Optimization of replanting space of natural secondary forest in Daxing’anling Mountains of northeastern China
-
摘要:目的为优化林分空间结构,提高现有林分质量,加速森林生态系统恢复,加速大兴安岭地区森林群落向顶级群落演替,确定天然次生林林下补植树种和补植位置,为大兴安岭地区的森林经营提供理论支持和方法。方法本文以大兴安岭地区白桦纯林、落叶松白桦混交及针叶混交3种典型的林分类型为例,在次生林原有天然更新的基础上,利用Voronoi图进行空间单元确定和Voronoi结点边缘校正,并使用反距离插值使林木空间结构参数可视化,预测林分中未含林木区域的空间结构信息,将其作为补植依据,使用熵权法确定各空间结构参数权重,将各空间结构参数插值后图像进行加权叠加,以林分非空间结构为约束条件,优化林分空间结构为目标,探讨次生林林下补植树种和位置。结果(1)选取兴安落叶松为补植树种,各林型幼树补植数量分别为660、1 970、315。(2)补植后白桦纯林样地中白桦幼树幼苗混交度增加为0.52,其他树种幼树幼苗混交度增加为0.51;落叶松白桦混交林中白桦幼树幼苗混交度增加为0.84,其他树种幼树幼苗混交度增加为0.70;针叶混交林中白桦幼树幼苗增加为0.78,其他树种幼树幼苗混交度增加为0.50。(3)补植后各林型样地林下幼树幼苗Voronoi图多边形边数标准差分别为1.31、1.41、1.36,均处于随机分布状态。白桦纯林、落叶松白桦混交林及针叶混交林中落叶松幼树幼苗Voronoi图多边形边数标准差分别为1.27、1.40、1.37,均呈随机分布。结论采伐和补植是两种相反的空间优化方式,将林木空间结构参数进行反距离插值,可以预测林分中无林木区域的空间结构参数值,插值后的图像像元大小可以设定为补植幼树所需要的林地面积大小,依据林分空间结构的优化目标和补植数量的调控目标,提取样地未含林木区域空间参数值,进而确定补植的树种和位置。Abstract:ObjectiveThis paper aims to optimize the spatial structure of stand, improve the quality of existing stands, accelerate the restoration of forest ecosystems, accelerate the succession of forest communities to top communities in the Daxing’anling Mountains of northeastern China, and determine the replanting species and replanting sites of natural secondary forests.MethodTaking three typical forest types of birch, birch-larch mixed forest and larch coniferous mixed forest in the Daxing’anling area as an example, based on the natural regeneration of the secondary forest, the Voronoi diagram was used to determine the spatial unit and correct the edge by Voronoi nodal. The inverse distance weighted method was used to visualize the spatial structure parameters of the forest, and the spatial structure information of the forest area was not included in the forest stand and it was used as the basis for replanting. The entropy method was used to determine the weight of each spatial structure parameter, and the image interpolated by spatial structure parameters was weighted superimposed. With the non-spatial structure as the constraint and the optimization of the stand structure, we discussed the species and location of replanting trees under canopy of secondary forest, and provide theoretical support and methods for forest management in the Daxing'anling Mountains.Result(1) Larix gmelinii was selected as replanting tree species. The number of replanting trees of each forest type was 660, 1 970, 315, respectively. (2) After the replanting, the mingling degree of birch seedings and saplings in the pure birch forest increased to 0.52, and that of other tree species seedings and saplings increased to 0.51. The mingling degree of birch seedings and saplings in larch and birch mixed forest increased to 0.84, and that of other tree species seedings and saplings increased to 0.70; the mingling degree of birch species seedings and saplings in larch mixed coniferous forest increased to 0.78, and the mingling degree of other tree species seedings and saplings increased to 0.50. (3) After replanting, the coefficients of variation of the Voronoi diagram polygons of forest seedings and saplings under canopy of each forest type were 1.31, 1.41, 1.36, and they were all in random distribution state. The variation coefficient of the Voronoi diagram polygon of larch tree seedings and saplings in the pure birch forest, larch and birch mixed forest and larch mixed coniferous forest was 1.27, 1.40 and 1.37, respectively, they were also all in random distribution state.ConclusionHarvesting and replanting are two opposite spatial optimization methods. The inverse distance weight of the spatial structure parameters of trees can predict the spatial structure parameters of non-forest areas in forests. The interpolated image pixel size can be set to the forest area for replanting trees. According to the optimization goal of stand spatial structure and the regulation goal of replanting quantity, extracting the spatial structure parameter value of forest area that does not contain tree, we can determine the species and location of the replanted forest under the canopy.
