• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响

赵佳琪, 牟长城, 吴彬, 周雪娇

赵佳琪, 牟长城, 吴彬, 周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10): 13-23. DOI: 10.13332/j.1000-1522.20170017
引用本文: 赵佳琪, 牟长城, 吴彬, 周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10): 13-23. DOI: 10.13332/j.1000-1522.20170017
ZHAO Jia-qi, MU Chang-cheng, WU Bin, ZHOU Xue-jiao. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13-23. DOI: 10.13332/j.1000-1522.20170017
Citation: ZHAO Jia-qi, MU Chang-cheng, WU Bin, ZHOU Xue-jiao. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13-23. DOI: 10.13332/j.1000-1522.20170017

造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响

基金项目: 

国家自然科学基金重点项目 41430639

详细信息
    作者简介:

    赵佳琪。主要研究方向:森林生态学。Email: zhjiaqi2017@163.com  地址: 150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    责任作者:

    牟长城,教授,博士生导师。主要研究方向:森林生态学、湿地生态学。Email: muccjs@163.com   地址:同上

  • 中图分类号: S718.5

Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China

  • 摘要: 采用静态箱-气象色谱法,测定不同间伐强度温带弃耕地落叶松人工林(未间伐为对照、轻度间伐强度为25%、重度间伐强度为50%,林龄50年及间伐已20年)及相应立地上农田的土壤温室气体(CO2、CH4和N2O)排放年通量与相关环境因子(土壤温度、湿度及养分含量等),揭示造林与间伐对弃耕地土壤温室气体排放的影响规律,以便为定量评价退耕还林工程实施效果提供依据。结果表明:1)土壤CO2年均排放通量(149.44~204.82 mg/(m2·h))呈现未间伐>农田>轻度间伐>重度间伐的变化趋势,未间伐较农田提高11.6%,轻、重度间伐较农田降低11.4%~18.6%,较未间伐显著降低20.6%~27.0%;2)土壤CH4吸收通量(-0.027~-0.033 mg/(m2·h))呈现重度间伐>未间伐=农田>轻度间伐变化趋势,未间伐与农田相同,轻度间伐较农田降低12.9%,重度间伐较农田提高6.5%;3)土壤N2O排放通量(0.025~0.037 mg/(m2·h))呈现农田>重度间伐>轻度间伐>未间伐的变化趋势,未间伐较农田降低32.4%,轻、重度间伐较农田降低24.3%~29.7%;4)温带弃耕地造林与间伐经营并未改变土壤CO2、CH4、N2O排放通量与气温和土壤温度的相关性,但改变了3种温室气体与土壤湿度的相关性;5)土壤增温潜势(13.89~18.64 t/(hm2·a))呈现未间伐>农田>轻度间伐>重度间伐的变化趋势,未间伐较农田提高9.1%,轻、重度间伐较农田降低12.1%~18.7%,两者也较未间伐降低19.4%~25.5%。因此,东北温带弃耕地营造落叶松林提高了土壤增温潜势,间伐经营较大幅度降低了土壤增温潜势,故从控制气候变暖考虑对其采取强度间伐(50%)方式比较适宜。
    Abstract: CO2, CH4 and N2O annual emission fluxes from larch plantations (50 years old) on abandoned farmland under different thinning intensities (no thinning, contrast; mild thinning, 25% and severe thinning, 50%, tinning operation has been done for 20 years) and farmland on the corresponding site were measured by the static chamber method in temperate Maoershan Mountains in northeastern China to reveal the long-term effects of afforestation and thinning on greenhouse gas emissions from abandoned-land soil. The results showed that: 1) CO2 emission flux (149.44-204.82 mg/(m2·h)) took on a trend of no thinning > farmland > mild thinning > severe thinning, which increased by 11.6% at no thinning site than farmland site, yet they decreased by 11.4%-18.6% at mild and severe thinning sites compared with farmland site, and both also decreased by 20.6%-27.0% significantly compared with no thinning. 2) CH4 fluxes (-0.027-0.033 mg/(m2·h)) showed a trend of severe thinning > no thinning = farmland > mild thinning, there was no significant difference between no thinning site and farmland site, but it decreased by 12.9% at mild thinning site, and increased by 6.5% at severe thinning site than farmland site. 3) N2O emission fluxes (0.025-0.037 mg/(m2·h)) presented a trend of farmland > severe thinning > mild thinning > no thinning, which decreased by 32.4% at no thinning site, and decreased by 24.3%-29.7% at mild and severe thinning sites than farmland site. 4) the correlation between CO2, CH4 and N2O emission fluxes and the air temperature and soil temperature were not changed by afforestation and thinning, but the correlation among three kinds of greenhouse gases and soil moisture were changed. 5) The global warming potential (GWP) (13.89-18.64 t/(ha·yr)) showed the trend of no thinning > farmland > severe thinning > mild thinning, which increased by 9.1% at no thinning site, and decreased by 12.1%-18.7% at mild and severe thinning sites than farmland site, both also decreased by 19.4%-25.5% compared with no thinning site. Therefore, afforestation increased the global warming potential on the temperate abandoned land in northeastern China, thinning greatly reduced the global warming potential, so severe intensity thinning (50%) should be more suitable for larch plantation on temperate abandoned land to control the climate warming.
  • 随着全球气候的变化,干旱日益成为农林领域最为关注的问题之一。植物在生长过程中,生理会产生一定的响应[12],干旱环境可对植物生产造成显著影响,直接导致植物产量下降,限制农林产业的发展,同时也对生态环境带来一定的破环。干旱问题越来越受到人们的重视,加快干旱地区造林是解决干旱地区环境问题的有效途径之一,研究植物的抗旱机理和选育抗旱品种也是国内外专家一直研究的热点和方向。由此,在淡水资源匮乏、水土流失严重和干旱面积增加的情况下,对重要造林树种进行抗旱性综合评价,研究植物的抗旱机理,了解干旱胁迫下植物的响应和适应机制,选育优良的抗旱品种,对于改善干旱贫瘠地区的生态环境具有重要意义。

    干旱胁迫会使植物的外部形态和生理生化特性发生改变,在生长指标方面,干旱环境会影响植物的根以及叶片的生长发育。光合作用是植物重要的生理过程,干旱胁迫会通过影响叶绿素的合成,进而影响光合作用。干旱还会导致植物细胞的结构和功能发生改变,细胞膜透性增加,细胞内物质大量外流,相对电导率上升,丙二醛(malondialdehyde,MDA)含量增加,同时会导致植物抗氧化酶活性和渗透调节物质发生相应变化[34]

    杨属(Populus)树种速生性强、繁殖速度快,其中黑杨派(Sect. Aigeiros)的美洲黑杨(P. deltoides)及其杂交种欧美杨(P. × euramericana)是优良的防护林和用材林树种,在我国林业建设中具有重要地位[5]。杨树在涵养水源、水土保持等方面发挥着不可替代的作用。发展杨树人工林是缓解全球森林资源短缺、满足社会发展需要以及促进经济发展的一项重大举措。目前,关于干旱胁迫对杨树的研究已有许多报道,大多集中在生长性状[67]、光合性状[8]和生理生化[9]研究等方面,但缺乏对黑杨派无性系抗旱性各项指标的综合评价。本试验利用盆栽试验方法,对10个黑杨派无性系进行干旱胁迫,研究在持续控水处理下,不同黑杨派无性系的生长及生理生化特性的变化规律,对10个无性系的抗旱性进行综合评价,筛选出抗旱能力强的无性系,以期为黑杨派无性系在干旱立地的推广应用提供依据。

    本试验以10个黑杨派无性系为试验材料(表1),包括山东省林业科学研究院根据3年生试验林的表型性状初选的8个优良无性系,以及2个目前推广的无性系I-107和中林2025,其中I-107和中林2025作为对照。试验材料来自山东省单县国有高韦庄苗圃。

    表  1  试验材料
    Table  1.  Experimental materials
    无性系 Clone拉丁学名 Latin name母本 Female parent父本 Male parent
    1627 Populus × euramericana ‘1627’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra
    1640 P. × euramericana ‘1640’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra
    1641 P. × euramericana ‘1641’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra
    1716 P. deltoides ‘1716’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides
    1722 P. deltoides ‘1722’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides
    1723 P. deltoides ‘1723’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides
    1725 P. deltoides ‘1725’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides
    1733 P. × euramericana ‘1733’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra
    I-107 P. × euramericana ‘Neva’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra
    2025 P. deltoides ‘2025’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides
    下载: 导出CSV 
    | 显示表格

