• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于eCognition植物叶片气孔密度及气孔面积快速测算方法

朱济友, 徐程扬, 吴鞠

朱济友, 徐程扬, 吴鞠. 基于eCognition植物叶片气孔密度及气孔面积快速测算方法[J]. 北京林业大学学报, 2018, 40(5): 37-45. DOI: 10.13332/j.1000-1522.20170412
引用本文: 朱济友, 徐程扬, 吴鞠. 基于eCognition植物叶片气孔密度及气孔面积快速测算方法[J]. 北京林业大学学报, 2018, 40(5): 37-45. DOI: 10.13332/j.1000-1522.20170412
Zhu Jiyou, Xu Chengyang, Wu Ju. Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition[J]. Journal of Beijing Forestry University, 2018, 40(5): 37-45. DOI: 10.13332/j.1000-1522.20170412
Citation: Zhu Jiyou, Xu Chengyang, Wu Ju. Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition[J]. Journal of Beijing Forestry University, 2018, 40(5): 37-45. DOI: 10.13332/j.1000-1522.20170412

基于eCognition植物叶片气孔密度及气孔面积快速测算方法

基金项目: 

林业公益性行业重大项目 20140430102

详细信息
    作者简介:

    朱济友。主要研究方向:生态林与城市林业理论与技术。Email: zhujiyou007@163.com   地址:100083北京市海淀区清华东路35号北京林业大学科研楼302

    责任作者:

    徐程扬,教授,博士生导师。主要研究方向:城市林业。Email:cyxu@bjfu.edu.cn   地址:同上

  • 中图分类号: S718.47

Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition

  • 摘要:
    目的叶片气孔是植物与外界进行物质交换的重要窗口,对环境变化十分敏感。如何快速、精确地获得气孔密度和开放程度数据仍缺乏成熟的方法与技术,本研究旨在探索植物叶片气孔密度及气孔面积的快速测算方法,为今后植物气孔研究工作提供参考。
    方法以北京市常见绿化树种白蜡、臭椿和国槐叶片为研究对象,采用面向对象分类的eCognition图像处理软件,对叶片气孔显微图像进行多尺度分割和分类识别,根据对象的光谱特征、亮度特征和几何特征构建规则并进行气孔分类和提取。
    结果气孔分割的最佳参数及自动提取规则组合为:尺度参数120~125、形状参数0.7、紧凑度参数0.9、亮度值160~220、红光波段>95、形状-密度指数1.5~2.2。
    结论该方法提取气孔密度和气孔面积的精度分别达到99.2%、94.5%,结果较理想,适用于植物叶片气孔信息的快速提取。
    Abstract:
    ObjectiveLeaf stomatal is a main channel used as exchange matter between plants and environment, which is very sensitive to environmental changes. How to calculate stomatal area and openness data quickly and accurately still lacks mature methods and techniques. This paper aims to explore the quantitative calculation of leaf stomatal density and stomatal area, and provide reference for future research on plant stomatal by this way.
    MethodThis study chose the leaf of Fraxinus pennsylvanica, Ailanthus altissima and Sophora japonica as objects, analyzing stomatal information by multi-scale segmentation and classification recognition and classifying the leaf stomatal microscopic images via eCognition image processing software. The stomatal imagines were classified and identified based on the spectral characteristics, bcenterness characteristics and geometric features of the objects.
    ResultThe results showed that the best parameters of the stomatal division and the combination of automatic extraction rules were: scale parameters 120-125, shape parameter 0.7, compactness parameter 0.9, bcenterness value 160-220, red light band> 95, shape-density index 1.5-2.2.
    ConclusionThe precision of stomatal density and stomatal area extracted by this method was 99.2% and 94.5%, respectively and the results were satisfactory. So the method is suitable for rapid extraction of stomatal information in plant leaves.
  • 图  1   气孔提取流程图

    Figure  1.   Flow chart of stomatal extraction on basis of eCognition

    图  2   多尺度分割与实测密度差值散点图

    Figure  2.   Scatter plot of d-value between multi-scale segmentation and measured density

    图  3   气孔分割精度

    B.亮度值Bcenterness value,L1.蓝光波段Layer 1 blue band,L2.绿光波段Layer 2 green band,L3.红光波段Layer 3 red band,S.形状特征Shape feature

