Dynamic response of soil moisture content to rainfall under different vegetation cover types on the Bashang Plateau, northwestern Hebei Province of northern China
-
摘要:目的 土壤水是连接大气降水、地表水、地下水的关键因子,在地表径流、降雨入渗和植被蒸腾等生态水文过程中发挥重要作用。分析坝上高原地区不同雨量降雨事件中各植被类型覆盖下土壤水分含量动态响应过程及差异,将有助于深入探讨该区土壤水分含量的补给效应特性,对优化区域植被结构具有十分重要的理论及现实的意义。方法 选取河北省张北县草地、柠条灌木林、杨树乔木林为研究对象,通过监测2019年4—10月连续土壤水分含量和降雨数据,分析不同植被类型覆盖下土壤水分含量对大小降雨事件的动态响应过程及差异。结果 (1)研究区主要降雨事件由小雨和中雨构成,但主要降雨量由大雨提供。小雨和中雨发生次数占比为81.58%,其贡献的降雨量仅占年总降雨量42.66%;大雨发生次数占比仅为18.42%,却提供了年总降雨量的57.34%。(2)4—10月杨树乔木林土壤水分含量均值显著高于草地(P < 0.05),而柠条灌木林波动最为强烈。各植被类型覆盖下土壤水分含量均值分别为杨树乔木林(13.99 ± 2.04)% > 柠条灌木林(12.63 ± 0.93)% > 草地(10.67 ± 2.77)%,土壤水分含量变异系数均值呈柠条灌木林(26.22%) > 杨树乔木林(20.51%) > 草地(13.89%),均为中等强度变异。(3)草地20 ~ 40 cm土层的土壤水分含量显著高于0 ~ 20 cm及40 ~ 100 cm的4个土层(P < 0.05);柠条灌木林在20 ~ 40 cm和80 ~ 100 cm土层之间、0 ~ 20 cm和40 ~ 60 cm之间均不存在显著差异,且20 ~ 40 cm和80 ~ 100 cm土层土壤水分含量均显著高于其他3层(P < 0.05);杨树乔木林80 ~ 100 cm土层的土壤水分含量显著高于其他4个土层(P < 0.05)。(4)在不同雨量降雨作用下,除某些特殊情况外,柠条灌木林对降雨响应的各指标常与其他两种植被类型呈显著差异(P < 0.05)。各植被类型覆盖的土壤水分含量开始响应速度均值、补给量均值、补给速率均值为柠条灌木林最大而杨树乔木林最小。小雨、中雨只能使3种植被类型0 ~ 20 cm土层做出响应,补给较为有限;而大雨作用下草地响应土层为0 ~ 60 cm,乔、灌木均为0 ~ 80 cm。3种植被类型覆盖下土壤水分含量响应速度、达峰速度、补给量、补给速率均随着土壤深度增加而变弱,上层土壤对于降雨的响应总是快于且幅度大于下层土壤。结论 在当前降雨条件下,柠条灌木林对降雨响应最为敏感且响应效应最为强烈,而杨树乔木林响应速度最慢且响应效应最弱。此外,只有在大雨作用下,3种植被类型所覆被的中下层土壤水分含量才会得到明显的响应与补充。本研究结果为该地区未来营造防护林过程中改变重乔木轻灌木的传统观点,合理调整灌木比重,实现生态水文功能的整体提高等提供了一定的科学依据。Abstract:Objective Soil moisture is a key factor linking atmospheric precipitation, surface water and groundwater, and plays an important role in eco-hydrological processes such as surface runoff, rainfall infiltration and vegetation transpiration. The analysis of dynamic response process and differences in soil moisture content of various covers under rainfall events in Bashang Plateau of northwestern Hebei Province of northern China will be helpful to explore the characteristics of replenishment effects of soil moisture content in this region, which is of great theoretical and practical significance to optimizing regional vegetation structure.Method The grassland, Caragana korshinskii shrub land and poplar forest land in Zhangbei County, Hebei Province were selected as research objects. The dynamic response process and differences of soil moisture to different types of rainfall under various vegetation cover types were analyzed by monitoring continuous soil moisture content data and rainfall data from April to October, 2019.Result (1) The main rainfall events in the study area were light rain and moderate rain, but the main amount of water was provided by heavy rain. The percentage of light rain and moderate rain occurrences was 81.58%, but they only contributed 42.66% to the total annual rainfall. The percentage of occurrences of heavy rain was only 18.42%, but it provided 57.34% of the total annual rainfall. (2) From April to October, the mean value of soil moisture in poplar forest land was significantly higher than that in grassland, and the fluctuation of soil moisture in Caragana korshinskii shrub land was the strongest. The mean soil moisture values under each vegetation cover types were poplar forest land (13.99 ± 2.04)% > Caragana korshinskii shrub land (12.63 ± 0.93)% > grassland (10.67 ± 2.77)%, and the mean soil moisture coefficient of variation was Caragana korshinskii shrub land (26.22%) > poplar forest land (20.51%) > grassland (13.89%). The coefficient of variation at each layer was at a moderate variation level. (3) The soil moisture content in 20−40 cm soil layer of the grassland was significantly higher than that in the other four soil layers (P < 0.05). There was no significant difference in soil moisture content between the 20−40 cm and 80−100 cm soil layers, as well as between the 0−20 cm and 40−60 cm soil layers in the Caragana korshinskii forest, and the soil moisture content in the 20−40 cm and 80−100 cm soil layers was significantly higher than that in the other three layers (P<0.05); the soil moisture content of the 80−100 cm soil layer in the poplar tree forest was significantly higher than that of the other four soil layers (P<0.05). (4) Under the effect of different rainfall amounts, the indicators of soil response to rainfall in shrublands were often significantly different from those of the other two vegetation types, except for some special cases. Among all types of rainfall, the mean values of soil moisture content response rate, recharge amount and recharge rate for each vegetation type cover were the greatest in Caragana korshinskii shrub land but the smallest in poplar forest land. Light and moderate rain can only respond to the 0−20 cm soil layer of the three vegetation types, with limited supply. Under heavy rain, the response of grassland to soil layer was 0−60 cm, while that of trees and shrubs was 0−80 cm. The response speed, peak reaching speed, replenishment amount, and replenishment rate of soil moisture content under three types of vegetation cover weakened with the increase of soil depth, and the response of upper soil to rainfall was always faster and greater than that of lower soil. [ Conclusion ] Under current rainfall conditions, the Caragana korshinskii shrub land responded the fastest and strongest to rainfall, but the poplar forest land responded the slowest and weakest. In addition, the deeper soil moisture under the three vegetation covers only responds significantly during heavy rain and allows the soil moisture to be replenished. The results of this study provide a scientific basis for changing the traditional view of emphasizing arboreal forest land but neglecting shrubs in the process of creating protective forests in the region in the future, and then reasonably adjusting the proportion of shrubs to achieve the overall improvement of eco-hydrological functions.
-
Keywords:
- soil moisture content /
- rainfall /
- vegetation type /
- Bashang Plateau
-
-
表 1 样地基本情况
Table 1 Basic information of experimental sample plots
样地类型
Sample plot type坡度
Slope/(°)坡向
Slope aspect盖度
Coverage/%叶面积指数
Leaf area index土壤密度
Soil bulk density/(g∙cm−3)总孔隙度
Total porosity/%草地 Grassland 1.67 西南 Southwest 57.67 2.43 ± 0.13c 1.69 ± 0.04a 32.41 ± 2.91b 灌木林地 Shrubland 2.25 西南 Southwest 69.33 3.01 ± 0.16b 1.56 ± 0.04b 42.14 ± 2.18a 乔木林地 Arbor forest land 1.93 西南 Southwest 49.50 3.31 ± 0.29a 1.60 ± 0.03b 37.88 ± 5.10a 注:表中最后3列数据为平均值 ± 标准差;同列不同小写字母表示不同植被类型之间差异显著(P < 0.05)。Notes: data in the last three columns of the table are mean ± standard deviation. Different lowercase letters in the same column indicate significant differences between varied vegetation types (P < 0.05). 表 2 不同植被类型覆盖下土壤粒径组成
