Minimum area of the community spatial structure of broadleaf-Korean pine forest in Shengshan Mountain, northeastern China.
-
摘要: 本文依据2012年黑龙江省胜山阔叶红松林10.4 hm2大型样地全面实测数据,基于移动窗口法、GIS技术分析其乔木层生物量空间格局的尺度效应,探究其群落空间结构研究的最小面积,并用计算机模拟随机抽样进一步验证。结果表明:1)通过对10~90 m各个尺度下的样地生物量误差空间分布栅格图的分析,胜山阔叶红松林乔木层生物量空间结构存在着最小研究面积0.49 hm2,不仅具有与样地相同的生物量密度,还能够完整地体现出胜山阔叶红松林生物量的空间变异性,准确地反映其群落结构的真实特征,这为更加精确地估算阔叶红松林生物量提供了理论依据;2)通过计算机模拟随机抽样验证了用移动窗口法所确定的最小面积是准确的,限定在该最小面积(0.49 hm2)范围之内的随机取样,仅使用7个20 m×20 m的样方就能够有95.9%的概率把估测的误差范围控制在20%以内,这对于阔叶红松林森林生物量调查样地大小的设置,具有很好的指导作用;3)提出把本文中的最小面积作为衡量森林群落空间结构复杂程度的一个指标,最小面积的大小代表了空间变异的范围,最小面积越大则说明了空间异质性越高。Abstract: According to the fully observed data of 10.4 ha (400 m×260 m) large permanent plot of broadleaf-Korean pine forest established in Shengshan Nature Reserve, Heilongjiang Province in 2012, the moving window method and GIS were used to research the scale effect of spatial pattern of tree biomass and the minimum area of community spatial structure, and then computer simulation of the random sampling was used for verification. The results showed that there existed a minimum area of 0.49 ha in community structure of broadleaf-Korean pine forest in Shengshan Nature Reserve, and this area not only had the same biomass density as the entire plot, but also could reflect the spatial variability of biomass of the broadleaf-Korean pine forest in Shengshan. It accurately reflected the characteristics of community structure, providing a theoretical basis for more accurate estimation of biomass of the broadleaf-Korean pine forest. The minimum area determined by the moving window method was verified by the computer simulation of random sampling. For the sampling in the entire plot, only seven 20 m×20 m quadrats were needed to get the result with relative error less than 20% at 95.9% probability, and sampling in the minimum area also had the same effect. It is a good guidance for the investigation of the plot size of forest biomass in broadleaf-Korean pine forest. Based on the above research, we put forward the minimum area as an index to measure the complex degree of spatial structure of forest community. The minimum size of the forest community represents the range of spatial variability, i.e., the larger the minimum area is, the higher the spatial heterogeneityis.
-
-
[1] 王伯荪, 余世孝, 彭少麟,等.植物群落学实验手册[M] . 广州: 广东高等教育出版社, 1996:10-26. [1] WANG B S, YU S X. PENG S L, et al. Manual of plant community research[M] . Guangzhou: Guangdong Higher Education Press, 1996: 10-26.
[2] HAO Z Q. Analysis of plant community diversities and their gradient patterns on the northern slope of Changbai Mountain [D] . Shenyang: Institute of Applied Ecology, Chinese Academy of Sciences , 2000.
[2] YANG C,BAO R. Optimum sampling area for the studies of distribution pattern in Aneurolepidium chinensis steppe community[J] . Acta Ecologica Sinica, 1986, 6(4): 324-329.
[3] LI L,HUI G Y,HUI S R ,et al. Study on the influence of plot area size on estimation of stand density and analysis of patterns of natural forests[J] .Science Technology Review, 2007, 25(9): 40-46.
[3] KALLIMANIS A S, HALLEY J M, VOKOU D, et al. The scale of analysis determines the spatial pattern of woody species diversity in the Mediterranean environment [J] . Plant Ecology, 2008, 196(1): 143-151.
[4] GONG S F, XU J H, HUANG Q F. Study on the minimum sampling area of evergreen-deciduous broadleaf forest community structure in Tongling Yeshan Mountain[J] . Journal of Nanjing Forestry University ( Natural Science Edition) , 2012, 36(2): 91-94.
