Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests
-
摘要:目的以长白山林区蒙古栎次生林为研究对象,分析基于目标树经营与传统经营的抚育间伐前后蒙古栎次生林空间结构主要指标及空间结构综合指数变化,评价不同抚育间伐方式对森林空间结构的影响。方法在吉林汪清设置9块面积均为1 hm2的蒙古栎次生林样地,随机区组进行3种处理,分别为传统经营(T1)、目标树经营密度1(T2)和目标树经营密度2(T3)。利用混交度、角尺度、大小比数和密集度4个林分空间结构指标,分析间伐前后目标树及林分的空间结构变化,并利用4个指标构建空间结构综合指数(CSSI)来综合评价蒙古栎次生林的空间结构对不同抚育间伐的响应。结果结果表明,从干扰树间伐对目标树的影响来看,目标树的混交度、大小比数和密集度3个指标的改善明显,角尺度改善不明显;从不同抚育间伐方式对林分空间结构的影响来看,3种处理均提高了林分内种间隔离程度、降低了密集程度,使林分空间分布格局趋向于随机分布,对林木大小分化度的影响不明显;根据CSSI综合评价得知:3种处理均提高了林分的空间结构综合指数,提高幅度为T3 > T2 > T1。结论干扰树间伐优化了目标树的空间结构,3种处理的抚育间伐均优化了林分的空间结构。基于目标树经营的抚育间伐对空间结构的改善程度优于传统的抚育间伐,T3处理,也即目标树选择密度为100株/hm2时采取的抚育间伐最有利于目标树和林分的空间结构优化。Abstract:ObjectiveThe effects of different thinning patterns on forest spatial structure were evaluated by analyzing the changes of main indicators of spatial structure and comprehensive spatial structure index of Quercus mongolica secondary forests (oak forest) before and after thinning.MethodNine permanent plots with an area of 1 ha were established in the oak forest in Wangqing, Jilin Province of northeastern China. Three kinds of treatments were carried out by random grouping, namely traditional management (T1), crop tree management with density 1 (T2) and crop tree management with density 2 (T3). The spatial structure variations of the crop trees and forest stand before and after the cutting operation were analyzed by mingling degree, uniform angle index, neighborhood comparison and crowding degree. The above four indicators were used to construct the comprehensive spatial structure index (CSSI) to comprehensively evaluate the response of oak secondary forest to the management measures.ResultThe results showed that the mean mingling degree, neighborhood comparison and crowding degree of the crop trees in T2 and T3 were improved after competitors cutting, while the change of mean uniform angle index was not obvious. From the perspective of the effects of different measures on the stand spatial structure, the mean mingling degree, uniform angle index and crowding degree of the target stands were all improved after cutting, while the neighborhood comparison variation was not pronounced. CSSI of all stands was increased by T3 > T2 > T1.ConclusionThe spatial structure of crop trees was optimized by competitor cutting, and the spatial structure of all stands was optimized by 3 kinds of thinning. The improvement of the spatial structure of the thinning based on the crop tree management is better than the traditional thinning. T3 is most beneficial to the optimization of the spatial structure of the stand.
