。不同聚合度PVA制备发泡材料:PVA0588聚合度较低,无法形成泡体;PVA1788-PLFM和PVA2488-PLFM相比,PVA2488-PLFM具有更好的拉伸强度,而且表观密度及吸水倍率更小。FTIR显示碱木质素与PVA均发生交联,大多发生在苯环5位上,与PVA2488交联效果好。SEM显示PVA2488-PLFM具有更好的孔隙结构。热分析中,DSC显示PVA1788-PLFM中有填充剂存在的木质素,PVA2488-PLFM中没有,表明PVA2488-PLFM的生物相容性好;TG和DTG显示,PVA2488-PLFM热失重最剧烈时温度为379℃,高于PVA1788-PLFM的360℃,但800℃时失重率为95.94%高于PVA1788-PLFM的80.13%,说明PVA2488-PLFM耐热性好,且易热降解。综上,PVA2488-PLFM的性能更佳。
    Abstract: In order to improve the current situation of foam material with poor mechanical properties and high cost, increase the utilization of alkali lignin, and prepare foam materials with high performance, we prepared polyvinyl alcohol/alkali lignin foam material (PLFM) based on inorganic foaming principles, with polyvinyl alcohol (PVA) and alkali lignin as raw material and formaldehyde as crosslinking agent, and then measured its relevant performance. The results showed: relative to the amount of PVA, when the mass fraction of alkali lignin was 33%, formaldehyde at 4/5(ml/g), sulfuric acid at 6/5 (ml/g), and solidification temperature was 120 ℃, the maximum tensile strength of the prepared foam material is 25.91 MPa,which is remarkably improved compared to the 4.32 MPa of pure polyvinyl alcohol foam material. Comparing the foam materials prepared with different polymerization degrees of PVA: foam material with PVA0588l is unable to form foam due to lower polymerization degree. Compared with PVA1788-PLFM, the tensile strength of PVA2488-PLFM is better, and the apparent density and water absorbency ratio is smaller. FTIR showed that alkali lignin cross-linked with PVA, mostly in the 5th position of the phenyl ring,and crosslinking effect with PVA2488 is better. SEM showed that PVA2488-PLFM has better pore structure. Regarding thermal performance, DSC showed that lignin as filler exists in PVA1788-PLFM, but not in PVA2488-PLFM, indicating that PVA2488-PLFM possesses better biocompatibility. TG and DTG showed that, the temperature while most intensive thermal weight loss of PVA2488-PLFM happened is 379 ℃,which is higher than that (360 ℃) for PVA1788-PLFM,however weight loss ratio is lower. At the same time, the weight loss ratio of 95.94% is also higher than that (80.13%) of PVA1788-PLFM,indicating that PVA2488-PLFM has good heat resistance, and conducive to thermal degradation. To sum up, PVA2488-PLFM has better performance.
  • [1]

    LEWIS N G, YAMAMOTO E. Lignin: occurrence, biogenesis and biodegradation [J]. Plant Physiology and Plant Molecular Biology, 1990,41:455-496.

    [1]

    YUAN C Q, LIU Y, CHEN J C, et al. Study on the structural characteristics of alkali lignin from wheat straw [J]. Paper Science Technology, 2008, 27(2): 20-23.

    [2]

    YU F. Preparation and performance characterization of alkali lignin based rigid polyurethane foam [D]. Harbin:Northeast Forestry University, 2009.

    [2]

    KABIR M E, SAHA M C, JEELANI S. Tensile and fracture behavior of polymer foams [J]. Materials Science and Engineering,2006 ,429:225-235.

    [3]

    HU L H. Study on the preparation and properties of lignin-based phenolic foam thermal insulation material [D]. Beijing: Chinese Academy of Forestry, 2012.

    [3] 袁成强,刘玉,陈嘉川,等.麦草碱木素结构特性的研究[J].造纸科学与技术,2008,27(2):20-23.
    [4]

    JIANG Y, WEI F J. Research progress in poly (vinyl formal) cellular plastics[J]. China Plastics, 2011, 25(4):12-16.

