高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林火烟雾图像自动识别中的模式分类器选择

黄儒乐 吴江 韩宁

黄儒乐, 吴江, 韩宁. 林火烟雾图像自动识别中的模式分类器选择[J]. 北京林业大学学报, 2012, 34(1): 92-95.
引用本文: 黄儒乐, 吴江, 韩宁. 林火烟雾图像自动识别中的模式分类器选择[J]. 北京林业大学学报, 2012, 34(1): 92-95.
HUANG Ru-le, WU Jiang, HAN Ning. Selection of pattern classifier in automatic detection for forest fire smoke feature.[J]. Journal of Beijing Forestry University, 2012, 34(1): 92-95.
Citation: HUANG Ru-le, WU Jiang, HAN Ning. Selection of pattern classifier in automatic detection for forest fire smoke feature.[J]. Journal of Beijing Forestry University, 2012, 34(1): 92-95.

林火烟雾图像自动识别中的模式分类器选择

Selection of pattern classifier in automatic detection for forest fire smoke feature.

  • 摘要: 探索了支持向量机(SVM)方法解决由脉冲耦合神经网络(PCNN)提取的林火烟雾图像特征后的计算机视觉模式识别问题。针对由于林火烟雾图像的纹理特征不突出,即便用特殊方法提取出来的特征向量也维数较高,对后续分类器性能提出较高要求并且分类效果存在很大的未知性等问题,通过实验,对3种人工神经网络分类器和支持向量机分类器的烟雾图像特征甄别效果进行了详细对比。结果表明:基于支持向量机的分类器在复杂的森林背景情况下对烟雾有很好的分辨能力,其识别准确率达到94.26%,并且在识别准确率和分类速度两方面都超过了作为对照的3种神经网络分类器。
  • [1] 刘长春, 刘鹏举, 季烨云.  基于视频区域动态特征的林火烟雾检测技术研究 . 北京林业大学学报, 2020, 42(): 1-10. doi: 10.12171/j.1000-1522.20200049
    [2] 江涛, 王新杰.  基于卷积神经网络的高分二号影像林分类型分类 . 北京林业大学学报, 2019, 41(9): 20-29. doi: 10.13332/j.1000-1522.20180342
    [3] 胡静, 陈志泊, 杨猛, 张荣国, 崔亚稷.  基于全卷积神经网络的植物叶片分割算法 . 北京林业大学学报, 2018, 40(11): 131-136. doi: 10.13332/j.1000-1522.20180007
    [4] 于慧伶, 麻峻玮, 张怡卓.  基于双路卷积神经网络的植物叶片识别模型 . 北京林业大学学报, 2018, 40(12): 132-137. doi: 10.13332/j.1000-1522.20180182
    [5] 陈冀岱, 牛树奎.  多时相高分辨率遥感影像的森林可燃物分类和变化分析 . 北京林业大学学报, 2018, 40(12): 38-48. doi: 10.13332/j.1000-1522.20180269
    [6] 吴笑鑫, 高良, 闫民, 赵方.  基于多特征融合的花卉种类识别研究 . 北京林业大学学报, 2017, 39(4): 86-93. doi: 10.13332/j.1000-1522.20160367
    [7] 张帅, 淮永建.  基于分层卷积深度学习系统的植物叶片识别研究 . 北京林业大学学报, 2016, 38(9): 108-115. doi: 10.13332/j.1000-1522.20160035
    [8] 刘怀鹏, 安慧君, 王冰, 张秋良.  基于递归纹理特征消除的WorldView-2树种分类 . 北京林业大学学报, 2015, 37(8): 53-59. doi: 10.13332/j.1000-1522.20140311
    [9] 林卓, 吴承祯, 洪伟, 洪滔.  基于BP神经网络和支持向量机的杉木人工林收获模型研究 . 北京林业大学学报, 2015, 37(1): 42-54. doi: 10.13332/j.cnki.jbfu.2015.01.008
    [10] 王丽君, 淮永建, 彭月橙.  基于叶片图像多特征融合的观叶植物种类识别 . 北京林业大学学报, 2015, 37(1): 55-69. doi: 10.13332/j.cnki.jbfu.2015.01.006
    [11] 吴梦宇, 罗琴娟, 韩摇宁.  基于多运动特征的森林火灾烟雾图像识别算法 . 北京林业大学学报, 2013, 35(3): 154-158.
    [12] 张娟, 黄心渊.  基于图像分析的梅花品种识别研究 . 北京林业大学学报, 2012, 34(1): 96-104.