-
-
表 1 样地基本概况
Table 1 General description of sample plot
样地号
Sample plot No.海拔
Altitude/m坡位
Slope position坡度
Slope gradient/(°)郁闭度
Canopy density密度/(株·hm− 2)
Stand density/(tree·ha− 1)树种组成
Species composition处理
Treatment1 705 中 Middle 8 0.70 766 6蒙1桦1杨1红1其他 T1 2 738 中 Middle 8 0.71 896 4蒙2杨1桦1色1椴1红 T2 3 721 中 Middle 7 0.72 1 038 5蒙2桦1色1杨1椴 T3 4 741 中 Middle 8 0.83 992 4蒙2桦1色1椴1红1其他 T2 5 637 中 Middle 8 0.85 998 5蒙2桦1红1黑1其他 T1 6 635 中 Middle 8 0.88 1 047 5蒙3桦1黑1红 T3 7 677 中 Middle 7 0.90 800 6蒙1黑1胡1水1其他 T1 8 685 中 Middle 7 0.77 929 6蒙2桦1黑1其他 T3 9 703 中 Middle 6 0.87 995 4蒙3桦1杨2其他 T2 注:蒙代表蒙古栎,桦代表白桦,杨代表大青杨,红代表红松,色代表色木槭,椴代表紫椴,落代表长白落叶松,黑代表黑桦,胡代表胡桃楸,水代表水曲柳,其他代表其他树种。Notes: 蒙 stands for Quercus mongolica, 桦 stands for Betula platyphylla, 杨 stands for Populus ussuriensis, 红 stands for Pinus koraiensis, 色 stands for Acer mono, 椴 stands for Tilia tuan, 落 stands for Larix olgensis, 黑 stands for Betula dahurica, 胡 stands for Juglans mandshurica, 水 stands for Fraxinus mandschurica, 其他 stands for other tree species. 表 2 蒙古栎次生林林分基本信息
Table 2 General information of oak secondary forest
样地号
Sample plot No.胸径 DBH/cm 树高 Tree height/m 优势平均高
Mean dominant height/m蓄积
Volume/m3最小 Min. 平均 Average 最大 Max. 最小 Min. 平均 Average 最大 Max. 1 5.0 14.6 66.0 2.0 11.0 29.6 22.2 150.72 2 5.0 13.7 59.1 0.5 11.2 24.1 21.5 162.31 3 5.0 13.0 55.7 1.3 10.25 28.5 21.6 172.00 4 5.0 13.6 50.2 1.5 10.9 25.8 21.2 176.10 5 5.0 13.1 50.9 1.5 8.9 22.4 21.5 162.30 6 5.0 12.8 58.5 3.2 11.5 31.1 22.2 173.91 7 5.0 14.3 52.2 1.4 9.8 24.9 21.8 154.45 8 5.0 14.3 70.1 3.1 12.6 24.2 22.9 179.20 9 5.0 14.1 58.2 2.2 11.0 26.5 22.7 186.90 注:采用汪清林业局一元立木材积表[28]计算单木材积和林分蓄积,选取样地最高的5株林木计算优势高平均值。Notes: volume of wood was calculated by the tree volume table of Wangqing Forestry Bureau, and the mean dominant height was calculated by choosing five highest trees in each sample plot. 表 3 采伐前后目标树结构单元的各个空间结构指标
Table 3 Spatial structure indexes of target trees before and after thinning
抚育间伐方式
Thinning treatment类型
TypeM平均值
Mean uniform angle indexW平均值
Mean neighborhood patternU平均值
Mean uniform angel indexC平均值
Mean crowding degreeT2 伐前 Before thinning 0.615 5 0.529 2 0.184 0 0.415 1 伐后 After thinning 0.638 3 0.524 1 0.177 7 0.409 4 T3 伐前 Before thinning 0.509 9 0.533 2 0.226 7 0.407 4 伐后 After thinning 0.529 7 0.536 0 0.216 7 0.395 3 注:M代表混交度;W代表角尺度;U代表大小比数;C代表密集度;T2代表目标树经营密度1;T3代表目标树经营密度2。下同。Notes: M represents for mingling degree, W represents for uniform angel index, U represents for neighborhood comparison, C represents for crowding degree, T2 represents for target tree management with density 1, T3 represents for target tree management with desity 2. Same as below. 表 4 不同抚育间伐方式林分采伐前后
M 频率分布及林分平均混交度(¯M )Table 4 M frequency distribution and mean mingling degree of different thinning treatments before and after thinning
抚育间伐方式