-
-
图 8 补植前后空间结构参数值比较
Ⅰ为白桦,Ⅱ为落叶松,Ⅲ为其他树种,Ⅳ林分空间结构参数,样地中白桦和落叶松以外的树种记为其他树种。Ⅰ is Betula platyphylla, Ⅱ is Larix gmelinii, Ⅲ is other tree species, and Ⅳ is the spatial structure parameters of forest stand. The tree species except Betula platyphylla and Larix gmelinii in the sample plot are recorded as other tree species.
Figure 8. Comparison of spatial structure parameter values before and after replanting
表 1 各林型样地基本信息表
Table 1 Basic information of sample plots in each forest type
林型
Forest type树种组成
Species composition海拔
Elevation/m郁闭度
Canopy density坡度
Slope gradient/(°)土壤类型
Soil type平均胸径
Mean DBH/cm平均高
Mean height/m白桦纯林
Betula platyphylla forest10白桦Betula platyphylla 566 0.5 < 5 暗棕壤
Dark brown soil12.5 ± 4.2 13.3 ± 3.4 落叶松白桦混交林
Larix gmelinii and Betula platyphylla mixed forest6落叶松Larix gmelinii
4白桦Betula platyphylla546 0.7 < 5 暗棕壤
Dark brown soil13.1 ± 4.7 13.7 ± 3.5 针叶混交林
Larch coniferous mixed forest6落叶松Larix gmelinii
2樟子松Pinus sylvestris var. mongolica
1云杉Picea abies
1白桦Betula platyphylla457 0.6 6 暗棕壤
Dark brown soil10.5 ± 4.4 11.2 ± 2.9 表 2 各林型样地幼苗幼树信息统计表
Table 2 Statistical table of seedlings and saplings in sample plot of each forest type
林分类型
Forest type树种
Species幼苗 Seedling (H ≤ 30.0 cm) 幼树 Sapling (30.0 cm < H & DBH < 5.0 cm) 地径
Ground diameter/cm树高
Tree height/cm密度/(株·hm2)
Density/(plant·ha− 1)地径
Ground diameter/cm树高
Tree height/cm密度/(株·hm2)
Density/(plant·ha− 1)白桦纯林
Betula platyphylla forest白桦
Betula platyphylla0.7 19.3 63 1.5 185.1 802 落叶松
Larix gmelinii0.3 24.0 1 2.3 212.6 221 山杨
Populus davidiana1.8 199.5 1 317 落叶松白桦混交林
Larix gmelinii and Betula platyphylla mixed forest白桦
Betula platyphylla0.3 22.1 9 1.5 172.8 142 落叶松
Larix gmelinii0.3 16.8 4 2.3 210.0 129 山杨
Populus davidiana0.6 20.5 2 1.3 151.2 759 落叶松
Larix gmelinii0.6 22.1 12 3.2 274.6 1 013 云杉
Picea asperata0.3 15.4 546 1.8 117.6 975 针叶混交林
Larch coniferous mixed forest白桦
Betula platyphylla0.2 19.5 6 1.8 295.3 375 樟子松
Pinus sylvestris var. mongolica1.1 16.5 49 1.6 157.3 141 山杨
Populus davidiana4.1 7.0 2 1.8 234.0 59 柳树
Salix matsudana0.3 23.5 2 1.1 123.7 119 柞树
Quercus mongolica0.2 14.5 22 0.5 35.0 3 表 3 空间结构参数计算公式及变量定义
Table 3 Calculation formula of spatial structure parameters and its significance
空间结构参数
Spatial structure parameter计算公式
Formula变量定义
Variable definitionV-Hegyi指数
V-Hegyi indexCIi=n∑j=1djdiLij Lij为对象木i与竞争木j之间的距离;di为对象木i的胸径;dj为竞争木j的胸径;n为竞争木株数。Lij is the distance between the object tree i and the competition tree j; di is the DBH of the object tree i; dj is the DBH of the competition tree j; n is the number of competing trees V-混交度