    Figure  3.   Stomatal segmentation accuracy

    图  4   气孔图像分割及提取过程

    a、b、c.尺度参数分别为30、180和120;d.形状参数为0.1,紧致度参数为0.9;e.形状参数为0.9,紧致度参数为0.1;f.形状参数为0.7,紧致度参数为0.9;g、h、i、j、k、l分别为亮度特征、蓝光波段、绿光波段、红光波段、亮度值+红光波段、亮度值+红光波段+形状特征(图示为臭椿)。

    Figure  4.   Segmentation and extraction process of stomatal image

    a, b and c, partitioning scales of 30, 180 and 120; d, shape parameter is 0.1, compactness parameter is 0.9; e, shape parameter is 0.9, compactness parameter is 0.1; f, shape parameter is 0.7 and compactness parameter is 0.9; g, h, i, j, k and l, bcenterness characteristics, blue band, green band, red band, bcenterness value + red band, bcenterness value + red band + shape feature (Ailanthus altissima used as an example).

    表  1   3个树种叶片性状特征

    Table  1   Leaf traits of three tree species

    树种Tree species 叶面积Leaf area/cm2 质地Texture 被毛情况
    Leaf hair condition
    公园Park 街道Street
    白蜡Fraxinus pennsylvanica 24.637±1.432 21.866±2.209 革质Coriaceous 光滑Smooth
    臭椿Ailanthus altissima 45.017±5.230 36.940±4.043 薄革质Thin coriaceous 粗糙Rough
    国槐Sophora japonica 11.134±2.005 8.903±1.002 纸质Papery 被毛Hair cover
    下载: 导出CSV

    表  2   分割参数及提取规则对气孔影像解译结果显著性差异分析

    Table  2   Significance difference analysis in interpretation results of stomatal images based on segmentation parameters and extraction rules

    变异来源
    Source of variation
    参数间Inter-parameter 环境间Inter-environment 树种间Inter-tree
    F P F P F P
    分割参数Segmentation parameter 28.675 0.000 1 14.507 0.982 1 18.092 0.341 0
    亮度特征Bcenterness characteristic 63.564 0.004 5 25.991 0.453 2 25.667 0.543 1
    光谱特征Spectrum characteristic 45.321 0.003 3 34.987 0.067 5 32.131 0.204 1
    形状特征Shape characteristic 7.834 0.002 1 2.012 0.078 5 18.098 0.982 1
    下载: 导出CSV

    表  3   分类对象特征阈值范围

    Table  3   Threshold range of classification object feature

    对象Object 亮度特征
    Bcenterness characteristics
    光谱特征Spectrum characteristics 形状特征
    Shape feature
    蓝光波段Layer 1 blue band 绿光波段Layer 2 green band 红光波段Layer 3 red band
    气孔Stoma 160~220 >175 165~250 >95 1.5~2.2
    非气孔Non-stoma >200 < 185 < 185 < 95 < 1.5
    下载: 导出CSV

    表  4   最佳分割参数及提取规则组合阈值范围

    Table  4   Threshold range of the best segmentation parameters and extraction rules

    分割参数Segmentation parameter 提取规则Extraction rule
    参数Parameter 阈值范围Threshold range 规则Rule 阈值范围Threshold range
    尺度参数Scale parameter 120~125 亮度特征值Bcenterness characteristic value 160~220
    形状参数Shape parameter 0.7 红光波段值Layer 3 red band >95
    紧致度参数Compactness parameter 0.9 形状特征值Shape characteristic value 1.5~2.2
    下载: 导出CSV

    表  5   气孔提取精度

    Table  5   Accuracy of stomatal extraction

    环境
    Environment
    树种
    Tree species
    气孔密度/(个·mm-2)
    Stomatal density/(number·mm-2)
    气孔面积
    Stomatal area/μm2
    提取值
    Extraction value
    镜检值
    Measured value
    差值
    Deference value
    精度
    Accuracy
    提取值
    Extraction value
    镜检值
    Measured value
    差值
    Deference value
    精度
    Accuracy
    街道Street 臭椿Ailanthus altissima 179±9 176±7 2±2 100.0 341±15.7 331±22.4 10.5±1.3 97.1
    白蜡Fraxinus pennsylvanica 284±6 285±7 1±1 99.6 185±16.4 196±19.6 11.1±2.6 94.4
    国槐Sophora japonica 247±10 249±9 2±1 99.1 310±21.5 318±21.2 8.4±3.2 97.5
    公园Park 臭椿Ailanthus altissima 229±7 244±18 4±1 98.3 233±8.4 255±25.3 11.2±1.5 95.7
    白蜡Fraxinus pennsylvanica 399±8 167±15 2±2 98.9 396±12.5 158±22.1 13.1±1.8 94.6
    国槐Sophora japonica 295±9 198±18 3±1 98.9 298±13.2 184±17.5 17.8±5.4 93.0
    下载: 导出CSV