Thinning treatment伐前 Before thinning 伐后 After thinning 频率分布 Frequency distribution ¯M 频率分布 Frequency distribution ¯M 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 T1 0.159 2 0.190 1 0.242 1 0.248 0 0.160 5 0.515 1 0.150 3 0.192 0 0.252 7 0.243 3 0.161 7 0.518 5 T2 0.071 0 0.173 1 0.250 0 0.277 9 0.228 0 0.604 7 0.062 3 0.165 3 0.253 9 0.289 5 0.229 0 0.614 4 T3 0.107 9 0.193 9 0.258 5 0.255 1 0.184 6 0.553 7 0.092 2 0.194 5 0.267 3 0.259 2 0.186 9 0.563 5 注:T1代表传统经营措施。Note: T1 represents for traditional management. 表 5 不同抚育间伐方式林分采伐前后
W 频率分布及林分平均角尺度(¯W )Table 5 W frequency distribution and mean value of stand uniform angel index of different thinning treatments before and after thinning
抚育间伐方式
Tninning treatment伐前 Before thinning 伐后 After thinning 频率分布 Frequency distribution ¯W 频率分布 Frequency distribution ¯W 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 T1 0.005 9 0.167 8 0.553 3 0.196 1 0.077 0 0.542 6 0.006 7 0.165 1 0.558 6 0.196 8 0.072 8 0.540 9 T2 0.003 6 0.179 9 0.580 9 0.163 7 0.071 9 0.530 1 0.004 2 0.185 0 0.583 6 0.165 3 0.061 8 0.523 9 T3 0.004 9 0.164 2 0.578 2 0.191 4 0.061 2 0.535 0 0.006 1 0.168 0 0.584 5 0.184 3 0.057 0 0.529 5 表 6 不同抚育间伐方式林分采伐前后
U 频率分布及林分平均大小比数(¯U )Table 6 U frequency distribution and mean value of neighborhood comparison of different thinning treatments before and after thinning
抚育间伐方式
Thinning treatment伐前 Before thinning 伐后 After thinning 频率分布 Frequency distribution ¯U 频率分布 Frequency distribution ¯U 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 T1 0.207 2 0.196 1 0.205 9 0.194 7 0.196 1 0.494 1 0.212 3 0.196 8 0.202 2 0.195 4 0.193 4 0.490 2 T2 0.207 7 0.204 6 0.194 2 0.192 0 0.201 4 0.493 7 0.209 8 0.197 2 0.201 4 0.190 6 0.200 9 0.493 9 T3 0.204 6 0.206 5 0.191 9 0.201 2 0.195 8 0.494 3 0.209 8 0.201 6 0.193 0 0.198 6 0.197 0 0.492 9 表 7 不同抚育间伐方式林分采伐前后
C 频率分布及林分平均密集度(¯C )Table 7 C frequency distribution and mean value of crowding degree of different thinning treatments before and after thinning
抚育间伐方式
Thinning treatment伐前 Before thinning 伐后 After thinning 频率分布 Frequency distribution ¯C 频率分布 Frequency distribution ¯C 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 T1 0.059 9 0.138 8 0.166 4 0.221 7 0.413 2 0.338 3 0.063 3 0.140 8 0.175 2 0.217 0 0.403 6 0.336 3 T2 0.021 6 0.072 4 0.141 2 0.216 3 0.548 6 0.391 8 0.023 9 0.078 2 0.158 3 0.221 5 0.518 0 0.389 3 T3 0.018 5 0.074 8 0.163 8 0.221 1 0.521 9 0.384 1 0.021 9 0.080 4 0.183 3 0.235 7 0.478 6 0.378 1 -
[1] 陆元昌, 栾慎强, 张守攻, 等. 从法正林转向近自然林: 德国多功能森林经营在国家区域和经营单位层面的实践[J]. 世界林业研究, 2010, 23(1):1−11. Lu Y C, Luan S Q, Zhang S G, et al. From normal forest to close-to-nature forest: multi-functional forestry and its practice at national, regionaland forest management unit levels in Germany[J]. World Forestry Research, 2010, 23(1): 1−11.