V-MiMi=1nn∑j=1vij n为邻近木株数;当参照树i与相邻木j非同种时vij = 1;否则vij = 0。n is the number of adjacent trees; vij = 1 when the reference tree i is not the same as the adjacent tree j; otherwise vij = 0
V-大小比
V-UiUi=1nn∑j=1kij n为邻近木株数;当参照树j的胸径小于中心木 i的胸径,kij = 1;否则kij = 0。n is the number of adjacent trees; when the DBH of the reference tree j is smaller than the DBH of the central tree i, kij = 1; otherwise kij = 0 分布格局
Spatial patternSD = [1.264, 1.402] SD为Voronoi图多边形边数的标准差,当SD = [1.264, 1.402],林分呈随机分布;当SD < 1.264时,林分呈均匀分布;当SD > 1.402时,林分呈聚集分布。SD is the coefficient of variation of the number of polygons in the Voronoi diagram. When SD = [1.264, 1.402], the stands are randomly distributed; when SD < 1.264, the stands are evenly distributed; when SD > 1.402, the stands are aggregated distributed 表 5 各林型空间结构参数与补植幼树信息表
Table 5 Spatial structure parameters and replanting sapling information table for each forest type
林分类型
Forest type林分空间结构参数 Forest spatial structure index 补植幼树 Replanting sapling V-Hegyi指数
V-Heygi indexV-混交度
V-MiV-大小比
V-Ui分布格局
Spatial pattern树种
Species株数
Tree number白桦纯林
Betula platyphylla forest2.58 0.14 0.50 随机
Random兴安落叶松
Larix gmelinii660 落叶松白桦混交林
Larix gmelinii and Betula platyphylla mixed forest3.13 0.41 0.50 随机
Random兴安落叶松
Larix gmelinii1 970 针叶混交林
Larch coniferous mixed forest3.96 0.40 0.50 聚集
Aggregation兴安落叶松
Larix gmelinii315 表 4 空间结构参数分级表
Table 4 Classification table of spatial structure parameters
等级
GradeV-Hegyi指数 V-Hegyi index V-混交度 V-Mi V-大小比 V-Ui 取值区间
Value range状态描述
State description取值区间
Value range状态描述
State description取值区间
Value range状态描述
State descriptionⅠ (0.00, 2.50] 极弱度竞争
Extremely weak competition0.00 零度混交
Zero mixture0.00 优势
DominantⅡ (2.50, 5.00] 弱度竞争
Weak competition(0.00, 0.25] 弱度混交
Weak mixture(0.00, 0.25] 亚优势
SubdominantⅢ (5.00, 7.50] 中度竞争
Medium competition(0.25, 0.50] 中度混交
Medium mixture(0.25, 0.50] 中庸
MediumⅣ (7.50, 10.00] 强度竞争
Intensive competition(0.50, 0.75] 强度混交
Intensive mixture(0.50, 0.75] 劣势
InferiorⅤ (> 10.00) 极强度竞争
Extremely intensive competition(0.75, 1.00] 极强度混交
Extremely intensive mixture(0.75, 1.00] 绝对劣势
Absolute inferior -
[1] Fang J. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320−2322. doi: 10.1126/science.1058629
[2] 吕英. 大兴安岭林区生态可持续发展问题研究[D]. 北京: 中国农业科学院, 2009. Lü Y. Research on sustainable development strategy for Daxing ’anling forests region[D]. Beijing: Gradeuate School of Chinese Academy Agricultural Sciences, 2009.