    试验在山东省林业科学研究院试验苗圃内的干旱棚中进行,采用盆栽试验方法。2021年4月中旬将各供试无性系硬枝插穗扦插于规格为350 mm × 280 mm的花盆中,每盆扦插1个插穗,每个无性系20盆。盆栽基质由苗圃熟土、草炭土、细沙按7∶2∶1的体积比例混合而成。扦插时以插穗最上面的芽刚露出土壤基质表面为宜,对试验苗木常规管理至测试时间。8月下旬每个无性系选择12株生长状况相近的苗木参加干旱试验。试验设计4个水分处理,3次重复,每盆苗木为1个重复。该试验通过人工供水后自然耗水的方法模拟干旱胁迫,预实验发现分别在自然耗水的第0、5、10、15天后,可以得到4组水分梯度:正常供水(土壤相对含水量(RWC)为80%以上)、轻度干旱(RWC为50% ~ 70%)、中度干旱(RWC为30% ~ 50%)、重度干旱(RWC为30%以下)[10]。试验前对盆栽苗木充分浇水,使土壤含水量达到饱和状态,然后通过持续控水的方法,逐渐降低土壤含水量达到水分胁迫梯度。取样时每个无性系每次选取3盆长势均一的植株,剪取从顶端数第4 ~ 6片的功能叶用于测定各项生理生化指标,取过叶片的植株下次不再取样,同时测定实时土壤含水量。

    生长指标包括苗高、地径、生物量等,用于研究干旱胁迫对黑杨派各无性系植株生长状况的影响。在试验开始前和结束后分别测定所有参试无性系的苗高和地径,无性系苗高(cm)用刻度尺测量,地径(mm)使用游标卡尺测量,胁迫后减去胁迫前的生长量即为胁迫期间的苗高和地径增长量。

    每个无性系各定植20盆,选择12盆长势较为一致的参加试验,试验开始时,根据参试无性系的苗高均值,从剩余的8盆植株中选择3株与苗高均值相近的完整植株,用蒸馏水清洗表面杂物,将植株的根、茎、叶分开并用吸水纸迅速吸干,放入烘箱于105 ℃杀青,在75 ℃下烘至质量恒定,测定其生物量,取其均值为生物量1。试验结束时,每个无性系从参试的12盆植株中选择3株长势较为一致的完整植株,用蒸馏水清洗表面杂物,将植株的根、茎、叶分开后用吸水纸迅速吸干,放入烘箱于105 ℃杀青,并在75 ℃下烘至质量恒定,测定其生物量,记为生物量2,生物量增量则为生物量2与生物量1的差值。

    采用乙醇提取比色法测定叶绿素含量,采用相对电导率法测定细胞膜透性,采用硫代巴比妥酸法测定丙二醛含量,采用氮蓝四唑光还原法测定超氧化物歧化酶(superoxide dismutase,SOD)活性,采用愈创木酚法测定过氧化物酶(peroxidase,POD)活性,采用茚三酮染色法测定游离脯氨酸含量[11]

    运用Excel 2010软件对试验数据进行统计整理和图表绘制。用SPSS 22.0软件进行多重比较(Duncan’s新复极差法)、相关分析和主成分分析。

    在重度干旱胁迫下,10个供试无性系的各项生长指标见表2。苗高增量最大的无性系是1733、I-107,最小的是1722、2025;地径增量最大的无性系是1733、1627,最小的是1722、1640;生物量增量最大的无性系是1733、1627,最小的是2025、1722。无性系1733和1627的3个生长指标与对照2025的差异均达到显著水平,说明其具有较强的抗旱性。

    表  2  土壤重度干旱对黑杨派无性系生长指标的影响
    Table  2.  Effects of soil severe drought on differentgrowth of clones
    无性系
    Clone
    苗高增量
    Ramet height
    increment/cm
    地径增量
    Basal diameter
    increment/mm
    生物量增量
    Biomass
    increment/g
    164116.3 ± 0.6ab0.75 ± 0.13bc5.67 ± 0.68abc
    173319.6 ± 2.3a1.02 ± 0.08a7.04 ± 0.40a
    162716.3 ± 0.7ab0.89 ± 0.08ab6.58 ± 0.43ab
    202512.1 ± 0.9cd0.63 ± 0.06c4.38 ± 0.57c
    172515.4 ± 1.4bc0.73 ± 0.08bc4.85 ± 1.07bc
    171613.5 ± 1.0bcd0.66 ± 0.07bc5.56 ± 0.47abc
    172210.1 ± 1.0d0.58 ± 0.02c4.78 ± 0.20bc
    I-10716.6 ± 1.4ab0.82 ± 0.09abc6.28 ± 0.40abc
    172314.9 ± 1.3bc0.72 ± 0.05bc5.01 ± 0.58bc
    164015.0 ± 0.6bc0.61 ± 0.07c4.94 ± 0.60bc
    注:同列中不同小写字母表示差异显著(P < 0.05)。下同。Notes: different lowercase letters in the same column indicate significant differences (P < 0.05). The same below.
    下载: 导出CSV 
    | 显示表格

    植物的叶绿素含量随着干旱胁迫的加剧而下降,不同植物在干旱胁迫下叶绿素含量出现不同程度的降低。从表3可以看出:无性系1716的叶片叶绿素含量随干旱程度加剧一直处于下降趋势,其余各无性系的叶绿素含量随干旱胁迫加剧表现出先上升后下降的规律,均在轻度干旱时叶片的叶绿素含量有所增加。随自然耗水时间的增加,土壤干旱胁迫加剧,叶绿素含量下降,在中度干旱和重度干旱处理下,所有无性系叶片的叶绿素含量均小于正常供水时。在重度干旱时,叶绿素含量较高的无性系为I-107和1627,显著高于对照2025。

    表  3  土壤干旱对各无性系叶绿素含量的影响
    Table  3.  Effects of soil drought on chlorophyll content of each clone
    无性系
    Clone
    叶绿素含量 Chlorophyll content/(mg·g−1)
    正常供水
    Normal water
    supply
    轻度干旱
    Mild
    drought
    中度干旱
    Moderate
    drought
    重度干旱
    Severe
    drought
    16412.50 ± 0.09a3.71 ± 0.29a1.84 ± 0.14abc1.47 ± 0.08bcd
    17332.32 ± 0.24abc3.53 ± 0.14a2.09 ± 0.14a1.52 ± 0.12abc
    16272.62 ± 0.07a3.72 ± 0.25a2.04 ± 0.11ab1.68 ± 0.08ab
    20251.83 ± 0.04d2.02 ± 0.16e1.41 ± 0.07e1.29 ± 0.04cd
    17252.04 ± 0.09bcd2.85 ± 0.25bcd1.73 ± 0.08bcd1.41 ± 0.03cd
    17162.42 ± 0.07ab2.24 ± 0.11de1.46 ± 0.06de1.24 ± 0.05d
    17222.44 ± 0.12ab2.74 ± 0.22cd1.45 ± 0.09de1.22 ± 0.06d
    I-1072.23 ± 0.20abcd3.42 ± 0.22ab1.93 ± 0.13ab1.76 ± 0.14a
    17231.99 ± 0.11cd2.41 ± 0.16de1.74 ± 0.04bcd1.32 ± 0.07cd
    16402.04 ± 0.13bcd3.36 ± 0.23abc1.55 ± 0.07cde1.30 ± 0.07cd
    下载: 导出CSV 
    | 显示表格

    表4可知,各供试无性系在不同干旱处理条件下,细胞膜透性变化差别明显。随着干旱胁迫的加剧,10个无性系的细胞膜透性呈明显的升高趋势,且在重度干旱时达到最大值。其中无性系1716和1722升高最明显,与正常供水时相比均升高117.0%以上,增幅最小的是无性系1733和1641,都在94.0%以下,说明干旱胁迫对无性系1733和1641的影响较小,对1716和1722的影响较大。

    表  4  土壤干旱对各无性系细胞膜透性的影响
    Table  4.  Effects of soil drought on membrane permeability of each clone
    无性系
    Clone
    细胞膜透性 Membrane permeability/%
    正常供水
    Normal water
    supply
    轻度干旱
    Mild
    drought
    中度干旱
    Moderate
    drought
    重度干旱
    Severe
    drought
    164112.5 ± 1.1bc13.4 ± 0.4b17.3 ± 1.3cd24.2 ± 1.1cd
    173311.1 ± 0.6c13.5 ± 0.4b16.9 ± 0.7cd21.2 ± 1.8d
    162711.2 ± 1.0c13.1 ± 1.0b15.9 ± 1.3d22.1 ± 1.8d
    202512.3 ± 0.7bc14.1 ± 1.0b18.6 ± 1.8bcd24.9 ± 2.9bcd
    172514.7 ± 0.9ab15.5 ± 0.4ab20.5 ± 2.9bcd29.8 ± 2.8abc
    171611.3 ± 0.4c14.5 ± 0.2b21.3 ± 1.1abc33.1 ± 2.4a
    172214.5 ± 1.2ab17.6 ± 0.7a25.7 ± 1.0a31.5 ± 1.4ab
    I-10712.8 ± 0.3bc14.4 ± 1.3b16.9 ± 0.5cd24.9 ± 2.1bcd
    172316.6 ± 0.6a17.7 ± 1.2a23.2 ± 1.7ab33.0 ± 1.6a
    164012.1 ± 0.9bc14.3 ± 0.7b19.1 ± 1.2bcd25.2 ± 2.9bcd
    下载: 导出CSV 
    | 显示表格