[2] 陆元昌. 近自然森林经营的理论与实践[M]. 北京: 科学出版社, 2006. Lu Y C. Theory and practice of close-to-nature forest management[M]. Beijing: Science Press, 2006.
[3] 李慧卿, 江泽平, 雷静品, 等. 近自然森林经营探讨[J]. 世界林业研究, 2007, 20(4):6−11. doi: 10.3969/j.issn.1001-4241.2007.04.002 Li H Q, Jiang Z P, Lei J P, et al. Exploitation of the theory and application of close to nature forest management in Europe[J]. World Forestry Research, 2007, 20(4): 6−11. doi: 10.3969/j.issn.1001-4241.2007.04.002
[4] 王祖华, 李瑞霞, 关庆伟. 间伐对杉木人工林不同根序细根形态、生物量和氮含量的影响[J]. 应用生态学报, 2013, 24(6):1487−1493. Wang Z H, Li R X, Guan Q W. Effects of thinning on fine-root morphology, biomass and N concentration of different branch orders of Chinese fir[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1487−1493.
[5] 雷相东, 陆元昌, 张会儒, 等. 抚育间伐对落叶松云冷杉混交林的影响[J]. 林业科学, 2005, 41(4):78−85. doi: 10.3321/j.issn:1001-7488.2005.04.014 Lei X D, Lu Y C, Zhang H R, et al. Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis[J]. Scientia Silvae Sinicae, 2005, 41(4): 78−85. doi: 10.3321/j.issn:1001-7488.2005.04.014
[6] 高云昌, 张文辉, 何景峰, 等. 黄龙山油松人工林间伐效果的综合评价[J]. 应用生态学报, 2013, 24(5):1313−1319. Gao Y C, Zhang W H, He J F, et al. Effects of thinning intensity on Pinus tabulaeformis plantation in Huanglong Mountain, Northwest China: a comprehensive evaluation[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1313−1319.
[7] 汤孟平, 唐守正, 雷相东, 等. 林分择伐空间结构优化模型研究[J]. 林业科学, 2004, 40(5):25−31. doi: 10.3321/j.issn:1001-7488.2004.05.004 Tang M P, Tang S Z, Lei X D, et al. Study on spatial structure optimizing model of stand selection cutting[J]. Scientia Silvae Sinicae, 2004, 40(5): 25−31. doi: 10.3321/j.issn:1001-7488.2004.05.004
[8] 惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1):23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004 Hui G Y, Hu Y B. The optimum standard angle of the uniform angle index[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
[9] Patrick J B, Andrew P R, Ewel J J. Sudden and sustained response of Acacia koa crop trees to crown release in stagnant stands[J]. Canadian Journal of Forest Research, 2008, 38(4): 656−666. doi: 10.1139/X07-137
[10] Schuler T M. Crop tree release improves competitiveness of northernred oak growing in association with black cherry[J]. Northern Journal of Applied Forestry, 2006, 23(2): 77−82.
[11] 吴瑶, 李凤日, 秦凯伦, 等. 近自然经营技术对红松林土壤化学性质的影响[J]. 东北林业大学学报, 2014, 42(1):76−79. doi: 10.3969/j.issn.1000-5382.2014.01.017 Wu Y, Li F R, Qin K L, et al. Impacts of close-to-nature management on soil chemical properties of Korean pine forest in northeastern China[J]. Journal of Northeast Forestry University, 2014, 42(1): 76−79. doi: 10.3969/j.issn.1000-5382.2014.01.017
[12] 孙冬婧, 温远光, 罗应华, 等. 近自然化改造对杉木人工林物种多样性的影响[J]. 林业科学研究, 2015, 28(2):202−208. Sun D J, Wen Y G, Luo Y H, et al. Effect of close-to-nature management on species diversity in a Cunninghamia lanceolata plantation[J]. Forest research, 2015, 28(2): 202−208.