    表  6   提取结果与实测值差值显著性分析

    Table  6   Significance analysis in the difference between extraction result and measured value

    变异来源
    Variance source
    气孔密度Stomatal density 气孔面积Stomatal area
    离差平方和
    Sum of squares of deviation
    df 均方
    Mean square
    F Sig. 离差平方和
    Sum of squares of deviation
    df 均方
    Mean square
    F Sig.
    环境间Inter-environment 0.003 1 0.003 0.004 0.948 0.225 1 0.225 1.639 0.201
    树种间Inter-tree 2.867 2 1.433 2.195 0.113 0.506 2 0.253 1.842 0.160
    误差Error 232.506 357 0.653 48.867 357 0.137
    总计Total 235.376 360 49.598 360
    下载: 导出CSV
  • [1] 王瑞丽, 于贵瑞, 何念鹏, 等.气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律:以长白山为例[J].生态学报, 2016, 36(8): 2175-2184. http://d.old.wanfangdata.com.cn/Periodical/stxb201608008

    Wang R L, Yu G R, He N P, et al. Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain[J]. Acta Ecologica Sinica, 2016, 36 (8):2175-2184. http://d.old.wanfangdata.com.cn/Periodical/stxb201608008

    [2] 高冠龙, 张小由, 常宗强, 等.植物气孔导度的环境响应模拟及其尺度扩展[J].生态学报, 2016, 36(6):1491-1500. http://d.old.wanfangdata.com.cn/Periodical/stxb201606002

    Gao G L, Zhang X Y, Chang Z Q, et al.Environment response simulation and the up-scaling of plant stomatal conductance[J]. Acta Ecologica Sinica, 2016, 36 (6):1491-1500. http://d.old.wanfangdata.com.cn/Periodical/stxb201606002

    [3] 王艳萍, 刘胜利, 陈玉珍, 等. 3种长白山高山杜鹃叶片结构及其对环境的适应性[J].北京林业大学学报, 2012, 34(4):18-25. http://j.bjfu.edu.cn/article/id/9771

    Wang Y P, Liu S L, Chen Y Z, et al.Leaf structural characteristics of three wild Rhododendron plants and their adaptation to Changbai Mountains, northeastern China[J].Journal of Beijing Forestry University, 2012, 34 (4):18-25. http://j.bjfu.edu.cn/article/id/9771

    [4] 熊慧, 马承恩, 李乐, 等.不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J].植物生态学报, 2014, 38(8):868-877. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201408007

    Xiong H, Ma C E, Li L, et al.Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats[J].Acta Phytoecologia Sinica, 2014, 38 (8):868-877. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201408007

    [5] 司怀通, 于天卉, 关心怡, 等.红树林植物气孔对环境因子的响应及其与水力功能的协调[J].植物生理学报, 2017, 53(3):487-496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201703021

    Si H T, Yu T H, Guan X Y, et al.Stomatal responses to environmental factors and its coordination with hydraulic functions in plants of mangrove forests[J].Acta Phytojournal of Plant Physiology, 2017, 53 (3):487-496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201703021

    [6] 刘小刚, 万梦丹, 齐韵涛, 等.不同遮阴下亏缺灌溉对小粒咖啡生长和水光利用的影响[J].农业机械学报, 2017, 48(1):191-197. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201701025

    Liu X G, Wan M D, Qi Y T, et al.Effect of deficit irrigation on growth and water radiation use of arabica coffee under different shading[J].Transaction of the Chinese society for agricultural Mechinery, 2017, 48 (1):191-197. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201701025

    [7] 张川红, 尹伟伦, 沈应柏.盐胁迫对国槐与核桃气孔的影响[J].北京林业大学学报, 2002, 24(2):1-7. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb200202001

    Zhang C H, Yin W L, Shen Y B. Effects of salt stress on stomatal of Sophora japonica and Juglans regia[J].Journal of Beijing Forestry University, 2002, 24(2):1-7. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb200202001