    表5显示:随干旱胁迫程度的增加,10个无性系的叶片MDA含量表现出先升高后下降的变化规律,在中度干旱时达到最高水平,变幅在3.40 ~ 4.85 mmol/kg之间,其中MDA含量最高的是无性系1716,达到4.85 mmol/kg;MDA含量最低的是无性系1733,为3.40 mmol/kg。在重度干旱时,MDA含量下降,此时无性系1641和1627的MDA含量最低,显著低于对照2025。

    表  5  土壤干旱对各无性系MDA含量的影响
    Table  5.  Effects of soil drought on MDA content of each clone
    无性系
    Clone
    MDA含量 MDA content/(mmol∙kg−1)
    正常供水
    Normal water
    supply
    轻度干旱
    Mild
    drought
    中度干旱
    Moderate
    drought
    重度干旱
    Severe
    drought
    16411.87 ± 0.26a2.36 ± 0.20b3.79 ± 0.14b1.11 ± 0.23e
    17332.31 ± 0.12a2.87 ± 0.22ab3.40 ± 0.37b1.65 ± 0.14bcde
    16272.46 ± 0.21a3.03 ± 0.36ab3.50 ± 0.41b1.28 ± 0.14de
    20252.27 ± 0.13a2.99 ± 0.27ab4.12 ± 0.15ab2.69 ± 0.23a
    17252.31 ± 0.26a3.47 ± 0.34a4.24 ± 0.27ab1.44 ± 0.15cde
    17162.22 ± 0.16a2.94 ± 0.22ab4.85 ± 0.24a1.74 ± 0.27bcde
    17222.21 ± 0.13a2.78 ± 0.35ab4.65 ± 0.19a2.18 ± 0.12ab
    I-1072.16 ± 0.22a3.04 ± 0.20ab3.75 ± 0.27b1.80 ± 0.13bcd
    17231.86 ± 0.23a2.54 ± 0.21b4.21 ± 0.21ab1.60 ± 0.35bcde
    16402.13 ± 0.30a2.73 ± 0.27ab3.76 ± 0.14b2.07 ± 0.16abc
    下载: 导出CSV 
    | 显示表格

    表6显示:在整个干旱胁迫过程中,各供试无性系的SOD活性表现出先升后降的变化规律。在干旱胁迫初期,植物体内会产生SOD来抵御干旱胁迫造成的伤害,所有无性系的SOD活性在中度干旱时最高,与正常处理相比,升高幅度较大的无性系是1627(28.8%)和1733(28.4%),升高幅度较小的是1725(12.8%)和1722(12.5%)。随干旱时间增加,保护酶活性下降,在重度干旱胁迫时降至最低,该处理下无性系1627和1733的SOD活性较高,无性系1716和1722的SOD活性较低,说明无性系1627的1733适应重度干旱环境的能力较强。

    表7可知:随干旱程度的加强,10个黑杨派无性系的POD活性先增大后减小,除无性系1716在轻度干旱POD活性达到峰值以外,其他无性系的POD活性均在中度干旱达到最高值,之后随着胁迫处理程度增加,在重度干旱时土壤水分严重匮乏,POD活性降低。中度干旱时,无性系1733和1641的POD活性升高幅度较大,增幅在265.0%以上;在重度干旱时,相比其他无性系,1733和1627的POD活性维持在较高水平,与对照2025和I-107差异显著。

    表  6  土壤干旱对各无性系SOD活性的影响
    Table  6.  Effects of soil drought on SOD activity of each clone
    无性系
    Clone
    SOD活性 SOD activity/(U∙g−1)
    正常供水
    Normal water supply
    轻度干旱
    Mild drought
    中度干旱
    Moderate drought
    重度干旱
    Severe drought
    1641642.5 ± 32.8abc728.5 ± 48.6ab783.1 ± 20.5bcd526.1 ± 25.5de
    1733619.4 ± 22.0bc687.8 ± 16.6b795.0 ± 11.5abc667.5 ± 25.2ab
    1627637.3 ± 17.9abc792.1 ± 11.4a821.1 ± 23.7ab700.7 ± 25.5a
    2025584.0 ± 18.7c678.1 ± 13.3b746.8 ± 8.1cd603.5 ± 22.0abcd
    1725658.0 ± 27.0ab736.3 ± 25.2ab742.2 ± 31.4cd547.4 ± 25.3cde
    1716684.4 ± 16.5ab746.8 ± 9.4ab795.4 ± 19.0abc456.7 ± 15.2e
    1722645.9 ± 17.7abc695.3 ± 12.7b726.5 ± 20.8d522.6 ± 39.0de
    I-107619.0 ± 19.7bc706.2 ± 12.9b781.1 ± 22.2bcd593.9 ± 14.3bcd
    1723703.0 ± 8.6a785.9 ± 17.7a855.3 ± 18.0a605.1 ± 58.1abcd
    1640647.4 ± 4.9abc682.0 ± 24.2b777.5 ± 14.4bcd629.8 ± 30.4abc
    下载: 导出CSV 
    | 显示表格
    表  7  土壤干旱对各无性系POD活性的影响
    Table  7.  Effects of soil drought on POD activity of each clone
    无性系
    Clone
    POD活性 POD activity/(U∙g−1)
    正常供水
    Normal water
    supply
    轻度干旱
    Mild
    drought
    中度干旱
    Moderate
    drought
    重度干旱
    Severe
    drought
    16412 808 ± 197ab6 108 ± 379b10 275 ± 1032ab4 633 ± 240bc
    17332 358 ± 140ab3 575 ± 388d9 625 ± 516abc5 075 ± 123ab
    16273 392 ± 508a7 692 ± 251a11 400 ± 353a5 433 ± 412a
    20252 125 ± 205b3 800 ± 486cd6 617 ± 262ef2 658 ± 183fg
    17252 283 ± 243ab3 258 ± 271d7 142 ± 226def3 075 ± 113ef
    17163 417 ± 726a8 092 ± 246a4 092 ± 435g2 183 ± 210g
    17222 325 ± 194ab4 983 ± 446bc8 058 ± 130cde3 567 ± 466de
    I-1072 733 ± 269ab5 792 ± 180b9 225 ± 1318bc4 192 ± 235cd
    17232 325 ± 166ab3 842 ± 718cd5 825 ± 175fg2 950 ± 181efg
    16402 550 ± 238ab3 917 ± 171cd8 608 ± 484bcd3 075 ± 101ef
    下载: 导出CSV 
    | 显示表格

    表8可以看出,各供试无性系叶片的游离脯氨酸含量随控水时间的延长而不断增加。10个无性系叶片的游离脯氨酸含量在中度干旱时明显上升,变幅在24.6 ~ 40.7 mg/g之间,该水平下游离脯氨酸含量最高的是无性系1733,达到40.7 mg/g;最低的是无性系1716,为24.6 mg/g,说明各无性系对干旱胁迫比较敏感。随着土壤含水量的不断降低,植物体内的游离脯氨酸含量持续升高,渗透调节能力逐渐增强。在重度干旱下,游离脯氨酸含量及升高幅度最大的均是无性系1627和1733,与对照2025呈显著性差异。

    表  8  土壤干旱对各无性系游离脯氨酸含量的影响
    Table  8.  Effects of soil drought on free proline content of each clone
    无性系
    Clone
    游离脯氨酸含量 Free proline content/(mg·g−1)
    正常供水
    Normal water
    supply
    轻度干旱
    Mild
    drought
    中度干旱
    Moderate
    drought
    重度干旱
    Severe
    drought
    164119.2 ± 0.6a24.7 ± 0.7ab32.0 ± 2.1abc40.6 ± 2.7cd
    173318.7 ± 1.6ab26.0 ± 2.3ab40.7 ± 3.4a52.5 ± 4.9a
    162715.0 ± 1.2cd28.9 ± 0.7a38.0 ± 5.4a52.1 ± 3.4a
    202520.0 ± 0.9a23.8 ± 0.8abc30.8 ± 2.7abc35.5 ± 2.7cde
    172518.1 ± 1.1abc22.9 ± 1.4bcd31.1 ± 2.7abc42.1 ± 4.1bc
    171613.4 ± 1.2d18.3 ± 1.2cd24.6 ± 1.3c31.1 ± 2.5de
    172214.2 ± 0.3d17.2 ± 0.8d24.9 ± 2.9c28.8 ± 1.7e
    I-10718.9 ± 1.2ab25.2 ± 2.6ab36.5 ± 3.8ab50.9 ± 2.7ab
    172315.5 ± 0.8bcd22.0 ± 1.5bcd25.7 ± 1.8c35.2 ± 3.1cde
    164015.1 ± 1.2cd25.2 ± 3.3ab28.1 ± 1.1bc39.1 ± 1.0cd
    下载: 导出CSV 
    | 显示表格