[4] HARTE J, SMITH A B, STORCH D. Biodiversity scales from plots to biomes with a universal species-area curve [J] . Ecology Letters, 2009, 12(8):789-797.
[5] DONG L B,LIU Z G,MA Y ,et al. A new composite index of stand spatial structure for natural forest[J] . Journal of Beijing Forestry University, 2013, 35(1): 16-22.
[5] TIKKANEN O P, PUNTTILA P, HEIKKILA R. Species-area relationships of red-listed species in old boreal forests: a large-scale data analysis[J] . Diversity and Distributions, 2009, 15(5): 852-862.
[6] 杨持, 宝荣. 羊草草原种群分布格局的最适取样面积[J] . 生态学报, 1986, 6(4): 324-329. [6] FENG Z K,LUO X,SHI L P. Some problems and perfect approaches of research on forest biomass[J] . World Forestry Research, 2005, 18(3): 25-28.
[7] FAN H B, LI Y Y, SU B Q, et al. Allocation pattern of biomass and productivity in the mixed uneven-aged stands of Masson's pine and hardwood species[J] . Acta Ecologica Sinica , 2006, 26(8): 2463-2473.
[7] 李丽, 惠刚盈, 惠淑荣, 等. 不同样地大小对天然林林分的密度估计和格局分析影响研究[J] . 科技导报, 2007, 25(9): 40-46. [8] HUANG M,JI J J,CAO M K, et al. Modeling study of vegetation shoot and root biomass in China[J] . Acta Ecologica Sinica, 2013, 26(12): 4156-4163.
[8] 宫守飞, 许剑辉, 黄庆丰. 铜陵叶山常绿落叶阔叶林群落结构最小取样面积的抽取[J] . 南京林业大学学报(自然科学版), 2012, 36(2): 91-94. [9] LIN D M, LAI J S, MI X C, et al. Spatial variation in community structure of a subtropical evergreen broad-leaved forest: implications for sampling design[J] . Chin Sci Bull, 2013, 58(1):69-74.
[9] 董灵波, 刘兆刚, 马妍, 等. 天然林林分空间结构综合指数的研究[J] . 北京林业大学学报, 2013, 35(1): 16-22. [10] OVERMAN J P M, WITTE H J L, SALDARRIAGA J G. Evaluation of regression models for above-ground biomass determination in Amazon rainforest [J] . Journal of Tropical Ecology, 1994, 10(2): 207-218.
[10] YANG J M,FAN W Y. Theoretical model for biomass of main tree species in Xiaoxing'an Mountains[J] . Journal of Northeast Forestry University, 2011, 39(3): 46-48,60.
[11] 冯仲科, 罗旭, 石丽萍. 森林生物量研究的若干问题及完善途径[J] . 世界林业研究, 2005, 18(3): 25-28. [11] FENG Z W, WANG X K, WU G. Biomass and productivity of forest ecosystem in China [M] . Beijing: Science Press, 1999.
[12] 樊后保, 李燕燕, 苏兵强, 等. 马尾松-阔叶树混交异龄林生物量与生产力分配格局[J] . 生态学报, 2006, 26(8): 2463-2473. [12] LIU F, WANG C K, WANG X C, et al. Spatial patterns of biomass in the temperate broadleaved deciduous forest within the fetch of the Maoershan flux tower [J] . Acta Ecologica Sinica, 2016, 36(20):6506-6519.
[13] LI D K,DING S Y,LIANG G F, et al. Landscape heterogeneity of mountainous and hilly area in the western Henan Province based on moving window method[J] . Acta Ecologica Sinica,2014, 34(12):3414-3424.
[13] 黄玫, 季劲钧, 曹明奎, 等. 中国区域植被地上与地下生物量模拟[J] . 生态学报, 2013, 26(12): 4156-4163. [14] HAO Z Q,ZHAO S D.Species diversity of higher plants in lime Korean pine forest on northern slope of Changbai Mountain[J] .Chinese Journal of Ecology, 1993, 12(6): 1-5.