[3] Yu D, Zhou L, Zhou W, et al. Forest management in Northeast China: history, problems, and challenges[J]. Environmental Management, 2011, 48(6): 1122−1135. doi: 10.1007/s00267-011-9633-4
[4] 于立忠, 刘利芳, 王绪高, 等. 东北次生林生态系统保护与恢复技术探讨[J]. 生态学杂志, 2017, 36(11):3243−3248. Yu L Z, Liu L F, Wang X G, et al. Discussion on the protcetion and restoration technology of secondary forest esosystems in Northeast China[J]. Chinese Journal of Ecology, 2017, 36(11): 3243−3248.
[5] Deng X Z, Jiang Q, Zhan J Y, et al. Simulation on the dynamics of forest area changes in Northeast China[J]. Journal of Geographical Sciences, 2010, 20(4): 495−509. doi: 10.1007/s11442-010-0495-0
[6] 赵春燕, 李际平. 基于Voronoi图与Delaunay3角网的杉木人工纯林林木补植位置与空间配置[J]. 中南林业科技大学学报, 2017, 37(2):1−8. Zhao C Y, Li J P. Spatial location and allocation of replanting trees on pure Chinese fir plantation based on Voronoi diagram and Delaunay triangulation[J]. Journal of Central South University of Forestry & Technology, 2017, 37(2): 1−8.
[7] Nordlander G, Hellqvist C, Hjelm K. Replanting conifer seedlings after pine weevil emigration in spring decreases feeding damage and seedling mortality[J]. Scandinavian Journal of Forest Research, 2017, 32(1): 60−67. doi: 10.1080/02827581.2016.1186220
[8] Sofawi A B, Rozainah M Z, Normaniza O, et al. Mangrove rehabilitation on Carey Island, Malaysia: an evaluation of replanting techniques and sediment properties[J]. Marine Biology Research, 2017, 13(4): 390−401. doi: 10.1080/17451000.2016.1267365
[9] 宋启亮, 董希斌. 大兴安岭低质阔叶混交林不同改造模式综合评价[J]. 林业科学, 2014, 50(9):18−25. Song Q L, Dong X B. Comprehensive evaluation of different transformation models of low-quality broadleaved mixed forest in Daxing ’an Mountains[J]. Scientia Silvae Sincae, 2014, 50(9): 18−25.
[10] 汤孟平, 唐守正, 雷相东, 等. 林分择伐空间结构优化模型研究[J]. 林业科学, 2004, 40(5):25−31. doi: 10.3321/j.issn:1001-7488.2004.05.004 Tang M P, Tang S Z, Lei X D, et al. Study on spatial structure optimizing model of stand selection cuttuing[J]. Scientia Silvae Sincae, 2004, 40(5): 25−31. doi: 10.3321/j.issn:1001-7488.2004.05.004
[11] 姜廷山, 董灵波, 刘兆刚, 等. 不同抚育强度对兴安落叶松林空间结构的影响[J]. 东北林业大学学报, 2018, 46(12):9−14. doi: 10.3969/j.issn.1000-5382.2018.12.002 Jiang T S, Dong L B, Liu Z G, et al. Effects of different intermediate cutting intensities on the spatial structure of Larix gmelinii forest[J]. Journal of Northeast Forestry University, 2018, 46(12): 9−14. doi: 10.3969/j.issn.1000-5382.2018.12.002
[12] 李际平, 封尧, 赵春燕, 等. 基于Voronoi图的杉木生态公益林空间结构量化分析[J]. 北京林业大学学报, 2014, 36(4):1−7. Li J P, Feng Y, Zhao C Y, et al. Quantitative analysis of stand spatial structure of Cunninghamia lanceolate non-commercial forest based on Voronoi diagram[J]. Journal of Beijing Forestry University, 2014, 36(4): 1−7.