    对重度干旱胁迫下10个黑杨派无性系的各项指标进行相关性分析,根据表9可知:其苗高增量与地径增量、生物量增量和游离脯氨酸含量呈极显著正相关,与叶绿素含量、POD活性呈显著正相关;地径增量与生物量增量、POD活性和游离脯氨酸含量呈极显著正相关,与叶绿素含量呈显著正相关;生物量增量与POD活性、游离脯氨酸含量呈极显著正相关,与叶绿素含量呈显著正相关;叶绿素含量与游离脯氨酸含量呈极显著正相关,与POD活性呈显著正相关,与细胞膜透性呈显著负相关;细胞膜透性与游离脯氨酸含量呈极显著负相关,与SOD活性和POD活性呈显著负相关;SOD活性与游离脯氨酸含量呈显著正相关;POD活性与游离脯氨酸含量呈极显著正相关。

    表  9  干旱胁迫下无性系各指标间相关性分析
    Table  9.  Correlation analysis among indicators of clones under drought stress
    指标 IndexX1X2X3X4X5X6X7X8X9
    X11
    X20.880**1
    X30.793**0.906**1
    X40.695*0.755*0.757*1
    X5−0.615−0.627−0.585−0.651*1
    X6−0.617−0.541−0.547−0.4820.1161
    X70.5180.5860.4410.530−0.704*−0.0331
    X80.634*0.782**0.791**0.757*−0.752*−0.5370.5931
    X90.857**0.882**0.807**0.913**−0.789**−0.4460.709*0.788**1
    注:X1. 苗高增量;X2. 地径增量;X3. 生物量增量;X4. 叶绿素含量;X5. 细胞膜透性;X6. MDA含量;X7. SOD活性;X8. POD活性;X9. 游离脯氨酸含量。*表示在0.05水平上显著相关,**表示在0.01水平上极显著相关。Notes: X1, ramet height increment; X2, basal diameter increment; X3, biomass increment; X4,chlorophyll content; X5, membrane permeability; X6, MDA content; X7, SOD activity; X8, POD activity; X9, free proline content. * indicates significant correlation at the 0.05 level, ** indicates highly significant correlation at the 0.01 level.
    下载: 导出CSV 
    | 显示表格

    根据相关性分析可知:各测定指标具有一定的相关性,大部分指标间存在着显著的正负相关关系,说明各指标间存在相同的或者相反的变化关系,表中指标所反映的信息有一定的重叠性,直接利用这些指标会比较片面,因此需要用综合评价方法对其进行评价分析。

    对10个无性系在严重缺水条件下的生长及生理指标进行主成分分析,将多个相关指标转换为几个独立的综合指标,并对各个无性系进行综合评价。主成分分析结果如表10所示,第1、第2主成分的累积贡献率达83.962%,表明这2个主成分可以把原来9项指标83.962%的信息表达出来。由表10可知:第1主成分中地径增量、生物量增量、游离脯氨酸含量、苗高增量、POD活性、叶绿素含量的特征向量绝对值较大,且均为正值,说明第1主成分主要反映无性系的生长量、渗透调节物质和抗氧化酶信息;第2主成分中丙二醛含量、SOD活性、细胞膜透性的特征向量绝对值较大,其中除细胞膜透性为负值,其余均为正值,说明第2主成分主要反映膜脂过氧化、抗氧化酶信息。

    表  10  干旱胁迫下各指标的主成分特征向量、特征值及累计贡献率
    Table  10.  Principal component characteristic vector, characteristic value and cumulative contribution rate of each index under drought stress
    测定指标
    Measurement index
    第1主成分
    Principal
    component 1
    第2主成分
    Principal
    component 2
    苗高增量 Ramet height increment0.351−0.169
    地径增量 Basal diameter increment0.371−0.100
    生物量增量 Biomass increment0.354−0.182
    叶绿素 Chlorophyll0.349−0.017
    细胞膜透性 Membrane permeability−0.313−0.424
    丙二醛 MDA−0.2220.678
    超氧化物岐化酶 SOD0.2710.528
    过氧化物酶 POD0.3510.012
    游离脯氨酸 Free proline0.3840.097
    特征值 Characteristic value6.3351.221
    累计贡献率 Cumulative contribution rate/%70.39383.962
    下载: 导出CSV 
    | 显示表格

    根据主成分分析得到10个无性系的第1主成分值F1和第2主成分值F2,根据公式F = 0.703 93F1 + 0.135 69F2计算综合主成分值,并将其排序,对各供试无性系的抗旱能力进行综合评价比较。由表11可知:10个黑杨派无性系的抗旱能力由强到弱依次为1733、1627、I-107、1641、1640、1725、1723、2025、1716、1722,其中无性系1733和1627的抗旱性优于I-107。

    表  11  干旱胁迫下10个无性系的综合主成分值
    Table  11.  Intergrated principal component values of 10 clones under drought stress
    无性系
    Clone
    F1F2F排序
    Ranking
    16410.936−1.2230.4934
    17333.9040.3022.7891
    16273.5670.3062.5522
    2025−2.1882.135−1.2508
    1725−0.580−0.876−0.5276
    1716−2.545−1.497−1.9959
    1722−3.0920.202−2.14910
    I-1072.1500.0921.5263
    1723−1.218−0.596−0.9387
    1640−0.7231.155−0.3525
    注:F1F2代表第1主成分值和第2主成分值,F代表综合主成分值。Notes: F1 and F2 represent the 1st and 2nd principal component values and F represents the composite principal component value.
    下载: 导出CSV 
    | 显示表格

    外部环境和自我调控机制共同作用于植物的生长发育,两者相互促进,对植物的正常生命活动产生作用[12]。当植物受到干旱胁迫的影响时,植物的生长量和生物量分配发生变化,以适应干旱环境带来的伤害。在本试验中,不同程度的干旱胁迫对10个黑杨派无性系的生长产生抑制,并导致其叶绿素含量、细胞膜透性、抗氧化酶活性、游离脯氨酸含量等生理生化指标发生不同程度的变化,说明不同无性系对干旱环境的适应能力也不同。重度干旱胁迫下各无性系的苗高增量、地径增量和生物量增量均有所不同,其中无性系1733和1627的生物量增量较大,无性系2025和1722的生物量增量较小。

    干旱会使植物叶片受到损伤,影响植物正常进行光合作用。研究表明,植物在受到干旱胁迫时,叶绿素含量呈下降趋势[1314]。在本试验中,随着干旱胁迫时间的延长,各无性系的叶绿素含量在轻度干旱下较对照轻微增加,这可能是因为植物为保持光合作用的稳定和适应干旱环境,自我调节增加了体内叶绿素含量,也有可能是由于干旱导致了植株的叶片发育受到阻碍,造成叶片水分流失,从而叶绿素含量升高;而在干旱胁迫后期土壤水分降低,叶绿素含量下降,表明干旱胁迫对10个黑杨派无性系叶片的叶绿素合成具有明显的抑制作用,同时原有的叶绿素会加速分解,导致光合作用能力降低,进而影响其生长量和生物量积累。这与之前对小叶杨(P. simonii)无性系[15]、白杨派(Sect. Leuce)无性系[16]的研究中得出的结果相同。

    干旱同样会危害植物的细胞膜系统,发生膜脂过氧化。植物细胞膜在正常供水条件下选择透过性比较稳定,当土壤水分匮乏,细胞膜受到损伤,透性增大。持续干旱胁迫下,10个黑杨派无性系叶片的细胞膜透性呈增加的变化趋势,这与邱兴等[17]对4个1年生杨树无性系的研究结果基本一致,说明干旱胁迫对各无性系的植株幼苗细胞膜系统均造成了破坏。但不同无性系的升高幅度不一致,表明干旱条件下植物细胞膜受到的损伤程度不同。重度干旱时,无性系1716叶片的细胞膜透性增加幅度最大,说明其受到的损伤最为严重;无性系1733叶片的细胞膜相对透性增加幅度最小,说明其受到的伤害最小,对干旱环境的更有耐受性。膜脂过氧化的最终产物丙二醛,会导致生物膜的结构和功能发生改变,对植物产生毒害作用,其含量的高低可以反映膜脂过氧化作用的强弱。前人[18]对美洲黑杨的研究结果表明:不同美洲黑杨在遇到干旱胁迫后,其MDA含量存在着较大的差异。在本试验中,10个无性系在受到干旱胁迫时,MDA含量大幅增加,这说明土壤水分亏缺导致细胞膜脂过氧化作用逐渐加强,细胞膜受到伤害,胞内电解质外溢。在干旱胁迫后期,MDA含量达到最高值后不再增加,并随着水分匮乏严重,其含量开始降低,这可能是细胞代谢紊乱所致[19]。从MDA的含量来看,无性系1716和1722受到干旱胁迫的膜伤害更早出现,而无性系1733和1627的细胞膜相对受害程度较轻,其抗旱能力较强。这与鲁俊倩等[20]对‘84K’杨(P. alba × P. glandulosa ‘84K’)的研究结果相同。