    [8] 郑云普, 徐明, 王建书, 等.玉米叶片气孔特征及气体交换过程对气候变暖的响应[J].作物学报, 2015, 41(4):601-612. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201504012

    Zheng Y P, Xu M, Wang J S, et al.Response of stomatal traits and gas exchange of maize leaves to climate warming[J].Acta Agronomica Sinica, 2015, 41 (4):601-612. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201504012

    [9] 王曙光, 李中青, 贾寿山, 等.小麦叶片气孔性状与产量和抗旱性的关系[J].应用生态学报, 2013, 24(6):1609-1614. http://d.old.wanfangdata.com.cn/Periodical/yystxb201306019

    Wang S G, Li Z Q, Jia S S, et al.Relationships of wheat leaf stomatal traits with yield and drought resistance[J].Chinese Journal of Applied Ecology, 2013, 24 (6):1609-1614. http://d.old.wanfangdata.com.cn/Periodical/yystxb201306019

    [10] 魏琳, 张卫国, 任柏林, 等.小麦离体表皮上气孔对若干关键生理因子的应答反应[J].植物生理学报, 2015, 51(5):649-654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201505010

    Wei L, Zhang W G, Ren B L, et al.Stomatal response to several key physiological factors using epidermal strips of wheat[J].Plant Physiology Journal, 2015, 51(5):649-654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201505010

    [11] 徐俊增, 彭世彰, 魏征, 等.节水灌溉水稻叶片胞间CO2浓度及气孔与非气孔限制[J].农业工程学报, 2010, 26(7):76-80. doi: 10.3969/j.issn.1002-6819.2010.07.013

    Xu J Z, Peng S Z, Wei Z, et al.Intercellular CO2 concentration and stomatal or non-stomatal limitation of rice under water saving irrigation[J].Transactions of the CSAE, 2010, 26(7):76-80. doi: 10.3969/j.issn.1002-6819.2010.07.013

    [12] 金欣欣, 石建初, 李森, 等.根系吸水模型模拟覆膜旱作水稻气孔导度[J].农业工程学报, 2017, 33(9):107-115. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201709014

    Jin X X, Shi J C, Li S, et al.Modeling stomatal conductance using root-water-up take in ground cover rice production system[J].Transactions of the CSAE, 2017, 33(9):107-115. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201709014

    [13] 李郁竹, 曾燕.应用NOAA/AVHRR数据测算局地水稻种植面积方法研究[J].遥感学报, 1998, 2(2):125-130. http://www.cnki.com.cn/Article/CJFDTotal-YGXB802.008.htm

    Li Y Z, Zeng Y.Study on method of rice planting area estimation at regional scale using NOAA / AVHRR data[J].Journal of Remote Sensing, 1998, 2(2):125-130. http://www.cnki.com.cn/Article/CJFDTotal-YGXB802.008.htm

    [14]

    Wardlow B D, Egbert S L.Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2008, 112(3):1096-1116. doi: 10.1016/j.rse.2007.07.019

    [15]

    Sulong I, Mohd-Lokman H, Mohd-Tannizi K, et al.Mangrove mapping using Landsat imagery and aerial photographs:Kemaman district, Terengganu Malaysia[J].Environment Development & Sustainability, 2002, 4(2):135-152. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021084352/

    [16] 李明泽, 于欣彤, 高元科, 等.基于SAR极化分解与Landsat数据的森林生物量遥感估测[J].北京林业大学学报, 2018, 40(2):1-10. doi: 10.13332/j.1000-1522.20170284

    Li M Z, Yu X T, Gao Y K, et al.Remote sensing quantification on forest biomass based on SAR poparization decomposition and Landsat data[J].Journal of Beijing Forestry University, 2018, 40(2):1-10. doi: 10.13332/j.1000-1522.20170284

    [17]

    Ghassemian H, Landgrebe D A.Object-oriented feature extraction method for image data compaction[J].IEEE Control Systems Magazine, 2002, 8(3):42-48. doi: 10.1109-37.476/

    [18]

    Laliberte A S, Rango A, Havstad K M, et al. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico[J].Remote Sensing of Environment, 2004, 93(1):198-210. http://cn.bing.com/academic/profile?id=e4d4e774a5783acf5781a0cea28e1bec&encoded=0&v=paper_preview&mkt=zh-cn