    [13] 罗茜, 王鸿斌, 张真, 孔祥波.  基于MFCC与神经网络的小蠹声音种类自动鉴别 . 北京林业大学学报, 2011, 33(5): 81-85.
    [14] 黄家荣, 高光芹, 孟宪宇, 关毓秀.  基于人工神经网络的林分直径分布预测 . 北京林业大学学报, 2010, 32(3): 21-26.
    [15] 李春艳, 华德尊, 陈丹娃, 王萍, 任佳.  人工神经网络在城市湿地生态环境质量评价中的应用 . 北京林业大学学报, 2008, 30(增刊1): 282-286.
    [16] 胡淑萍, 余新晓, 王小平, 秦永胜, 陈俊崎.  人工神经网络在流域植被类型优化中的应用 . 北京林业大学学报, 2008, 30(supp.2): 1-5.
    [17] 何亚平, 胡万良, 秦爱光, 王费新, 刘杏娥, 张洪江, 袁怀文, 毛俊娟, 邓小文, 黄荣凤, 李瑞, 杨平, 胡胜华, 周永学, 殷亚方, 白岗栓, 郑小贤, 颜绍馗, 高黎, 张莉俊, 张璧光, 魏潇潇, 吴彩燕, 王芳, 费世民, 赵天忠, 樊军锋, 罗晓芳, 王小青, 张克斌, 王兆印, 汪思龙, 刘燕, 李猛, 常旭, 杜社妮, 孙向阳, 戴思兰, 王胜华, 张岩, 崔赛华, 王晓欢, NagaoHirofumi, 乔建平, 谭学仁, 王正, 张占雄, 王海燕, 孔祥文, 范冰, 张旭, 徐嘉, 高荣孚, 李华, 江玉林, 陈放, 韩士杰, 张双保, 江泽慧, KatoHideo, 李昀, 刘云芳, 龚月桦, , 任海青, 陈秀明, 李媛良, 郭树花, 常亮, , IdoHirofumi, 杨培华, 陈宗伟, 侯喜录, 刘秀英, 李晓峰, 丁磊, 蒋俊明, 费本华, , 徐庆祥, 薛岩, 张代贵, 张桂兰, 陈学平, 李考学, , 高建社, 王晓东, , 续九如, 李雪峰, 涂代伦, 刘永红, 金鑫, 张红丽, , , 丁国权, .  Elman动态递归神经网络在树木生长预测中的应用 . 北京林业大学学报, 2007, 29(6): 99-103.
    [18] 尹增芳, 李云开, 张玉兰, 梁善庆, 崔丽娟, 林勇明, 李昌晓, 李春义, 周繇, 刘杏娥, 任云卯, 王春梅, 闫德千, 张运春, 谭健晖, 张颖, 王蕾, 周海宾, 金莹杉, 林娅, 赵铁珍, 王戈, 张仁军, 张秀新, 孙阁, 吴淑芳, 王超, 陈圆, 邢韶华, 刘青林, 高岚, 黄华国, 杨培岭, 刘艳红, 刘国经, 张志强, 樊汝汶, 张明, 江泽慧, 张桥英, 江泽慧, 王以红, 翟明普, 洪滔, 马履一, 马钦彦, 王莲英, 钟章成, 温亚利, 张曼胤, 于俊林, 赵勃, 罗建举, 杨远芬, 徐秋芳, 余养伦, 吴普特, 周荣伍, 邵彬, 汪晓峰, 杨海军, 田英杰, 陈学政, 王玉涛, 吴承祯, 殷际松, 冯浩, 于文吉, 何春光, 张本刚, 王希群, 刘俊昌, 安玉涛, 崔国发, 费本华, 罗鹏, 张晓丽, 王小青, 周国模, 周国逸, 柯水发, 任树梅, 蔡玲, 马润国, 洪伟, 徐昕, 邬奇峰, 费本华, 何松云, 徐克学, 王九中, 康峰峰, 魏晓华, 李敏, 温亚利, 刘爱青, 高贤明, 赵景刚, 骆有庆, 胡喜生, 赵弟行, 任海青, 赵焕勋, 吴家森, 安树杰, 朱高浦, 郑万建, 田平, 吴宁, 林斌, 宋萍, 卢俊峰, 李永祥, 范海兰.  强烈侵蚀产沙区小流域土壤侵蚀强度的支持向量机预报模型研究 . 北京林业大学学报, 2007, 29(3): 93-98.
    [19] 王岩, 孙宇瑞, 冶民生, 谢响明, 何磊, 蒋佳荔, 李绍才, 张学俭, 罗菊春, 侯旭, 柳新伟, 张文娟, 张金凤, 李云成, 朱妍, 高鹏, 盖颖, 贺庆棠, 王盛萍, 李永慈, 李吉跃, 吕建雄, 申卫军, 何静, 关文彬, 张华丽, 崔保山, 孙海龙, 廖学品, 唐守正, 王文棋, 昌明, 成仿云, 冯仲科, 张志强, 康向阳, 陆佩玲, 吴玉英, 马道坤, 李小飞, 于晓南, 石碧, 杨志荣, 王军辉, 张桂莲, 蒋湘宁, 关毓秀, 吴斌, 静洁, 路婷, 张平冬, 史剑波, 何权, 孙阁, 赵广杰, 陈永国, 王尚德, 蒲俊文, 张满良, 孙晓霞, 马克明, 彭少麟, 汪燕, 赵燕东, 胡文忠, 余新晓, 刘国华, 林威, 汪西林, .  马尾松人工林直径分布神经网络模型研究 . 北京林业大学学报, 2006, 28(1): 28-31.
    [20] 孙仁山, 高莉萍, 周存宇, 程广有, 谢力生, 贺康宁, 吕建雄, 李红, 王继强, 赵东, 李利平, 包仁艳, 王跃思, 高峰, 包满珠, 周国逸, 李文彬, 向仕龙, 邢韶华, 高林, 姜春宁, 李世荣, 殷亚方, 孙扬, 李吉跃, 于志明, 赵有科, 郑彩霞, 葛春华, 田勇臣, 赵勃, 刘娟娟, 孙磊, 王迎红, 曹全军, 史常青, 孙艳玲, 周心澄, 华丽, 姜笑梅, 高亦珂, 张德强, 丁坤善, 唐晓杰, 王清春, 崔国发, 刘世忠, 张启翔, .  基于整枝抚育目的的立木枝干自动识别研究 . 北京林业大学学报, 2005, 27(4): 86-89.
  • 加载中
计量
  • 文章访问数:  989
  • HTML全文浏览量:  69
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  1900-01-01
  • 刊出日期:  2012-01-30