[13] 王懿祥, 张守攻, 陆元昌, 等. 干扰树间伐对马尾松人工林目标树生长的初期效应[J]. 林业科学, 2014, 50(10):67−73. Wang Y X, Zhang S G, Lu Y C, et al. Initial effects of crop trees growth after crop tree release on Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2014, 50(10): 67−73.
[14] 周建云, 李荣, 何景峰, 等. 近自然经营对辽东栎林优势乔木更新的影响[J]. 林业科学, 2013, 49(8):15−20. Zhou J Y, Li R, He J F, et al. Regeneration of the dominant arbors after close-to-natural management of Quercus wutaishanica forest[J]. Scientia Silvae Sinicae, 2013, 49(8): 15−20.
[15] 雷相东, 唐守正. 林分结构多样性指标研究综述[J]. 林业科学, 2002, 38(3):140−146. doi: 10.3321/j.issn:1001-7488.2002.03.025 Lei X D, Tang S Z. Indicators on structural diversity within-stand: a review[J]. Scientia Silvae Sinicae, 2002, 38(3): 140−146. doi: 10.3321/j.issn:1001-7488.2002.03.025
[16] 曹小玉, 李际平. 林分空间结构指标研究进展[J]. 林业资源管理, 2016, 38(4):65−73. Cao X Y, Li J P. Research progress on indicators of the stand spatial structure[J]. Forest Resources Management, 2016, 38(4): 65−73.
[17] 李建, 彭鹏, 何怀江, 等. 采伐对吉林蛟河针阔混交林空间结构的影响[J]. 北京林业大学学报, 2017, 39(9):48−57. Li J, Peng P, He H J, et al. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 48−57.
[18] 张连金, 孙长忠, 赖光辉. 北京九龙山侧柏生态公益林空间结构分析与评价[J]. 林业科学研究, 2018, 31(4):75−82. Zhang L J, Sun C Z, Lai G H. Analysis and evaluation of stand spatial structure of Platycladus orientalis ecological forest in Jiulongshan of Beijing[J]. Forest Research, 2018, 31(4): 75−82.
[19] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1980. Wu Z Y, China vegetation[M]. Beijing: Science Press, 1980.
[20] 王良民, 任宪威, 刘一樵, 等. 我国落叶栎的地理分布[J]. 北京林学院学报, 1985, 7(2):57−69. Wang L M, Ren X W, Liu Y Q, et al. The geographical distribution of deciduous oak in China[J]. Journal of Beijing Forestry University, 1985, 7(2): 57−69.
[21] 郑焕能, 贾松青, 胡海清. 大兴安岭林区的林火与森林恢复[J]. 东北林业大学学报, 1986, 14(4):1−7. Zheng H N, Jia S Q, Hu H Q. Forest fire and forest restoration in Daxinganling Forest Area[J]. Journal of Northeast Forestry University, 1986, 14(4): 1−7.
[22] 于顺利, 马克平, 陈灵芝. 中国北方蒙古栎林起源和发展的初步探讨[J]. 广西植物, 2000, 5(2):131−137. doi: 10.3969/j.issn.1000-3142.2000.02.005 Yu S L, Ma K P, Chen L Z. A preliminary study on the origin and development of Mongolian oak forest in north China[J]. Guihaia, 2000, 5(2): 131−137. doi: 10.3969/j.issn.1000-3142.2000.02.005
[23] Vose J M, Miniat C F, Luce C H, et al. Ecohydrological implications of drought for forests in the United States[J]. Forest Ecology and Management, 2016, 380: 335−345. doi: 10.1016/j.foreco.2016.03.025
[24] Andreas B, Christian A, Magnus L, et al. Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept[J]. Scandinavian Journal of Forest Research, 2009, 24(6): 473−482. doi: 10.1080/02827580903418224
[25] Rigling A, Bigler C, Eilmann U, et al. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests[J]. Global Change Biology, 2012, 19(1): 229−240.