    [19] 赵辉, 郑有飞, 曹嘉晨, 等.大气臭氧污染对冬小麦气孔吸收通量的影响机制及其时空格局[J].环境科学, 2017, 38(1):412-422. http://d.old.wanfangdata.com.cn/Periodical/hjkx201701050

    Zhao H, Zheng Y F, Cao J C, et al.Effects of atmospheric ozone pollution on stomatal absorption flux of winter wheat and its spatial and temporal patterns[J].Chinese Journal of Environmental Science, 2017, 38 (1):412-422. http://d.old.wanfangdata.com.cn/Periodical/hjkx201701050

    [20]

    Johansen K, Arroyo L A, Phinn S, et al.Comparison of geo-object based and pixel-based change detection of riparian environments using high spatial resolution multi-spectral imagery[J].Photogrammetric Engineering and Remote Sensing, 2010, 76(2):123-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=297995993bc33803fc36dc886c3d6577

    [21]

    Lucas R, Rowlands A, Brown A, et al.Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping[J].Isprs Journal of Photogrammetry & Remote Sensing, 2007, 62(3):165-185. doi: 10.1016-j.isprsjprs.2007.03.003/

    [22] 李春干, 邵国凡. Landsat 7 ETM+图像森林分类的辅助数据研究[J].北京林业大学学报, 2010, 32(4): 1-5. doi: 10.3969/j.issn.1671-6116.2010.04.001

    Li C G, Shao G F.Using Landsat 7 ETM+ images as ancillary data for forest cover classification of SPOTS 5 images[J].Journal of Beijing Forestry University, 2010, 32(4):1-5. doi: 10.3969/j.issn.1671-6116.2010.04.001

    [23] 魏晶昱, 毛学刚, 方本煜, 等.基于Landsat 8 OLI辅助的亚米级遥感影像树种识别[J].北京林业大学学报, 2016, 38(11):23-33. doi: 10.13332/j.1000-1522.20160054

    Wei J Y, Mao X G, Fang B Y, et al.Submeter remote sensing image recognition of trees based on Landsat 8 OLI support[J].Journal of Beijing Forestry University, 2016, 38(11):23-33. doi: 10.13332/j.1000-1522.20160054

    [24] 贾旭梅, 王延秀, 党兆霞, 等.八棱海棠上11个矮化砧木生长及其叶片解剖特性的研究[J].西北植物学报, 2017, 37(6):1126-1136. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201706010

    Jia X M, Wang Y X, Dang Z X, et al.The growth and leaf anatomical characteristics of 11 dwarf rootstocks in Mulus robusta Rehd[J].Northwest Botany, 2017, 37 (6):1126-1136. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201706010

    [25] 王丛鹏, 贾伏丽, 刘沙, 等.干旱对欧美杨气孔发育的影响[J].北京林业大学学报, 2016, 38(6):28-34. doi: 10.13332/j.1000-1522.20160050

    Wang C P, Jia F L, Liu S, et al.Drought induces alterations in stomatal development in Populus deltoidesn P. nigra[J].Journal of Beijing Forestry University, 2016, 38(6):28-34. doi: 10.13332/j.1000-1522.20160050

  • 期刊类型引用(5)

    1. 李玲琴,吕银华,刘江燕. 超临界CO_2脱除构皮木质素的研究. 仲恺农业工程学院学报. 2020(01): 28-37 . 百度学术
    2. 李萌,李鑫,童延斌,李婷婷,马玉萍,王婷. 甘草渣中木质素的超临界CO_2脱除工艺研究. 黑龙江畜牧兽医. 2019(01): 113-116 . 百度学术
    3. 吴燕,韩岩,黄楠,吴佳敏,唐彩云,周季纯,黄琼涛. 脱木素工艺对透明木材性能的影响. 林业工程学报. 2019(06): 98-104 . 百度学术
    4. 李新鑫,余学军,俞暾,蒋玉俭. 竹林环境中木质素降解菌株的分离鉴定. 竹子学报. 2016(02): 20-25 . 百度学术
    5. 左林,程皓,刘江燕. 超临界CO_2萃取脱除甘蔗渣木质素的研究. 生物质化学工程. 2014(06): 44-49 . 百度学术

    其他类型引用(4)

图(4)  /  表(6)
计量
  • 文章访问数:  3476
  • HTML全文浏览量:  991
  • PDF下载量:  115
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-11-21
  • 修回日期:  2018-01-24
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回