林火烟雾图像自动识别中的模式分类器选择

摘要: 探索了支持向量机(SVM)方法解决由脉冲耦合神经网络(PCNN)提取的林火烟雾图像特征后的计算机视觉模式识别问题。针对由于林火烟雾图像的纹理特征不突出,即便用特殊方法提取出来的特征向量也维数较高,对后续分类器性能提出较高要求并且分类效果存在很大的未知性等问题,通过实验,对3种人工神经网络分类器和支持向量机分类器的烟雾图像特征甄别效果进行了详细对比。结果表明:基于支持向量机的分类器在复杂的森林背景情况下对烟雾有很好的分辨能力,其识别准确率达到94.26%,并且在识别准确率和分类速度两方面都超过了作为对照的3种神经网络分类器。

English Abstract

黄儒乐, 吴江, 韩宁. 林火烟雾图像自动识别中的模式分类器选择[J]. 北京林业大学学报, 2012, 34(1): 92-95.
引用本文: 黄儒乐, 吴江, 韩宁. 林火烟雾图像自动识别中的模式分类器选择[J]. 北京林业大学学报, 2012, 34(1): 92-95.
HUANG Ru-le, WU Jiang, HAN Ning. Selection of pattern classifier in automatic detection for forest fire smoke feature.[J]. Journal of Beijing Forestry University, 2012, 34(1): 92-95.
Citation: HUANG Ru-le, WU Jiang, HAN Ning. Selection of pattern classifier in automatic detection for forest fire smoke feature.[J]. Journal of Beijing Forestry University, 2012, 34(1): 92-95.

目录

    /

    返回文章
    返回