• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于近红外光谱法预测杨木的综纤维素含量

刘镇波, 薛占川, 刘一星, 王鹏, 沈晓燕, 孔文杨, 王向明

刘镇波, 薛占川, 刘一星, 王鹏, 沈晓燕, 孔文杨, 王向明. 基于近红外光谱法预测杨木的综纤维素含量[J]. 北京林业大学学报, 2013, 35(5): 110-116.
引用本文: 刘镇波, 薛占川, 刘一星, 王鹏, 沈晓燕, 孔文杨, 王向明. 基于近红外光谱法预测杨木的综纤维素含量[J]. 北京林业大学学报, 2013, 35(5): 110-116.
LIU Zhen-bo, XUE Zhan-chuan, LIU Yi-xing, WANG Peng, SHEN Xiao-yan, KONG Wen-yang, WANG Xiang-ming. Prediction of holocellulose content of poplar using near infrared spectroscopy.[J]. Journal of Beijing Forestry University, 2013, 35(5): 110-116.
Citation: LIU Zhen-bo, XUE Zhan-chuan, LIU Yi-xing, WANG Peng, SHEN Xiao-yan, KONG Wen-yang, WANG Xiang-ming. Prediction of holocellulose content of poplar using near infrared spectroscopy.[J]. Journal of Beijing Forestry University, 2013, 35(5): 110-116.

基于近红外光谱法预测杨木的综纤维素含量

Prediction of holocellulose content of poplar using near infrared spectroscopy.

  • 摘要: 为快速测定人工林杨木的综纤维素含量,按国家标准测定了42 个杨木木材样品的综纤维素含量,并用近红 外光谱仪测定相应的光谱。在350 ~ 2 500、1 300 ~ 2 050、2 050 ~ 2 500 nm 3 个不同的光谱区域,采用未处理、 Baseline、一阶导数、二阶导数等光谱预处理方法,再用PLS1、PLS2、PCR 3 种不同建模方法建立相应的校正模型与 交互验证模型。结果表明:当光谱区域为1 300 ~2 050 nm、光谱数据未进行预处理、采用PLS1 的建模方法、主成分 数为8 时,建立的校正模型有最佳预测效果;采用建立的模型对未参与建模的样本进行预测,预测结果与实测结果 间的相关系数为0.818 8。
    Abstract: The holocellulose is one of the main chemical components of wood cell wall and has a critical effect on wood property andutilization. The holocellulose contents of 42 samples of poplar were determined by national standard of China, and then the near infrared (NIR) of all samples was collected by LabSpec Pro FR/ A114260 in this paper. The calibration and validation model were built using partial least squares (PLS1, PLS2) and principal component analysis (PCR) with different pretreatment methods of un- pretreatment, Baseline, the first derivative and the second derivative in different spectral regions of 350- 2 500 nm, 1 300-2 050 nm and 2 050-2 500 nm. The results showed that the best model was built by PLS1 with un-pretreated spectral data and 8 principal components in 1 300-2 050 nm. The coefficients of correlation (r), the root mean square error and the standard error of calibration model were 0.963 8, 0.006 3 and 0.006 4, respectively, and 0.647 1, 0.023 6 and 0.024 0 for validation model. The correlation (r) was 0.818 8 between the predicting and lab measuring values of the samples not involved in modeling.
  • 期刊类型引用(6)

    1. 郑似青,方陆明,孙林豪,郑辛煜,刘江俊. 基于UWB传感器的树木定位研究. 林业资源管理. 2020(02): 103-111 . 百度学术
    2. 闫飞,王春博,吴永睿,林奕成,冯仲科. 森林BDS/GPS组合定位算法与精度分析. 农业机械学报. 2019(04): 221-227+373 . 百度学术
    3. 张俭峰,李新鹏,杨文鹏,李成禄,邓昌州,赵瑞君. 浅谈GPS在地质剖面测量中的应用及地质剖面绘制中的便捷方法. 世界地质. 2019(02): 397-404 . 百度学术
    4. 李成杰,林辉,臧卓. 基于北斗卫星的森林资源信息外业采集系统关键技术研究. 中南林业科技大学学报. 2018(01): 55-61 . 百度学术
    5. 张民侠,赵浩彥,张洁. 涉案林地面积测算方法比较研究. 西南林业大学学报. 2016(04): 138-144 . 百度学术
    6. 冯晓娜,徐文兵,汤孟平,吴广正. 集思宝G330手持全球定位系统接收机在林区单点定位的精度分析. 浙江农林大学学报. 2013(05): 640-647 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1430
  • HTML全文浏览量:  138
  • PDF下载量:  95
  • 被引次数: 12
出版历程
  • 收稿日期:  1899-12-31
  • 修回日期:  1899-12-31
  • 发布日期:  2013-09-29

目录

    /

    返回文章
    返回