[26] Schelhaas M J, Nabuurs G J, Hengeveld G, et al. Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe[J]. Regional Environmental Change, 2015, 15(8): 1581−1594. doi: 10.1007/s10113-015-0788-z
[27] 殷晓洁, 周广胜, 隋兴华, 等. 蒙古栎地理分布的主导气候因子及其阈值[J]. 生态学报, 2013, 33(1):103−109. Yin X J, Zhou G S, Sui X H, et al. Dominant climatic factors of Quercus mongolica geographical distribution and their thresholds[J]. Acta Ecologica Sinica, 2013, 33(1): 103−109.
[28] 刘琪璟. 中国立木材积表[M]. 北京: 中国林业出版社, 2018. Liu Q J. Tree volume tables of China[M]. Beijing: China Forestry Publishing House, 2018.
[29] 周红敏, 惠刚盈, 赵中华, 等. 林分空间结构分析中样地边界木的处理方法[J]. 林业科学, 2009, 45(2):1−5. doi: 10.3321/j.issn:1001-7488.2009.02.001 Zhou H M, Hui G Y, Zhao Z H, et al. Treatment methods of plot boundary trees in spatial forest structure analysis[J]. Scientia Silvae Sinicae, 2009, 45(2): 1−5. doi: 10.3321/j.issn:1001-7488.2009.02.001
[30] 惠刚盈, Gadow K V. 森林空间结构量化分析方法[M]. 北京: 中国科学技术出版社, 2003. Hui G Y, Gadow K V. Quantitative analysis method of forest spatial structure[M]. Beijing: China Science and Technology Press, 2003.
[31] 汤孟平. 森林空间结构研究现状与发展趋势[J]. 林业科学, 2010, 46(1):117−122. Tang M P. Advances in study of forest spatial structure[J]. Scientia Silvae Sinicae, 2010, 46(1): 117−122.
[32] Aguirre O, Hui G Y, Gadow K V, et al. An analysis of spatial forest structure using neighbourhood-based variables[J]. Forest Ecology & Management, 2003, 183(1): 137−145.
[33] Davies O, Pommerening A. The contribution of structural indices to the modelling of Sitka spruce (Picea sitchensis) and birch (Betula spp.) crowns[J]. Forest Ecology and Management, 2008, 256(1−2): 68−77. doi: 10.1016/j.foreco.2008.03.052
[34] 岳永杰, 余新晓, 李钢铁, 等. 北京松山自然保护区蒙古栎林的空间结构特征[J]. 应用生态学报, 2009, 20(8):1811−1816. Yue Y J, Yu X X, Li G T, et al. Spatial structure of Quercus mongolica forest in Beijing Songshan Mountain Nature Reserve[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1811−1816.
[35] 段昌盛, 王军辉, 马建伟, 等. 秦岭西段锐齿栎林分经营状态评价[J]. 北京林业大学学报, 2009, 31(5):61−66. doi: 10.3321/j.issn:1000-1522.2009.05.011 Duan C S, Wang J H, Ma J W, et al. Evaluation of Quercus aliena var. acuteserrata forest at the western segment of Qinling Mountain, northwestern China[J]. Journal of Beijing Forestry University, 2009, 31(5): 61−66. doi: 10.3321/j.issn:1000-1522.2009.05.011
[36] 刘彦, 余新晓, 岳永杰, 等. 北京密云水库集水区刺槐人工林空间结构分析[J]. 北京林业大学学报, 2009, 31(5):25−28. doi: 10.3321/j.issn:1000-1522.2009.05.005 Liu Y, Yu X X, Yue Y J, et al. Spatial structure of Robinia pseudoacacia plantation in Miyun Reservoir Watershed of Beijing[J]. Journal of Beijing Forestry University, 2009, 31(5): 25−28. doi: 10.3321/j.issn:1000-1522.2009.05.005
[37] 胡艳波, 惠刚盈. 基于相邻木关系的林木密集程度表达方式研究[J]. 北京林业大学学报, 2015, 37(9):1−8. Hu Y B, Hui G Y. How to describe the crowding degree of trees based on the relationship of neighboring trees[J]. Journal of Beijing Forestry University, 2015, 37(9): 1−8.