[13] 刘帅, 张江, 李建军, 等. 森林空间结构分析中基于Voronoi图的样地边缘校正[J]. 林业科学, 2017, 53(1):28−37. Liu S, Zhang J, Li J J, et al. Edge correction of voronoi diagram in forest spatial structure analysis[J]. Scientia Silvae Sincae, 2017, 53(1): 28−37.
[14] 董灵波, 刘兆刚, 马妍, 等. 天然林林分空间结构综合指数的研究[J]. 北京林业大学学报, 2013, 35(1):16−22. Dong L B, Liu Z G, Ma Y, et al. A new composite index of stand spatial structure for natural forest[J]. Journal of Beijing Forestry University, 2013, 35(1): 16−22.
[15] 汤孟平, 陈永刚, 施拥军, 等. 基于Voronoi图的群落优势树种种内种间竞争[J]. 生态学报, 2007, 27(11):4707−4716. doi: 10.3321/j.issn:1000-0933.2007.11.039 Tang M P, Chen Y G, Shi Y J, et al. Intranspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram[J]. Acta Ecologica Sinica, 2007, 27(11): 4707−4716. doi: 10.3321/j.issn:1000-0933.2007.11.039
[16] 汤孟平, 周国模, 陈永刚, 等. 基于Voronoi图的天目山常绿阔叶林混交度[J]. 林业科学, 2009, 45(6):1−5. doi: 10.3321/j.issn:1001-7488.2009.06.001 Tang M P, Zhu G M, Chen Y G, et al. Mingling of evergreen broad-leaved forests in Tianmu Mountain[J]. Scientia Silvae Sincae, 2009, 45(6): 1−5. doi: 10.3321/j.issn:1001-7488.2009.06.001
[17] 张弓乔, 惠刚盈. Voronoi多边形的边数分布规律及其在林木格局分析中的应用[J]. 北京林业大学学报, 2015, 37(4):1−7. Zhang G Q, Hui G Y. Analysis and application of polygon side distribution of Voronoi diagram in tree patterns[J]. Journal of Beijing Forestry University, 2015, 37(4): 1−7.
[18] 董灵波, 刘兆刚. 樟子松人工林空间结构优化及可视化模拟[J]. 林业科学, 2012, 48(10):77−85. doi: 10.11707/j.1001-7488.20121013 Dong L B, Liu Z G. Visual management simulation for Pinus sylvestris var. mongolica plantation based on optimized spatial structure[J]. Scientia Silvae Sincae, 2012, 48(10): 77−85. doi: 10.11707/j.1001-7488.20121013
[19] 张家诚, 陈力, 蒋有绪, 等. 演替顶极阶段森林群落优势树种分布的变动趋势研究[J]. 植物生态学报, 1999, 23(3):256−268. doi: 10.3321/j.issn:1005-264X.1999.03.008 Zhang J C, Chen L, Jiang Y X, et al. Research on the chang treed of dominant tree population distribution patterns during development process of climax forest communities[J]. Acta Phytoecologica Sinica, 1999, 23(3): 256−268. doi: 10.3321/j.issn:1005-264X.1999.03.008
[20] 惠刚盈, Klaus von Gadow, Matthias Albert. 角尺度: 一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1):37−42. doi: 10.3321/j.issn:1001-7488.1999.01.006 Hui G y, von Gadow K, Albert M. The neighbourhood pattern: a new structure papameter for describing distribution of forest tree position[J]. Scientia Silvae Sincae, 1999, 35(1): 37−42. doi: 10.3321/j.issn:1001-7488.1999.01.006
[21] 惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1):23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004 Hui G Y, Hu Y B. Study on the expression of spatial isolation degree of mixed forest tree species[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
[22] 惠刚盈, Klaus von Gadow, Matthias Albert. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1):1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001 Hui G Y, von Gadow K, Albert M. A new stand space structure parameter: neighborhood comparsion[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001
[23] 吕勇, 臧颢, 万献军, 等. 基于林层指数的青椆混交林林层结构研究[J]. 林业资源管理, 2012(3):81−84. doi: 10.3969/j.issn.1002-6622.2012.03.018 Lü Y, Zang H, Wan X J, et al. Storey structure study of Cyclobalanopsis Myrsinaefolia mixed stand based on storey index[J]. Forest Resources Management, 2012(3): 81−84. doi: 10.3969/j.issn.1002-6622.2012.03.018
[24] Pielou E C. Segregation and symmetry in two-species populations as studied by nearest-neighbour relationships[J]. Journal of Ecology, 1961, 49(2): 255−269. doi: 10.2307/2257260
[25] von Gadow K. Zur bestandesbeschreibung in der forsteinrichtung[J]. Forst und Holz, 1993, 48(21): 602−606.