    [4] 于菲.碱木质素基硬质聚氨酯泡沫制备及性能表征[D].哈尔滨:东北林业大学,2009.
    [5]

    PAN X J, SADDLER J N. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam [J]. Biotechnology for Biofuels,2013, 6(12): 2-10.

    [5]

    MA Q Y, HAN J G, E L, et al. Preparation and properties of alkali lignin-poly(vinyl alcohol)(PVA) reaction membrane with formaldehyde crosslinker[J]. Journal of Beijing Forestry University, 2014, 36(4): 141-146.

    [6]

    GB/T13022—1991 Plastics: determination of tensile properties of films [S]. Beijing: China Standards Press, 1991.

    [6] 胡立红.木质素酚醛泡沫保温材料的制备与性能研究[D].北京:中国林业科学研究院,2012.
    [7]

    SUBBIAH T, BHAT G S, TOCK R W, et al. Electrospining of nanofibers [J]. Journal of Applied Polymer Science, 2005, 96:557-569.

    [7]

    GB/T6343—2009/ISO 845—2006 Cellular plastics and rubbers: determination of apparent density[S]. Beijing: China Standards Press, 2009.

    [8]

    BAI J, LI Y X, YANG S T, et al. A simple and effective route for the preparation of poly(vinyl alcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method [J]. Solid State Communications, 2007, 141(5):292-295.

    [8]

    GB/T8810—2005 Determination of water absorption of rigid cellular plastics[S]. Beijing: China Standards Press, 2005.

    [9]

    RACHIPUDI P S, KARIDURAGANAVAR M Y, KITTUR A A, et al. Synthesis and characterization of sulfonated-poly (vinyl alcohol) membranes for the pervaporation dehydration of isopropanol[J]. Journal of Membrane Science, 2011, 383:224-234.

    [9]

    ZHANG L L, SHAO L, CUI Y Y, et al. Progress of the study on PVA composites [J]. New Chemical Materials, 2010(1): 8-10.

    [10]

    WANG A F. Studies on the preparation and properties of polyvinyl formal water-absorbent foam plastic[D]. Hefei: Hefei University of Technology, 2013.

    [10] 姜玉,魏风军.聚乙烯醇缩甲醛泡沫塑料的研究进展[J].中国塑料,2011,25(4):12-16.
    [11]

    LI X L, LI Y F, ZHANG S D, et al. Preparation and characterization of new foam adsorbents of poly (vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution[J]. Chemical Engineering Journal,2012, 183:88-97.

    [11]

    WU S W, LI G D, LI N. Preparation of novel polyvinyl formal composites [J]. Advances in Fine Petrochemicals, 2009, 10(3): 38-41.

    [12]

    SU L, WANG D, XU G H, et al. Mechanical properties research and structure characterization of alkali/poly (vinyl alcohol) reaction films [J]. Bio Resource, 2013, 8(3):3532-3543.

    [12]

    ZHOU J, LUO X G. Preparation of lignin/LDOE-EVA composition and foam [J].Journal of Chemical Industry and Engineering, 2007, 58(7):1834-1839.

    [13]

    CORRADINI E, PINEDA E A G, HECHENLEITNER A W. Lignin-poly (vinyl alcohol) blends studied by thermal analysis [J]. Polymer Degradation Stability, 1999, 66(2):199- 208.

    [13]

    XU G H, REN S X, FANG G Z. Effect of polymerization degree of PVA on the mechanical properties of alkaline lignin/poly(vinyl alcohol) blend membranes[J]. Biomass Chemical Engineering, 2013, 47(5): 1-6.

    [14] 马倩云,韩建国,鄂雷,等.甲醛交联麦草碱木质素/聚乙烯醇(PVA)反应膜的制备及其性能研究[J].北京林业大学学报,2014,36(4): 141-146.
    [15] GB/T13022—1991塑料薄膜拉伸性能试验方法[S].北京:中国标准出版社,1991.
    [16] GB/T6343—2009/ISO 845—2006泡沫塑料及橡胶表观密度的测定[S].北京:中国标准出版社,2009.
    [17] GB/T8810—2005硬质泡沫塑料吸水率的测定[S].北京:中国标准出版社,2005.
    [18]

    HASSAN C M, PEPPAS N A. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods [J]. Advances in Polymer Science, 2000, 153: 37-65.