Table 2 Soil particle size composition under different vegetation types
样地类型
Sample plot type土层深度
Depth of soil layer/cm土壤粒径组成
Soil particle size composition/%黏粒
Clay (< 2 μm)粉粒
Silt (2 − 50 μm)砂粒
Sand (50 ~ 2 000 μm)草地
Grassland0 ~ 20 1.64 ± 0.29BCa 10.81 ± 0.70Dc 87.55 ± 0.84Aa 20 ~ 40 2.28 ± 0.44Aa 15.61 ± 0.74Cb 82.11 ± 0.31Bb 40 ~ 60 1.28 ± 0.08Ca 20.38 ± 0.56Bb 78.34 ± 0.56Cb 60 ~ 80 1.76 ± 0.12BCa 23.70 ± 0.48Aa 74.54 ± 0.41Db 80 ~ 100 1.81 ± 0.09Aba 24.08 ± 1.09Aa 74.12 ± 1.17Dc 灌木林地
Shrubland0 ~ 20 1.27 ± 0.08Aa 25.80 ± 1.01Aa 72.93 ± 0.95Cc 20 ~ 40 1.16 ± 0.18ABb 23.33 ± 0.57Ba 75.51 ± 0.73Bc 40 ~ 60 0.96 ± 0.11BCb 18.49 ± 0.80Cc 80.55 ± 0.82Aa 60 ~ 80 1.21 ± 0.11Ab 23.18 ± 0.97Ba 75.61 ± 1.07Bb 80 ~ 100 0.79 ± 0.07Cb 17.91 ± 0.57Cb 81.29 ± 0.63Ab 乔木林地
Arbor forest land0 ~ 20 1.42 ± 0.08Aa 20.22 ± 0.64Bb 78.36 ± 0.71Cb 20 ~ 40 0.91 ± 0.11Bb 15.83 ± 0.63Cb 83.26 ± 0.52Ba 40 ~ 60 1.38 ± 0.09Aa 22.71 ± 1.07Aa 75.90 ± 1.03Dc 60 ~ 80 1.01 ± 0.07Bc 14.17 ± 0.45Cb 84.82 ± 0.39Ba 80 ~ 100 0.58 ± 0.11Cc 11.57 ± 1.20Dc 87.86 ± 1.09Aa 注:表中最后3列数据为平均值 ± 标准差;同列不同小写字母表示同一土层深度不同植被类型之间差异显著(P < 0.05),同列不同大写字母表示同一植被类型不同土层深度之间差异显著(P < 0.05)。同表4。Notes: data in the last three columns of the table are mean ± standard deviation. Different lowercase letters in the same column indicate significant differences between varied vegetation types in the same soil depth (P < 0.05), different capital letters in the same column indicate significant differences between varied soil depths of the same vegetation type (P < 0.05). Same as Tab. 4. 表 3 各类型降雨特征
Table 3 Rainfall characteristics of various types
降雨类型
Rainfall type降雨次数
Rainfall time占总降雨次数的比例
Proportion of total rainfall frequency/%总降雨量
Total rainfall/mm占总降雨量的比例
Proportion to total rainfall/%平均降雨量
Average rainfall/mm小雨 Light rain 26 68.42 83.0 21.30 3.19 ± 2.81 中雨 Moderate rain 5 13.16 83.2 21.36 16.64 ± 3.03 大雨 Heavy rain 7 18.42 223.4 57.34 31.91 ± 5.15 总计 Total 38 389.6 表 4 研究区不同植被类型覆盖下土壤水分特征
Table 4 Characteristics of soil moisture covered by different vegetation types in the study area
样地类型
Sample plot type土层深度
Depth of soil layer/cm各层土壤水分含量
Soil moisture content of each layer/%最大值
Max. value/%最小值
Min. value/%变异系数
Variation coefficient草地
Grassland0 ~ 20 10.59 ± 2.34Cc 16.22 6.08 22.14 20 ~ 40 14.34 ± 2.50Aa 19.30 9.82 17.42 40 ~ 60 7.45 ± 1.06Ec 11.07 5.73 14.27 60 ~ 80 8.63 ± 0.66Dc 9.73 6.03 7.68 80 ~ 100 12.32 ± 0.98Bc 13.99 9.21 7.95 均值 Mean 10.67 ± 2.77 14.06 7.37 13.89 灌木林地
Shrubland0 ~ 20 12.03 ± 3.56Bb 28.10 4.01 29.60 20 ~ 40 13.66 ± 3.06Ab 19.30 6.72 22.44 40 ~ 60 11.97 ± 3.38Bb 17.88 5.98 28.26 60 ~ 80 11.87 ± 3.21Cb 16.51 6.96 27.05 80 ~ 100 13.63 ± 3.24Ab 18.36 9.03 23.76 均值 Mean 12.63 ± 0.93 20.03 6.54 26.22 乔木林地
Arbor forest land0 ~ 20 13.11 ± 2.48Da 21.26 6.62 18.88 20 ~ 40 12.41 ± 3.24Ec 20.44 6.72 26.13 40 ~ 60 13.70 ± 3.40Ba 20.81 8.41 24.81 60 ~ 80 13.17 ± 2.72Ca 18.40 7.98 20.67 80 ~ 100 17.55 ± 2.11Aa 21.26 12.81 12.04 均值 Mean 13.99 ± 2.04 20.43 8.51 20.51 表 5 典型降雨事件的特征参数