[14] GARKOTI S C. Estimates of biomass and primary productivity in a high-altitude maple forest of the west central Himalayas [J] . Ecological Research, 2008, 23(1): 41-49.
[15] CHAVE J, CONDIT R, AGUILAR S, et al. Error propagation and scaling for tropical forest biomass estimates [J] . Philos Trans R SocLond B BiolSci, 2004, 359: 409-420.
[15] SUN Z W,ZHAO S D.Community features of Tilia-Korean pine forest on northern slope of Changbai Mountains[J] . Chinese Journal of Ecology, 1995, 14(5): 26-30.
[16] MASCARO J, ASNER G P, MULLER-LANDAU H C, et al. Controls over aboveground forest biomass density on Barro Colorado Island, Panama [J] . Biogeosciences, 2011, 8(6): 1615-1629.
[16] DAI L M,WANG Q C, DENG H B, et al. Minimum sampling area and species richness of riparian community in Erdaobaihe forested watershed[J] . Chinese Journal of Applied Ecology, 2002, 13(6): 641-645.
[17] 林敦梅, 赖江山, 米湘成, 等. 亚热带常绿阔叶林群落结构的空间变异及其对取样设计的启示[J] . 科学通报, 2013, 58(1):69-74. [17] WU X P,ZHU B,ZHAO S Q,et al. Comparison of community structure and species diversity of mixed forests of deciduous broad-leaved tree and Korean pine in Northeast China[J] . Biodiversity Science, 2004, 12(1): 174-181.
[18] HAO Z Q,LI B H,ZHANG J,et al. Broad-leaved Korean pine (Pinus koraiensis) mixed forest plot in Changbaishan(CBS) of China:community composition and structure[J] . Journal of Plant Ecology, 2008, 32(2): 238-250.
[18] 杨金明, 范文义. 小兴安岭主要树种生物量的理论模型[J] . 东北林业大学学报, 2011, 39(3): 46-48,60. [19] XU L N,JIN G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China[J] . Biodiversity Science, 2012, 20(4): 470-481.
[19] 冯宗炜, 王效科, 吴刚. 中国森林生态系统的生物量和生产力[M] .北京: 科学出版社, 1999. [20] CAI M K, LIN K M, ZHAO C C, et al. Species-area relationship in old Chinese fir plantation[J] .Journal of Northeast Forestry University, 2014, 42(12):67-70.
[20] 刘帆, 王传宽, 王兴昌, 等. 帽儿山温带落叶阔叶林通量塔风浪区生物量空间格局[J] . 生态学报, 2016, 36(20): 6506-6519. [21] WHITTAKER R H. Vegetation of the Siskiyou Mountains, Oregon and California[J] . Ecological Monographs, 1960, 30(3): 279-338.
[21] ZHANG X Y, XU Z C,SONG W W, et al. Selection of quadrat for biomass harvesting and model of Eupatorium adenophorum in Xishuangbanna[J] . Pratacultural Science , 2010, 27(10): 85-90.
[22] WU X Y, LIU M L, REN J, et al.Soil moisture variation characteristics at forest landscape boundary of mountainous region in eastern Liaoning[J] . Journal of Beijing Forestry University, 2015, 37(4): 56-63.
[22] MCDONNELL M J, PICKETT S T. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology[J] . Ecology, 1990, 71(4): 1232-1237.
[23] YUN L,BI H X, MA W J, et al. Distribution characteristics and boundary effects of soil nutrient in silvopastoral system in the loess region of western Shanxi Province, northern China[J] . Journal of Beijing Forestry University, 2011, 33(2): 37-42.
[23] 李栋科, 丁圣彦, 梁国付, 等. 基于移动窗口法的豫西山地丘陵地区景观异质性分析[J] . 生态学报, 2014, 34(12): 3414-3424. [24] 郝占庆, 赵士洞. 长白山北坡椴树红松林高等植物物种多样性[J] . 生态学杂志, 1993, 12(6): 1-5. [24] TIAN X L, BI H X, YUN L, et al. Herbaceous plant diversity of silvopastoral system in the loess region of western Shanxi Province, northern China[J] . Journal of Beijing Forestry University, 2011, 33(1): 64-69.