    [19] 张琳琳,邵丽,崔园园,等.PVA复合材料的研究进展[J].化工新型材料,2010(1):8-10.
    [20] 王安峰.聚乙烯醇缩甲醛吸水泡沫塑料的制备及性能研究[D].合肥:合肥工业大学,2013.
    [21] 武士威,李国德,李娜.新型聚乙烯醇缩甲醛复合材料的制备[J].精细石油化工进展,2009,10(3):38-41.
    [22]

    ANBARASAN R, PANDIARAJAGURU R, PRABHU R, et al. Synthesis, characterizations, and mechanical properties of structurally modified poly (vinyl alcohol) [J].Journal of Applied Polymer Science, 2010, 117:2059-2068.

    [23] 周建,罗学刚.木质素/LDPE-EVA复合材料及其泡沫材料的制备[J].化工学报,2007,58(7):1834-1839.
    [24]

    NEIL A W, MILLER B. Retardation of photo-yellowing of lignin-rich pulp[J]. Polymer Degradation and Stability,2000,69(1):121-126.

    [25]

    HANG Z S, TAN L H, CAO X M. Preparation of melamine microfibers by reaction electrospinning [J]. Materials Letters, 2011, 65:1079-1081.

    [26] 徐冠豪,任世学,方桂珍. 聚乙烯醇聚合度对聚乙烯醇/碱木质素共混膜力学性能的影响[J].生物质化学工程,2013,47(5): 1-6.
  • 期刊类型引用(12)

    1. 杨文卓,杨琳瑄,王远,陈辉,苏锦,刘燕. 水利工程生态产品价值核算体系研究——以福建山美水库为例. 海峡科学. 2024(06): 84-91 . 百度学术
    2. 任万杰,司振江,李铁男,郭微微,杨阿龙. 水生态产品价值核算研究综述. 黑龙江水利科技. 2024(09): 34-39 . 百度学术
    3. 陈默,林育青,张建云,陈求稳,李沁园. 水生态系统生产总值核算体系及应用. 水资源保护. 2023(01): 234-242 . 百度学术
    4. 张先起,路晓斌. 南水北调中线工程沿线水库生态系统服务价值演变解析. 海河水利. 2023(01): 43-47+54 . 百度学术
    5. 张然. 河流生态系统文化服务研究现状及发展建议. 环境与发展. 2023(02): 32-38+56 . 百度学术
    6. 张宪宇,郄晗彤,杨文杰. 基于模糊综合评价法的北京永定河水源地生态脆弱性评价. 环境保护科学. 2021(03): 159-163 . 百度学术
    7. 孟翠婷,郎琪,雷坤,程全国,李秀. 永定河京津冀段底栖动物群落结构特征及水生态健康评价. 沈阳大学学报(自然科学版). 2021(04): 307-313 . 百度学术
    8. 昝欣,张玉玲,贾晓宇,熊广森. 永定河上游流域水生态系统服务价值评估. 自然资源学报. 2020(06): 1326-1337 . 百度学术
    9. 熊文,孙晓玉,彭开达,黄羽. 汉江下游平原典型区域水生态系统服务价值评价. 人民长江. 2020(08): 71-77 . 百度学术
    10. 刘璐,刘志成,杨瑞莹,张任菲,李豪,许晓明. 永定河干涸段(卢梁段)河流廊道植物群落数量分类及多样性特征. 生态学报. 2020(24): 9129-9137 . 百度学术
    11. 万超,王迎春,李雨璇,吕斐,孙美. 永定河综合治理市场化运作模式探讨. 北京水务. 2018(03): 50-52 . 百度学术
    12. 慕林青,张海萍,赵树旗,刘培斌,高晓薇,李玉臣,渠晓东. 永定河底栖动物生物完整性指数构建与健康评价. 环境科学研究. 2018(04): 697-707 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  1805
  • HTML全文浏览量:  162
  • PDF下载量:  32
  • 被引次数: 25
出版历程
  • 收稿日期:  2014-09-16
  • 修回日期:  2014-10-13
  • 发布日期:  2015-04-29

目录

    /

    返回文章
    返回