    干旱能够促进植物增强抗氧化酶的活性来缓解氧化损伤[2122],提高保护能力。SOD和POD是植物体内重要的保护酶,逆境条件下,SOD和POD活性增强可以提高其抗氧化能力,降低胁迫对膜系统造成的损伤。相关研究发现,在不同程度的干旱胁迫下,杨树苗叶片的SOD和POD活性呈先升高后降低的趋势[23]。在本试验中,干旱胁迫前期SOD、POD活性较对照明显上升,说明一定程度的干旱胁迫会加快植物体内抗氧化酶的积累以适应干旱环境;随着干旱胁迫时间增加和干旱胁迫程度加重,这2种保护酶的活性均出现下降,说明黑杨派无性系对干旱胁迫的忍耐能力有一定的限度,当干旱程度超出自身的承受范围时,抗氧化酶活性降低,对活性氧和自由基的清除能力减弱,从而使膜系统受到破坏,对植物造成伤害。这与对蔷薇(Rosa multiflora[24]、柽柳(Tamarix amarisk[25]及小青杨(P. pseudo-simonii[26]等的研究结论相似。在重度干旱时,无性系1733和1627的SOD和POD活性相对较高,均排在前2位,可以更好地抵抗干旱胁迫,减少活性氧的积累,增强抗旱能力。

    干旱还会引起植物体内渗透调节物质的含量变化,植物在缺水状态下能够通过积累大量有机物质和无机离子,以调节渗透压[27],提高抗旱能力,避免其遭受干旱胁迫引起的损伤[2829]。在本试验中,10个黑杨派无性系叶片中游离游离脯氨酸含量均随干旱胁迫程度的加重而不断增加,并且高于对照,说明游离脯氨酸的积累与黑杨派无性系抵抗干旱胁迫的能力密切相关,这与李敏等[30]对3种杨树的研究结果一致。游离脯氨酸作为一种重要的渗透调节物质,可以在一定程度上保持细胞渗透压平衡,10个无性系的游离脯氨酸含量升高幅度各不一致,表明其在干旱环境下维持渗透压稳定的能力不同。在重度干旱时,游离脯氨酸含量增幅最大的无性系是1627和1733,说明这2个无性系在干旱条件下细胞维持渗透压能力较强,对干旱环境的适应性强。

    植物的抗旱能力受多种因素的影响,且不同植物面对干旱胁迫的响应不同,为应对干旱胁迫的伤害,黑杨派无性系启动自身的调节机制,体内抗氧化酶活性和渗透调节物质含量产生变化。本试验结果表明:在重度干旱胁迫下,10个无性系的各项指标与抗旱性存在不同相关性,其中细胞膜透性和MDA含量与抗旱性呈负相关,其余指标与抗旱性呈正相关。运用主成分分析法对各无性系进行综合评价,可以较为全面地评价干旱胁迫对无性系的影响,本研究初步认为无性系1733和1627具有较强的抗旱性,这2个无性系均属于欧美杨,另外3个欧美杨无性系I-107、1641和1640均排在前5位,5个美洲黑杨无性系1725、1723、2025、1716和1722均排在后5位,由此推测欧美杨的抗旱能力强于美洲黑杨。本试验采用盆栽模拟干旱试验,对10个黑杨派无性系的抗旱性常用指标进行测试和分析,并对其抗旱能力强弱进行综合评价,筛选出2个抗旱能力较强的欧美杨无性系,该试验结果为干旱立地杨树新品种选育和推广提供了重要参考依据,对林业生产具有重要指导意义。后期将对这些无性系进行田间抗旱能力测定,进一步验证其抗旱能力。

  • 图  1   帽儿山弃耕地落叶松人工林CO2、CH4、N2O排放通量的季节变化

    Figure  1.   Seasonal variations of CO2, CH4 and N2O fluxes from planted larch forest and farmland in Maoershan Mountains in northeastern China

    表  1   温带帽儿山弃耕地不同间伐处理落叶松人工林样地状况

    Table  1   Conditions of planted larch forest under different thinning intensity treatments in Maoershen Mountains in northeastern China

    样地
    Sample
    site
    密度/(株·hm-2)
    Stand density/
    (tree·ha-1)
    胸高断面积/(m2·hm-2)
    Basal area at breast
    height/(m2·ha-1)
    平均胸径
    Average D
    BH/cm
    胸径范围
    Range of
    DBH/cm
    林下灌木组成
    Shrub composition
    LW 2 502 52.50 16.35 3.5~25.2 卫矛Eronymus sp.
    LQ 1 867 48.54 18.20 5.6~28.3 暴马丁香Syringa reticulate
    LZ 1 283 40.77 20.12 6.2~32.8 五味子Schisandra chinesis
    注:LW.未间伐样地;LQ.轻度间伐样地;LZ.重度间伐样地。下同。Notes: LW, no thinning site; LQ, mild thinning site; LZ, severe thinning site. The same below.
    下载: 导出CSV

    表  2   温带帽儿山弃耕地不同间伐处理落叶松人工林样地土壤理化性质

    Table  2   Soil physicochemical property of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    土壤养分
    Soil nutrient
    土壤层
    Soil layer/cm
    样地Sample site
    NT LW LQ LZ
    硝态氮 Ammonium nitrogen/(mg·L-1) 0~10 0.63±0.06a 1.11±0.37a 1.02±0.58a 2.20±0.80a
    10~20 0.69±0.12a 0.62±0.52a 0.62±0.35a 1.13±0.37a
    20~40 0.70±0.28a 0.35±0.14a 0.40±0.21a 0.60±0.21a
    铵态氮 Nitrate nitrogen/(mg·L-1) 0~10 2.76±1.27a 3.01±0.96ab 5.01±1.59b 2.15±0.22a
    10~20 3.20±1.11a 2.46±0.50ab 4.52±1.29b 2.03±0.09a
    20~40 2.36±0.55a 3.84±1.00a 3.10±0.70a 2.93±1.17a
    全氮 Total nitrogen/(g·kg-1) 0~10 6.60±0.43b 5.27±1.27a 4.99±0.36ab 4.79±0.33a
    10~20 5.45±1.31a 3.61±1.19a 3.92±1.14a 3.92±0.34a
    20~40 3.28±0.70a 2.32±0.47a 2.79±0.48a 2.55±0.58a
    有机碳 Organic carbon/(g·kg-1) 0~10 61.21±5.67b 53.49±12.10ab 44.76±4.40a 44.17±5.62a
    10~20 47.22±15.81a 31.51±11.34a 31.79±8.65a 31.07±2.48a
    20~40 26.57±6.60b 19.46±5.08a 22.02±4.79a 18.56±5.85a
    pH 0~10 5.70±0.14a 5.88±0.53a 5.59±0.44a 5.71±0.16a
    10~20 5.82±0.17a 5.22±0.69a 5.66±0.47a 5.67±0.08a
    20~40 5.87±0.10a 5.78±0.03a 5.82±0.46a 5.60±0.51a
    含水率 Soil moisture/% 0~10 33.37±1.32b 34.69±1.07b 36.63±0.76c 25.71±0.39a
    10~20 32.76±0.04b 36.08±0.35c 35.54±0.45c 28.08±0.20a
    20~40 33.58±0.32b 36.23±0.59c 36.63±0.39c 29.11±0.43a
    温度 Temperature/℃ 0~10 5.32±0.11b 3.40±0.14a 3.59±0.30a 3.32±0.10a
    10~20 5.48±0.04b 4.24±0.03a 4.14±0.19a 4.13±0.20a
    20~40 5.59±0.11b 4.39±0.38a 4.50±0.27a 4.42±0.14a
    注:NT.农田样地。下同。Notes: NT, farmland site. The same below.
    下载: 导出CSV

    表  3   温带帽儿山弃耕地不同间伐处理落叶松人工林土壤温室气体排放通量

    Table  3   Greenhouse gas fluxes of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    mg·m-2·h-1
    气体
    Air
    样地
    Sample site
    温室气体平均通量Average flux of greenhouse gas
    春季 Spring 夏季 Summer 秋季 Autumn 冬季 Winter 年均通量 Annual flux
    CO2 NT 234.81±41.20Cb 361.11±63.89Da 122.06±19.09Ba 15.92±2.61Aa 183.48±29.98ab
    LW 211.14±33.24Bb 400.41±57.30Ca 169.96±19.02Bb 37.76±12.30Ab 204.82±19.61b
    LQ 176.62±23.66Cab 334.81±33.44Da 116.15±33.34Ba 22.79±4.53Aa 162.59±6.23a
    LZ 125.88±13.27Ba 356.71±65.61Ca 99.15±10.67Ba 16.02±4.15Aa 149.44±21.39a
    CH4 NT -0.044±0.028ABa -0.058±0.016Aa -0.026±0.005BCb 0.002±0.003Ca -0.031±0.009a
    LW -0.032±0.024Aa -0.069±0.018Aa -0.066±0.016Aa 0.042±0.053Ba -0.031±0.014a
    LQ -0.033±0.016Aa -0.066±0.015Aa -0.053±0.007Aa 0.045±0.065Ba -0.027±0.010a
    LZ -0.047±0.003ABa -0.053±0.007Aa -0.031±0.008Bb 0.001±0.019Ca -0.033±0.005a
    N2O NT 0.113±0.099Ba 0.019±0.008ABa 0.007±0.005Aab 0.010±0.011Ab 0.037±0.030a
    LW 0.091±0.031Ba 0.016±0.007Aa -0.003±0.004Aa -0.005±0.043Aa 0.025±0.008a
    LQ 0.060±0.020Ca 0.029±0.004Ba 0.008±0.005Aab 0.005±0.001Aab 0.026±0.005a
    LZ 0.080±0.026Ba 0.017±0.010Aa 0.010±0.008Ab 0.007±0.005Aab 0.028±0.006a
    注:表中给出的数据为平均值以及标准差,小写字母表示同一季节不同处理差异显著(P<0.05),大写字母表示同一处理不同季节差异显著(P<0.05)。Notes: data in the table are average and standard errors; different lowercase letters indicate there is a significant difference among different treatments in the same season (P<0.05); different capital letters indicate there is a significant difference among different seasons for the same treatment(P<0.05).
    下载: 导出CSV