[25] 孙中伟, 赵士洞. 长白山北坡椴树阔叶红松林群落特征[J] . 生态学杂志, 1995, 14(5): 26-30. [25] ZHANG L L , ZHAO Y H, YIN S, et al. Gradient analysis of dry valley of Minjiang River landscape pattern, based on moving window method[J] . Acta Ecologica Sinica, 2014, 34( 12): 3276-3284.
[26] 代力民, 王青春, 邓红兵, 等. 二道白河河岸带植物群落最小面积与物种丰富度[J] . 应用生态学报, 2002, 13(6): 641-645. [26] FU Y, LEI Y C, ZENG W S. Uncertainty assessment in regional-scale above ground biomass estimation of Chinese fir[J] . Scientia Silvae Sinicae, 2014, 50(12): 79-86.
[27] 吴晓莆, 朱彪, 赵淑清, 等. 东北地区阔叶红松林的群落结构及其物种多样性比较[J] . 生物多样性, 2004, 12(1): 174-181. [28] 郝占庆, 李步杭, 张健, 等. 长白山阔叶红松林样地(CBS):群落组成与结构[J] . 植物生态学报, 2008, 32(2): 238-250. [29] 徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J] . 生物多样性, 2012, 20(4): 470-481. [30] 蔡锰柯, 林开敏, 赵长存,等. 杉木老龄林群落的种—面积关系[J] . 东北林业大学学报, 2014, 42(12): 67-70. [31] 张修玉, 许振成, 宋巍巍, 等. 西双版纳紫茎泽兰生物量收获的样方选择与模型[J] . 草业科学, 2010, 27(10): 85-90. [32] 吴祥云, 刘梦旅, 任杰, 等. 辽东山地森林景观界面土壤水分变异特征研究[J] . 北京林业大学学报, 2015, 37(4): 56-63. [33] 云雷, 毕华兴, 马雯静, 等. 晋西黄土区林草复合系统土壤养分分布特征及边界效应[J] . 北京林业大学学报, 2011, 33(2): 37-42. [34] 田晓玲, 毕华兴, 云雷, 等. 晋西黄土区林草复合系统草本植物多样性特征[J] . 北京林业大学学报, 2011, 33(1): 64-69. [35] 张玲玲, 赵永华, 殷莎, 等. 基于移动窗口法的岷江干旱河谷景观格局梯度分析[J] . 生态学报, 2014, 34(12): 3276-3284. [36] LI L G, HE X Y, LI X Z, et al. Depth of edge influence on the field-forest boundary in the arid valley of upper reaches of Minjiang River, China[J] . Chin J Appl Ecol, 2004, 15(10): 1804-1808.
[37] COHEN R, KAINO J, OKELLO J, et al. Propagating uncertainty to estimates of above-ground biomass for Kenyan mangroves: a scaling procedure from tree to landscape level[J] . Forest Ecology and Management, 2013, 310: 968-982.
[38] 傅煜, 雷渊才, 曾伟生. 区域尺度杉木生物量估计的不确定性度量[J] . 林业科学, 2014, 50(12): 79-86. [39] DEWALT S J. Structure and biomass of four lowland neotropical forests[J] . Biotropica, 2004, 36(1): 7-19.
[40] STEGEN J C, SWENSON N G, ENQUIST B J, et al. Variation in above-ground forest biomass across broad climatic gradients[J] . Global Ecol Biogeogr, 2011, 20(5): 744-754.
[41] MCEWAN R W, LIN Y, SUN I, et al. Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan[J] . Forest Ecology and Management, 2011, 262(9): 1817-1825.
-
期刊类型引用(2)
1. 王阳,王伟,姜静,顾宸瑞,杨蕴力. 转基因小黑杨根际土壤微生物群落特征研究. 南京林业大学学报(自然科学版). 2023(01): 199-208 . 百度学术
2. 程贝贝,陈胜艳,岳莉然. NaHCO_3胁迫对紫根水葫芦形态学指标和光合参数的影响. 广西植物. 2020(12): 1781-1789 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 2021
- HTML全文浏览量: 131
- PDF下载量: 35
- 被引次数: 6