[38] 董灵波, 刘兆刚, 马妍, 等. 天然林林分空间结构综合指数的研究[J]. 北京林业大学学报, 2013, 35(1):16−22. Dong L B, Liu Z G, Ma Y, et al. A new composite index of stand spatial structure for natural forest[J]. Journal of Beijing Forestry University, 2013, 35(1): 16−22.
[39] Gadow K V. ZurBestandesbeschreibung in der Forsteinrichtung[J]. Forst und Holz, 1993, 48(21): 602−606.
[40] Füldner K. Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern[M]. Göttingen: Cuvillier Verlag, 1995.
[41] 惠刚盈, Gadow K V, 胡艳波, 等. 林木分布格局类型的角尺度均值分析方法[J]. 生态学报, 2004, 24(6):1225−1229. doi: 10.3321/j.issn:1000-0933.2004.06.020 Hui G Y, Gadow K V, Hu Y B, et al. Characterizing forest spatial distribution pattern with the mean value of uniform angle index[J]. Acta Ecologica Sinica, 2004, 24(6): 1225−1229. doi: 10.3321/j.issn:1000-0933.2004.06.020
[42] 惠刚盈, Gadow K V, Matthias A. 角尺度−一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1):37−42. doi: 10.3321/j.issn:1001-7488.1999.01.006 Hui G Y, Gadow K V, Matthias A. The neighbourhood pattern: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 37−42. doi: 10.3321/j.issn:1001-7488.1999.01.006
[43] 胡艳波, 惠刚盈, 王宏翔, 等. 随机分布的角尺度置信区间及其应用[J]. 林业科学研究, 2014, 27(3):302−308. Hu Y B, Hui G Y, Wang H X, et al. Uniform angle index (w) confidence interval of the random distribution and its application[J]. Forest Research, 2014, 27(3): 302−308.
[44] 惠刚盈, Gadow K V, Albert M. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1):1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001 Hui G Y, Gadow K V, Albert M. A new parameter for stand spatial structure: neighborhood comparison[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001
[45] 张俊艳, 陆元昌, 成克武, 等. 近自然改造对云南松人工林群落结构及物种多样性的影响[J]. 河北农业大学学报, 2010, 33(3):72−77. doi: 10.3969/j.issn.1000-1573.2010.03.016 Zhang J Y, Lu Y C, Cheng K W, et al. Impact of near nature modification on community structure and species biodiversity of artificial Pinus yunnanensis forest[J]. Journal of Agricultural University of Hebei, 2010, 33(3): 72−77. doi: 10.3969/j.issn.1000-1573.2010.03.016
[46] 邬可义. 哈尔滨市的森林近自然和价值化经营实践[J]. 世界林业研究, 2009, 22(6):14−18. Wu K Y. Close-to-nature and value-oriented management of forests in Harbin[J]. World Forestry Research, 2009, 22(6): 14−18.
[47] 冯琪雅, 陈超凡, 覃林, 等. 不同经营模式对蒙古栎天然次生林林分结构和植物多样性的影响[J]. 林业科学, 2018, 54(1):12−21. Feng Q Y, Chen C F, Qin L, et al. Effects of different management models on stand structure and plant diversity of natural secondary forests of Quercus mongolica[J]. Scientia Silvae Sinicae, 2018, 54(1): 12−21.