[26] 牟乃夏. ARCGIS 10地理信息系统教程[M]. 北京: 测绘出版社, 2012. Mou N X. ARCGIS 10 GIS tutorial[M]. Beijing: Surveying and Mapping Publishing House, 2012.
[27] 高真, 叶学义, 周天琪, 等. 基于反距离加权插值的水声数据可视化算法[J]. 计算机工程, 2015, 41(9):266−270. doi: 10.3969/j.issn.1000-3428.2015.09.049 Gao Z, Ye X Y, Zhou T Q, et al. Visualization algorithm of underwater acoustic data based on inverse distance weught interpolation[J]. Computer Engineering, 2015, 41(9): 266−270. doi: 10.3969/j.issn.1000-3428.2015.09.049
[28] 肖进胜, 饶天宇, 贾茜, 等. 基于图切割的拉普拉斯金字塔图像融合算法[J]. 光电子·激光, 2014, 25(7):1416−1424. Xiao J S, Rao T Y, Jia Q, et al. An image fusion algorithm of Laplacian pyramid based on graph cutting[J]. Journal of Optoelectronics·Laser, 2014, 25(7): 1416−1424.
[29] 汪玉美, 陈代梅, 赵根保. 基于目标提取与拉普拉斯变换的红外和可见光图像融合算法[J]. 激光与光电子学进展, 2017(1):104−112. Wang Y M, Chen D M, Zhao G B. Image fusion algorithm of infrared and visible images based on target extraction and laplace transformation[J]. Laser & Optoelectronics Progress, 2017(1): 104−112.
[30] Tsujino R, Yumoto T. Spatial distribution patterns of trees at different life stages in a warm temperate forest[J]. Journal of Plant Research, 2007, 120(6): 687−695. doi: 10.1007/s10265-007-0111-2
[31] Li L P, Cadotte M W, Martínez-Garza C, et al. Planting accelerates restoration of tropical forest but assembly mechanisms appear insensitive to initial composition[J]. Journal of Applied Ecology, 2018, 55(26): 986−996.
[32] 杨朝应. 大兴安岭天然落叶松森林健康经营模式研究[D]. 哈尔滨: 东北林业大学, 2014. Yang C Y. Study on forest healthy management in nature Larix dahurica in Great Xing ’an Mountain[D]. Harbin: Northeast Forestry University, 2014.
-
期刊类型引用(2)
1. 王阳,王伟,姜静,顾宸瑞,杨蕴力. 转基因小黑杨根际土壤微生物群落特征研究. 南京林业大学学报(自然科学版). 2023(01): 199-208 . 百度学术
2. 程贝贝,陈胜艳,岳莉然. NaHCO_3胁迫对紫根水葫芦形态学指标和光合参数的影响. 广西植物. 2020(12): 1781-1789 . 百度学术
其他类型引用(4)