高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林火烟雾图像自动识别中的模式分类器选择

黄儒乐 吴江 韩宁

黄儒乐, 吴江, 韩宁. 林火烟雾图像自动识别中的模式分类器选择[J]. 北京林业大学学报, 2012, 34(1): 92-95.
引用本文: 黄儒乐, 吴江, 韩宁. 林火烟雾图像自动识别中的模式分类器选择[J]. 北京林业大学学报, 2012, 34(1): 92-95.
HUANG Ru-le, WU Jiang, HAN Ning. Selection of pattern classifier in automatic detection for forest fire smoke feature.[J]. Journal of Beijing Forestry University, 2012, 34(1): 92-95.
Citation: HUANG Ru-le, WU Jiang, HAN Ning. Selection of pattern classifier in automatic detection for forest fire smoke feature.[J]. Journal of Beijing Forestry University, 2012, 34(1): 92-95.

林火烟雾图像自动识别中的模式分类器选择

Selection of pattern classifier in automatic detection for forest fire smoke feature.

  • 摘要: 探索了支持向量机(SVM)方法解决由脉冲耦合神经网络(PCNN)提取的林火烟雾图像特征后的计算机视觉模式识别问题。针对由于林火烟雾图像的纹理特征不突出,即便用特殊方法提取出来的特征向量也维数较高,对后续分类器性能提出较高要求并且分类效果存在很大的未知性等问题,通过实验,对3种人工神经网络分类器和支持向量机分类器的烟雾图像特征甄别效果进行了详细对比。结果表明:基于支持向量机的分类器在复杂的森林背景情况下对烟雾有很好的分辨能力,其识别准确率达到94.26%,并且在识别准确率和分类速度两方面都超过了作为对照的3种神经网络分类器。

     

  • 加载中
计量
  • 文章访问数:  1466
  • HTML全文浏览量:  94
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  1900-01-01
  • 刊出日期:  2012-01-30

目录

    /

    返回文章
    返回