[48] 陈科屹, 张会儒, 雷相东, 等. 基于目标树经营的抚育采伐对云冷杉针阔混交林空间结构的影响[J]. 林业科学研究, 2017, 30(5):718−726. Chen K Y, Zhang H R, Lei X D, et al. Effect of thinning on spatial structure of spruce-fir mixed broadleaf-conifer forest base on crop tree management[J]. Forest Research, 2017, 30(5): 718−726.
[49] 吴建强, 王懿祥, 杨一, 等. 干扰树间伐对杉木人工林林分生长和林分结构的影响[J]. 应用生态学报, 2015, 26(2):340−348. Wu J Q, Wang Y X, Yang Y, et al. Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 340−348.
[50] 张会儒, 武纪成, 杨洪波, 等. 长白落叶松−云杉−冷杉混交林林分空间结构分析[J]. 浙江农林大学学报, 2009, 26(3):319−325. doi: 10.3969/j.issn.2095-0756.2009.03.005 Zhang H R, Wu J C, Yang H B, et al. Spatial structure of mixed larch-spruce-fir stands[J]. Journal of Zhejiang Forestry College, 2009, 26(3): 319−325. doi: 10.3969/j.issn.2095-0756.2009.03.005
[51] 李先琨, 黄玉清, 苏宗明, 等. 元宝山南方红豆杉种群分布格局及动态[J]. 应用生态学报, 2000, 11(2):169−172. doi: 10.3321/j.issn:1001-9332.2000.02.003 Li X K, Huang Y Q, Su Z M, et al. Distribution pattern and its dynamics of Taxus chinensis var. mairei population on Yunbaoshan Mountain[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 169−172. doi: 10.3321/j.issn:1001-9332.2000.02.003
[52] 赵中华, 惠刚盈, 胡艳波, 等. 基于大小比数的林分空间优势度表达方法及其应用[J]. 北京林业大学学报, 2014, 36(1):78−82. Zhao Z H, Hui G Y, Hu Y B, et al. Method and application of stand spatial advantage degree based on the neighborhood comparison[J]. Journal of Beijing Forestry University, 2014, 36(1): 78−82.
[53] 李建军, 李际平. 基于粗糙集的林分经营决策因子分类研究[J]. 福建林业科技, 2008, 35(3):4−9. doi: 10.3969/j.issn.1002-7351.2008.03.002 Li J J, Li J P. Classification rule study of forest management decision-factor based on the Rough Set Theory[J]. Journal of Fujian Forestry Science & Technology, 2008, 35(3): 4−9. doi: 10.3969/j.issn.1002-7351.2008.03.002
[54] 曾群英, 周元满, 李际平, 等. 基于生态系统经营的林分采伐决策方法[J]. 东北林业大学学报, 2010, 38(9):31−35. doi: 10.3969/j.issn.1000-5382.2010.09.010 Zeng Q Y, Zhou Y M, Li J P, et al. Decision-making methodology of forest ecosystem management based on spatial structure factors of forest[J]. Journal of Northeast Forestry University, 2010, 38(9): 31−35. doi: 10.3969/j.issn.1000-5382.2010.09.010
[55] 胡艳波, 惠刚盈. 优化林分空间结构的森林经营方法探讨[J]. 林业科学研究, 2006, 19(1):1−8. doi: 10.3321/j.issn:1001-1498.2006.01.001 Hu Y B, Hui G Y. A discussion on forest management method optimizing forest spatial structure[J]. Forest Research, 2006, 19(1): 1−8. doi: 10.3321/j.issn:1001-1498.2006.01.001
-
期刊类型引用(2)
1. 王阳,王伟,姜静,顾宸瑞,杨蕴力. 转基因小黑杨根际土壤微生物群落特征研究. 南京林业大学学报(自然科学版). 2023(01): 199-208 . 百度学术
2. 程贝贝,陈胜艳,岳莉然. NaHCO_3胁迫对紫根水葫芦形态学指标和光合参数的影响. 广西植物. 2020(12): 1781-1789 . 百度学术
其他类型引用(4)