    表  4   间伐前后弃耕地落叶松人工林土壤温室气体排放通量与温度、湿度的相关性(温度为全年、湿度为生长季)

    Table  4   Correlation between greenhouse gas fluxes and soil temperature and moisture of planted larch forest under different thinning intensity treatments

    气体
    Air
    样地
    Sample
    site
    气温
    Air
    temperature
    土壤温度 Soil temperature 土壤含水率 Soil moisture
    5 cm 10 cm 20 cm 30 cm 40 cm 5 cm 10 cm 20 cm 30 cm 40 cm
    CO2 NT 0.91** 0.92** 0.91** 0.88** 0.85** 0.83** 0.55** 0.59** 0.16 0.12 0.06
    LW 0.81** 0.86** 0.86** 0.87** 0.85** 0.83** -0.16 0.13 0.34 0.30 0.21
    LQ 0.75** 0.84** 0.84** 0.85** 0.83** 0.81** 0.36 0.43 0.32 0.14 0.16
    LZ 0.69** 0.82** 0.83** 0.85** 0.86** 0.85** 0.17 0.08 -0.17 -0.25 -0.29
    CH4 NT -0.71** -0.68** -0.66** -0.63** -0.62** -0.59** -0.36 -0.38 0.02 0.04 0.23
    LW -0.54** -0.63** -0.63** -0.61** -0.62** -0.62** 0.14 0.29 0.26 0.32 0.37
    LQ -0.53** -0.56** -0.55** -0.52** -0.50** -0.47** 0.32 0.45* 0.22 0.20 0.20
    LZ -0.62** -0.58** -0.57** -0.55** -0.51** -0.49** -0.46* -0.50* -0.43 -0.31 -0.24
    N2O NT 0.12 -0.08 -0.09 -0.13 -0.15 -0.17 0.40 0.40 0.56** 0.51* 0.21
    LW 0.21 0.02 0.04 -0.07 -0.10 -0.13 -0.08 0.26 0.38 0.32 0.30
    LQ 0.29 0.12 0.11 0.05 0.01 -0.03 0.19 0.14 0.14 0.06 0.02
    LZ 0.19 -0.04 -0.03 -0.10 -0.13 -0.15 0.06 0.01 -0.13 -0.12 -0.16
    注:**表示在0.01水平(双侧)上相关;*表示在0.05水平(双侧)上相关。Notes: ** means extremely significant correlation at P<0.01 level(double side); * means significant correlation at P<0.05 level(double side).
    下载: 导出CSV

    表  5   温带帽儿山弃耕地不同间伐处理落叶松人工林土壤温室气体排放总量及GWP值

    Table  5   Fluxes and GWP of greenhouse gas of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    样地
    Sample
    site
    CO2 CH4 N2O GWP总和/
    (t·hm-2·a-1)
    Total GWP/
    (t·ha-1·yr-1)
    排放总量/
    (t·hm-2·a-1)
    Total flux/
    (t·ha-1·yr-1)
    GWPCO2/
    (t·hm-2·a-1)
    GWPCO2/
    (t·ha-1·yr-1)
    排放总量/
    (kg·hm-2·a-1)
    Total flux/
    (kg·ha-1·yr-1)
    GWPCH4/
    (t·hm-2·a-1)
    GWPCH4/
    (t·ha-1·yr-1)
    排放总量/
    (kg·hm-2·a-1)
    Total flux/
    (kg·ha-1·yr-1)
    GWPN2O/
    (t·hm-2·a-1)
    GWPN2O/
    (t·ha-1·yr-1)
    NT 16.17±2.67ab 16.17±2.67ab -2.75±0.81a -0.07±0.02a 3.29±2.71a 0.98±0.81a 17.08±3.33ab
    LW 18.07±1.73b 18.07±1.73b -2.78±1.21a -0.07±0.02a 2.16±0.68a 0.64±0.20a 18.64±1.73b
    LQ 14.41±0.52ab 14.41±0.52ab -2.34±0.89a -0.06±0.02a 2.26±0.46a 0.67±0.14a 15.02±0.61ab
    LZ 13.21±1.90a 13.21±1.90a -2.86±0.38a -0.07±0.01a 2.51±0.55a 0.75±0.60a 13.89±2.06a
    注:小写字母表示不同处理差异显著(P<0.05)。GWPCO2、GWPCH4、GWPN2O分别为CO2、CH4和N2O的增温潜势值(即CO2、CH4和N2O排放总量的1、25和298倍)。Notes: different lowercase letters indicate there is a significant difference among different treatments (P<0.05). GWPCO2, GWPCH4 and GWPN2O mean global warming potential (GWP) of CO2, CH4 and N2O, respectively (1, 25 and 298 times of CO2, CH4 and N2O total fluxes).
    下载: 导出CSV
  • [1]

    IPCC. Climate change 2013: the physical science basis[M]. Cambridge: Cambridge University Press, 2013.

    [2] 刘慧峰, 伍星, 李雅, 等.土地利用变化对土壤温室气体排放通量影响研究进展[J].生态学杂志, 2014, 33(7): 1960-1968. http://d.old.wanfangdata.com.cn/Periodical/stxzz201407036

    LIU H F, WU X, LI Y, et al. Effects of land use change on greenhouse gas fluxes from soils: a review[J]. Chinese Journal of Ecology, 2014, 33(7): 1960-1968. http://d.old.wanfangdata.com.cn/Periodical/stxzz201407036

    [3]

    ZONA D, JANSSENS I A, AUBINET M, et al. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land[J]. Agricultural and Forest Meteorology, 2013, 169: 100-110. doi: 10.1016/j.agrformet.2012.10.008

    [4] 牟长城, 程伟, 孙晓新, 等.小兴安岭落叶松沼泽林土壤CO2、N2O和CH4的排放规律[J].林业科学, 2010, 46(7): 7-15. http://d.old.wanfangdata.com.cn/Periodical/lykx201007002

    MU C C, CHENG W, SUN X X, et al. Seasonal variation of emission fluxes of CO2, N2O and CH4 from Larix gemlinii swamps soils in Xiaoxing'an Mountains of China[J]. Scientia Silvae Sinicae, 2010, 46(7): 7-15. http://d.old.wanfangdata.com.cn/Periodical/lykx201007002

    [5]

    ZHU X X, LUO C Y, WANG S P, et al. Effects of warming, grazing / cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2015, 124: 506-514. http://cn.bing.com/academic/profile?id=72a5c5fe3c58191225f0125eb51f10c2&encoded=0&v=paper_preview&mkt=zh-cn

    [6] 张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4): 966-975. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201104041

    ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201104041

    [7]

    DAVIDSON E A, VERCHOT L V, CATTANIO H J, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biogeochemistry, 2000, 48(1): 53-69. http://cn.bing.com/academic/profile?id=51307e2203c15a63336b476cb9dd97f6&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    GUO J F, YANG Y S, CHEN G S, et al. Effects of clear-cutting and slash burning on soil respiration in Chinese fir and evergreen broadleaved forests in mid-subtropical China[J]. Plant & Soil, 2010, 333(1): 249-261. http://cn.bing.com/academic/profile?id=c875892e5a30a9aecf8cf2a7f2f50ad4&encoded=0&v=paper_preview&mkt=zh-cn

    [9]

    PEICHL M, ARAIN A M, MOORE T R, et al. Carbon and greenhouse gas balances in an age sequence of temperate pine plantations[J]. Biogeosciences, 2014, 11(19): 5399-5410. doi: 10.5194/bg-11-5399-2014

    [10]

    PAUL K I, POLGLASE J G, NYAKUENGAMA J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168(1): 241-257. doi: 10.1016-S0378-1127(01)00740-X/

    [11] 赵娜, 孟平, 张劲松, 等.华北低丘山地不同土地利用条件下的土壤呼吸比较[J].林业科学, 2014, 50(2): 1-7. doi: 10.3969/j.issn.1672-8246.2014.02.001

    ZHAO N, MENG P, ZHANG J S, et al. Comparison of soil respiration under various land uses in hilly area of Northern China[J]. Scientia Silvae Sinicae, 2014, 50(2): 1-7. doi: 10.3969/j.issn.1672-8246.2014.02.001

    [12] 杨刚, 何寻阳, 王克林, 等.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J].土壤通报, 2008, 39(1): 189-191. doi: 10.3321/j.issn:0564-3945.2008.01.036

    YANG G, HE X Y, WANG K L, et al. Effects of vegetation types on soil micro-biomass carbon, nitrogen and soil respiration[J]. Chinese Journal of Soil Science, 2008, 39(1): 189-191. doi: 10.3321/j.issn:0564-3945.2008.01.036

    [13]

    MERINO A, PEREZ-BATALLON P, MACIAS F. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe[J]. Soil Biology & Biochmistry, 2004, 36(6): 917-925. http://cn.bing.com/academic/profile?id=76e42f538dcfceffc3cee8136c62d608&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    MONTI A, BARBANTI L, ZATTA A, et al. The contribution of switchgrass in reducing GHG emissions[J]. Global Change Biology Bioenergy, 2012, 4(4): 420-434. doi: 10.1111/j.1757-1707.2011.01142.x

    [15]

    YAMULKI S, ANDERSON R, PEACE A, et al. Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration[J]. Biogeosciences, 2013, 10(2): 1051-1065.

