• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于改进区域生长的木材导管形态特征提取方法

计智伟, 汪杭军, 何涛, 尹建新

计智伟, 汪杭军, 何涛, 尹建新. 基于改进区域生长的木材导管形态特征提取方法[J]. 北京林业大学学报, 2011, 33(3): 64-69.
引用本文: 计智伟, 汪杭军, 何涛, 尹建新. 基于改进区域生长的木材导管形态特征提取方法[J]. 北京林业大学学报, 2011, 33(3): 64-69.
JI Zhi-wei, WANG Hang-jun, HE Tao, YIN Jian-xin. A morphological feature extraction method of wood pores based on an improved growing region algorithm[J]. Journal of Beijing Forestry University, 2011, 33(3): 64-69.
Citation: JI Zhi-wei, WANG Hang-jun, HE Tao, YIN Jian-xin. A morphological feature extraction method of wood pores based on an improved growing region algorithm[J]. Journal of Beijing Forestry University, 2011, 33(3): 64-69.

基于改进区域生长的木材导管形态特征提取方法

A morphological feature extraction method of wood pores based on an improved growing region algorithm

  • 摘要: 基于图像的智能木材识别方法是通过自动提取木材的识别特征来识别木材,对木材科学和产业具有十分重要的意义。提出了一种基于改进区域生长的木材导管形态特征提取方法:采用分治策略改进区域生长法实现木材横切面显微图像中导管细胞的快速分割,用链码跟踪技术提取了10个导管细胞的形态特征;选取了6种阔叶材树种的横切面显微图像进行仿真实验。实验结果显示:本文方法能提高导管细胞的分割速度;所提取的10个形态特征在给定的树种显微图像上具有较高的区分度,说明将本文方法用于阔叶材树种智能识别具有较强的可行性。
    Abstract: Imagebased intelligent wood identification method is expected to identify wood by automatically extracting identification features of the wood from its images, and is very important to wood sciences and industries. We proposed a morphological feature extraction method of wood pores based on an improved growing region algorithm. With this method, we can realize precise segmentation of wood pore cells from micrographs and acquire ten morphological features of pore cells according to the technology of chain codes tracking. We validated this method in six kinds of micrograph of broadleaf wood. The simulation experiment shows that this algorithm could improve the computational speed of segmentation of wood pores. In the meanwhile, the ten morphological features of pore cells have a quite distinguishable capacity in the six kinds of broadleaf wood. It is suggested that the algorithm we proposed is highly applicable to artificial broadleaf species recognizing.
  • 期刊类型引用(4)

    1. 程昱之,钟丽辉,何鑫,王远,李朝兰. 基于改进K-Means聚类与水平集的木材横截面管孔分割. 森林工程. 2022(01): 42-51 . 百度学术
    2. 程昱之,钟丽辉,何鑫,王远,李朝岚. 基于改进K-means聚类与分水岭的木材横截面管孔分割. 浙江农林大学学报. 2022(01): 173-179 . 百度学术
    3. 多化豫,高峰,李福胜,魏汉夫,张欣宏. 基于图像处理的木片与树皮的新识别参数研究. 西北林学院学报. 2015(01): 207-210 . 百度学术
    4. 何炳全,汪杭军. 木材横切面图像中轴向薄壁组织的提取技术. 黑龙江大学自然科学学报. 2013(03): 396-399 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  2352
  • HTML全文浏览量:  144
  • PDF下载量:  55
  • 被引次数: 7
出版历程
  • 收稿日期:  1899-12-31
  • 修回日期:  1899-12-31
  • 发布日期:  2011-05-29

目录

    /

    返回文章
    返回