    [16]

    WU X, BRUGGEMANN N, GASCHE R, et al. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany[J]. Environmental Pollution, 2011, 159(10): 2467-2475. doi: 10.1016/j.envpol.2011.06.025

    [17] 牟长城, 吴云霞, 李婉姝, 等.采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响[J].应用生态学报, 2010, 21(2): 287-293. http://d.old.wanfangdata.com.cn/Periodical/yystxb201002004

    MU C C, WU Y X, LI W S, et al. Effects of forest cutting on greenhouse gas emissions from Larix gemlinii-sphagnum swamps in Lesser Xing'an Mountains of Heilongjiang, China[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 287-293. http://d.old.wanfangdata.com.cn/Periodical/yystxb201002004

    [18]

    LAPORTE M F, DUCHESNE L C, MORRISON I K. Effect of clearcutting, selection cutting, shelterwood cutting and microsites on soil surface CO2 efflux in a tolerant hardwood ecosystem of northern Ontario[J]. Forest Ecology & Management, 2003, 174(1): 565-575. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d1c9a80badaa47b2bb2143285a98d50

    [19] 左强, 何怀江, 张春雨, 等.采伐对蛟河阔叶红松混交林土壤呼吸的影响[J].北京林业大学学报, 2016, 38(4): 71-76. doi: 10.13332/j.1000-1522.20160055

    ZUO Q, HE H J, ZHANG C Y, et al.Effects of cutting on soil respiration in a mixed broadleaf-Korean pine forest in western foothill of Changbai Mountain, northeast China[J]. Journal of Beijing Forest University, 2016, 38(4): 71-76. doi: 10.13332/j.1000-1522.20160055

    [20]

    CONCILIO A, MA S Y, LI Q L, et al. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests[J]. Canadian Journal of Forest Research, 2005, 35(7): 1581-1591. doi: 10.1139/x05-091

    [21] 唐晓鹿, 范少辉, 漆良华, 等.采伐对幕布山区毛竹林土壤呼吸的影响[J].林业科学研究, 2013, 26(1): 52-57. doi: 10.3969/j.issn.1001-1498.2013.01.009

    TANG X L, FAN S H, QI L H, et al. Effect of cutting on soil respiration in Phyllostachy edulis Forest, Mubushan, China[J]. Forest Research, 2013, 26(1): 52-57. doi: 10.3969/j.issn.1001-1498.2013.01.009

    [22]

    ZERVA A, MENCUCCINI M. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation[J]. Soil Biology & Biochemistry, 2005, 37(11): 2025-2036. https://www.sciencedirect.com/science/article/abs/pii/S0038071705001318

    [23]

    LAVOIE M, KELLMAN L, RISK D. The effects of clear-cutting on soil CO2, CH4 and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada[J]. Forest Ecology & Management, 2013, 304: 355-369. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74fe19eb4fbc64f84fad38a0fe2068f8

    [24]

    YASHIRO Y, KADIR W R, OKUDA T, et al.The effects of logging on soil greenhouse gas(CO2, CH4, N2O)flux in a tropical rain forest, Peninsular Malaysia[J]. Agricultural & Forest Meteorology, 2008, 148(5): 799-806. http://cn.bing.com/academic/profile?id=827bc202ad9cec5413607aa655213331&encoded=0&v=paper_preview&mkt=zh-cn

    [25]

    TAKAKAI F, DESYATKIN A R, LOPEAZ C M L, et al. Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia[J]. Soil Science and Plant Nutrition, 2005, 54(6): 938-949. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1747-0765.2008.00309.x

    [26] 刘博杰, 张路, 逯非, 等.中国退耕还林工程温室气体排放与净固碳量[J].应用生态学报, 2016, 27(6): 1693-1707. http://d.old.wanfangdata.com.cn/Periodical/yystxb201606001

    LIU B J, ZHANG L, LU F, et al.Greenhouse gas emissions and net carbon sequestration of "Grain for Green" Program in China[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1693-1707. http://d.old.wanfangdata.com.cn/Periodical/yystxb201606001

    [27]

    SONG X Z, PENG C H, ZHOU G M, et al. Chinese grain for green program led to highly increased soil organic carbon levels: a meta-analysis[J]. Scientific Reports, 2013, 43(3): 1-7. http://cn.bing.com/academic/profile?id=51226711d8c14027a5ff3b7796571ebf&encoded=0&v=paper_preview&mkt=zh-cn

    [28] 侯扶江, 肖金玉, 南志标.黄土高原退耕地的生态恢复[J].应用生态学报, 2002, 13(8): 923-929. doi: 10.3321/j.issn:1001-9332.2002.08.002

    HOU F J, XIAO J Y, NAN Z B. Eco-restoration of abandoned farmland in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 923-929. doi: 10.3321/j.issn:1001-9332.2002.08.002

    [29] 彭文英, 张科利, 陈瑶, 等.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报, 2005, 20(2): 272-278. doi: 10.3321/j.issn:1000-3037.2005.02.016

    PENG W Y, ZHANG K L, CHEN Y, et al. Research on soil quality change after returning farmland to forest on the loess sloping croplands[J]. Journal of Natural Resources, 2005, 20(2): 272-278. doi: 10.3321/j.issn:1000-3037.2005.02.016

    [30] 刘实, 王传宽, 许飞. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J].生态学报, 2010, 30(15): 4075-4084. http://d.old.wanfangdata.com.cn/Periodical/stxb201015014

    LIU S, WANG C K, XU F.Soil effluxes of carbon dioxide, methane and nitrous oxide during non-growing season for four temperate forests in northeastern China[J]. Acta Ecologica Sinica, 2010, 30(15): 4075-4084. http://d.old.wanfangdata.com.cn/Periodical/stxb201015014

    [31]

    DOU X L, ZHOU W, ZHANG Q F, et al. Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China[J]. Atmospheric Environment, 2016, 126: 98-106. doi: 10.1016/j.atmosenv.2015.11.054

    [32] 孟春, 王立海, 沈微.择伐对小兴安岭针阔叶混交林土壤呼吸的影响[J].应用生态学报, 2008, 19(4): 729-734. http://d.old.wanfangdata.com.cn/Periodical/yystxb200804006

    MENG C, WANG L H, SHEN W. Effects of selective cutting on soil respiration in conifer/broad-leaved mixed forests in Xiaoxing'an Ling[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 729-734. http://d.old.wanfangdata.com.cn/Periodical/yystxb200804006

    [33]

    EWEL K C, CROPPER W P, GHOLZ H L, et al. Soil CO2 evolution in Florida slash pine plantations (Ⅰ): changes through time[J]. Canadian Journal of Forest Research, 1987, 17(4): 325-329. doi: 10.1139/x87-054

    [34] 杨玉盛, 陈光水, 王小国.皆伐对杉木人工林土壤呼吸的影响[J].土壤学报, 2005, 42(4): 548-590. http://d.old.wanfangdata.com.cn/Periodical/trxb200504008

    YANG Y S, CHEN G S, WANG X G. Effect of clear-cutting on soil respiration of Chinese fir plantation[J]. Acta Peologica Sinica, 2005, 42(4): 548-590. http://d.old.wanfangdata.com.cn/Periodical/trxb200504008

    [35]

    LARIONOVA A A, YERMLAYEV A M, BLAGODATSKY S A, et al. Soil respiration and carbon balance of gray forest soils as affected by land use[J]. Biology and Fertility of Soils, 1998, 27(3): 251-257. doi: 10.1007/s003740050429

    [36]

    SMITH K A, DOBBIE K E, BALL B C, et al. Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink[J]. Global Change Biology, 2000, 6(7): 791-803. doi: 10.1046/j.1365-2486.2000.00356.x

    [37] 孙海龙, 张彦东.采伐干扰对东北温带次生林土壤CH4通量的影响[J].应用生态学报, 2013, 24(10): 2737-2745. http://d.old.wanfangdata.com.cn/Periodical/yystxb201310005

    SUN H L, ZHANG Y D.Effects of harvest disturbance on soil CH4 flux in a secondary hardwood forest in Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2737-2745. http://d.old.wanfangdata.com.cn/Periodical/yystxb201310005

    [38]

    MASTEPANOV M, SIGSGAARD C, DLUGOKENCKY E J, et al. Large tundra methane burst during onset of freezing[J]. Nature, 2008, 456: 30-628. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223382846/

    [39] 宋长春, 王毅勇, 王跃思, 等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J].环境科学, 2005, 26(7): 7-12. http://d.old.wanfangdata.com.cn/Periodical/hjkx200504002

    SONG C C, WANG Y Y, WANG Y S, et al. Dynamics of CO2, CH4 and N2O emission fluxes from mires during freezing and thawing season[J]. Environmental Science, 2005, 26 (7):7-12. http://d.old.wanfangdata.com.cn/Periodical/hjkx200504002

    [40]

    PRIEME A, CHRISTENSEN S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils[J]. Soil Biology & Biochemistry, 2001, 33(15): 2083-2091. http://cn.bing.com/academic/profile?id=e39a88dd588447a783818d951f3d22c5&encoded=0&v=paper_preview&mkt=zh-cn

    [41] 柯韵, 杨红薇, 王小国, 等.紫色土坡耕地退耕还林对土壤N2O排放的影响[J].农业环境科学学报, 2015, 34(7): 1398-1406. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201507028

    KE Y, YANG H W, WANG X G, et al. Effect of returning cropland to forestland on N2O emissions from sloping purple soil[J]. Journal of Agro-Environment Science, 2005, 34 (7): 1398-1406. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201507028

    [42]

    LIU H, ZHAO P, LU P, et al. Greenhouse gas fluxes from soils of different land-use types in hilly area of South China[J]. Agriculture Ecosystems & Environment, 2008, 124(1): 125-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a8bcfbc769bcf67e160ae2f6c63d174d

    [43]

    TEEPE R, BRUMME R, BEESE F. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land[J]. Soil Biology & Biochemistry, 2000, 32(11): 1807-1810. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214345622/

    [44]

    HU Y G, CHANG X F, LIN X W, et al. Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan plateau[J]. Soil Biology & Biochemistry, 2010, 42(6): 944-952. https://www.sciencedirect.com/science/article/abs/pii/S0038071710000647

    [45]

    CLEMENT J C, DOWRICK D, COSANDEY A C, et al. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient[J]. Biogeochemistry, 2004, 67(1): 113-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c32dfa97ca6038989bdf82080f7a53d

    [46]

    GROFFMAN P M, HAPDY J P, DRISCOLL C T, et al. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest[J]. Global Change Biology, 2006, 12(9): 1748-1760. doi: 10.1111/j.1365-2486.2006.01194.x

    [47] 陈哲, 韩瑞云, 杨世琦, 等.东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究[J].农业环境科学学报, 2016, 35(2): 387-395. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201602025

    CHEN Z, HAN R Y, YANG S Q, et al. Fluxes of CO2, CH4 and N2O from seasonal freeze-thaw arable soils in Northeast China[J]. Journal of Agro-Environment Science, 2016, 35(2): 387-395. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201602025

    [48] 陈哲, 杨世琦, 张晴雯, 等.冻融对土壤氮素损失及有效性的影响[J].生态学报, 2016, 36(4): 1083-1094. http://d.old.wanfangdata.com.cn/Periodical/stxb201604021

    CHEN Z, YANG S Q, ZHANG Q W, et al. Effect of freeze-thaw cycles on soil nitrogen loss and availability[J]. Acta Ecologica Sinica, 2016, 36 (4): 1083-1094. http://d.old.wanfangdata.com.cn/Periodical/stxb201604021

    [49]

    PEICHL M, ARAIN M A, ULLAH S, et al. Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests[J]. Global Change Biology, 2010, 16(8): 2198-2212. https://www.ingentaconnect.com/content/bsc/gcb/2010/00000016/00000008/art00005

    [50] 谢军飞, 李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象, 2002, 23(4): 387-391. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx200204013

    XIE J F, LI Y E. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology, 2002, 23 (4): 387-391. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx200204013

    [51]

    VERCHOT L V, DAVIDSON E A, CATTANIO J H, et al. Land use change and biogeochemical controls of methane fluxes in sols of eastern Amazonia[J]. Ecosystems, 2000, 3(1): 41-56. doi: 10.1007/s100210000009

    [52] 周明华.紫色土坡耕地氮素平衡的模拟研究[D].北京: 中国科学院研究生院, 2010. http://www.irgrid.ac.cn/handle/1471x/769565

    ZHOU M H. Simulation of nitrogen balance in hillslope cropland of purple soil[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010. http://www.irgrid.ac.cn/handle/1471x/769565

    [53] 孙海龙, 张彦东, 吴世义.东北温带次生林和落叶松人工林土壤CH4吸收和N2O排放通量[J].生态学报, 2013, 33(17): 5320-5328. http://d.old.wanfangdata.com.cn/Periodical/stxb201317021

    SUN H L, ZHANG Y D, WU S Y. Methane and nitrous oxide fluxes in temperate secondary forest and larch plantation in Northeastern China[J]. Acta Ecologica Sinica, 2013, 33 (17): 5320-5328. http://d.old.wanfangdata.com.cn/Periodical/stxb201317021

    [54] 李锡鹏.川中丘陵区典型农田和森林土壤温室气体排放特征及影响因素[D]成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014257756.htm

    LI X P. The characteristics and influencing factors of soil greenhouse gases emissions from typical cropland and forest in hilly areas of the central Sichuan Basin[D].Chengdu: Southwest Jiaotong University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014257756.htm

  • 期刊类型引用(12)

    1. 包崇寅,孙永玉,李敏敏,邢洪铭,戚建华. 不同生境濒危植物龙棕种群结构及其动态特征. 西北植物学报. 2024(03): 479-490 . 百度学术
    2. 赵鑫,陈虹,赵善超,陈兵权,郭来珍,周昊亮. 新疆天山云杉种子雨时空动态分布及种子萌发特性. 浙江农林大学学报. 2024(03): 542-548 . 百度学术
    3. 靳旭红,于聪,张庭耀,吕松瞳,刘扬,陈乐,龙生,穆怀志. 基于种子活力和苗期生长的枫桦半同胞家系初选. 植物研究. 2024(05): 763-773 . 百度学术
    4. 刘志宇,张忠辉,杨凯麟,张军,姜润华,吴则甫,王琦,李文华,夏富才. 不同经营方式的云冷杉针阔混交林土壤真菌群落结构1). 东北林业大学学报. 2023(03): 124-129 . 百度学术
    5. 强亚琪,范春雨,张春雨. 长白山暗针叶林群落物种多样性维持机制. 生态学报. 2023(05): 1884-1891 . 百度学术
    6. 黄梓良,徐子恒,孙操稳. 青钱柳种子雨的季节动态及土壤种子库特征. 南京林业大学学报(自然科学版). 2023(02): 18-26 . 百度学术
    7. 陈士刚,邹建军,山昌林,李秀红,芦静,王岗. 硕桦优树选择及不同种源、家系苗期评价. 吉林林业科技. 2023(02): 1-5+23 . 百度学术
    8. 王莹,文淑均,罗定明,覃延闯,丁涛,刘世男. 珍稀濒危植物元宝山冷杉种实特征及种子萌发特性研究. 广西科学院学报. 2023(02): 161-168 . 百度学术
    9. 李继祥,余登利,肖息,杨雪,田晓光,龚文斌,邓坦. 贵州宽阔水国家级自然保护区亮叶水青冈种子雨特征. 绿色科技. 2022(07): 67-69 . 百度学术
    10. 李云红 ,田松岩 ,沃晓棠 ,邵英男 ,刘延坤 ,韩丽冬 ,陈瑶 ,刁云飞 ,刘玉龙 . 伴生东北红豆杉针阔混交林种子雨时空动态. 中南林业科技大学学报. 2022(05): 109-118 . 百度学术
    11. 江海都,谢伟玲,柴胜丰,唐健民,蒋运生,秦惠珍,韦霄. 喀斯特地区珍贵树种黄枝油杉的种子萌发特性. 广西植物. 2022(06): 951-960 . 百度学术
    12. 焦洁洁,李领寰,汪建民,孙杰杰,吴初平,姚良锦,王志高,袁位高. 午潮山杉阔混交林种子雨与土壤种子库特征研究. 林业资源管理. 2022(04): 28-35 . 百度学术

    其他类型引用(2)

图(1)  /  表(5)
计量
  • 文章访问数:  2067
  • HTML全文浏览量:  423
  • PDF下载量:  49
  • 被引次数: 14
出版历程
  • 收稿日期:  2017-01-17
  • 修回日期:  2017-06-11
  • 发布日期:  2017-09-30

目录

/

返回文章
返回