Table 5 Characteristic parameters of typical rainfall events
降雨类型
Rainfall type日期
Date降雨量
Rainfall/mm降雨历时
Rain duration/h小雨
Light rain04−09 6.0 1.33 04−19 7.2 2.33 07−19 7.0 5.92 08−09 9.0 6.50 10−03—10−04 7.8 4.75 中雨
Moderate rain06−25—06−26 20.2 4.17 06−27—06−28 13.8 13.66 08−20 19.0 7.92 07−09—07−10 16.8 5.75 07−16—07−17 13.4 12.58 大雨
Heavy rain04−23—04−26 31.0 7.98 05−18 29.0 6.33 05−26 32.0 7.42 07−04—07−06 30.8 22.58 09−11—09−13 30.6 13.91 表 6 不同类型降雨对土壤水分含量补给效应的差异
Table 6 Differences in the replenishment effect of different types of rainfall on soil moisture content
样地类型
Sample plot type降雨类型
Rainfall type响应时长
Response time/h达峰时长
Peak reaching time/h补给量
Supplement amount/%补给速率
Supplement speed/(%∙h−1)草地 Grassland 小雨 Light rain 4.75 ± 2.97Ab 10.30 ± 4.23Bb 0.74 ± 0.52Bb 0.08 ± 0.07Bb 中雨 Moderate rain 2.10 ± 1.13Ab 17.55 ± 3.33Aa 3.89 ± 2.08Ab 0.24 ± 0.17Bb 大雨 Heavy rain 2.10 ± 1.51Aa 8.70 ± 3.06Ba 5.03 ± 2.12Aa 0.64 ± 0.39Ab 灌木林地 Shrubland 小雨 Light rain 1.10 ± 0.68Ab 6.10 ± 3.23Ab 3.75 ± 2.96Ba 0.70 ± 0.43Ba 中雨 Moderate rain 0.90 ± 0.65Ab 4.30 ± 3.90Ab 8.62 ± 2.31Aa 4.11 ± 3.50Aa 大雨 Heavy rain 0.70 ± 0.62Aa 4.90 ± 2.10Ab 7.20 ± 3.56ABa 1.87 ± 1.39ABa 乔木林地 Arbor forest land 小雨 Light rain 10.20 ± 4.67Aa 18.90 ± 7.05Aa 0.96 ± 1.44Bb 0.04 ± 0.05Bb 中雨 Moderate rain 3.95 ± 1.83Ba 17.65 ± 4.68Aa 3.20 ± 2.71Bb 0.20 ± 0.19Bb 大雨 Heavy rain 2.15 ± 1.39Ba 9.45 ± 2.87Ba 6.05 ± 1.66Aa 0.69 ± 0.31Ab 注:表中数据为平均值 ± 标准差;同列不同小写字母表示同种降雨不同植被类型之间差异显著(P < 0.05),同列不同大写字母表示同种植被类型不同雨强之间差异显著(P < 0.05)。Notes: data in the table are mean ± standard deviation. Different lowercase letters in the same column indicate significant differences between varied vegetation types of the same rainfall types (P < 0.05), different capital letters in the same column indicate significant differences between varied rainfall types in the same vegetation types (P < 0.05). -
[1] Fu X, Lyu H, Yu Z, et al. Effects of soil hydraulic properties on soil moisture estimation[J]. Journal of Meteorological Research, 2023, 37(1): 58−74. doi: 10.1007/s13351-023-2049-2
[2] Wang C, Fu B, Zhang L, et al. Soil moisture-plant interactions: an ecohydrological review[J]. Journal of Soils and Sediments, 2019, 19(1): 1−9. doi: 10.1007/s11368-018-2167-0
[3] 王正宁, 王新平, 刘博. 荒漠灌丛内降雨和土壤水分再分配[J]. 应用生态学报, 2016, 27(3): 755−760. Wang Z N, Wang X P, Liu B. Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 755−760.
[4] 陈伟, 李亚新, 王红阳, 等. 黄土丘陵区坡耕地与撂荒地土壤水分对不同强度降雨的动态响应特征[J]. 生态学报, 2022, 42(1): 1−8. doi: 10.1016/j.chnaes.2020.10.010 Chen W, Li Y X, Wang H Y, et al. Dynamic response characteristics of soil moisture on slope cultivated land and abandoned land to different rainfall intensities in loess hilly region[J]. Acta Ecologica Sinica, 2022, 42(1): 1−8. doi: 10.1016/j.chnaes.2020.10.010
[5] 石春茂, 罗娅, 杨胜天, 等. 干热河谷区不同坡位土壤水分对降雨的响应特征[J]. 应用生态学报, 2022, 33(5): 1352−1362. Shi C M, Luo Y, Yang S T, et al. Response characteristics of soil moisture at different slope positions to rainfall in dry-hot valley[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1352−1362.
[6] Yinglan A, Wang G Q, Sun W C, et al. Stratification response of soil water content during rainfall events under different rainfall patterns[J]. Hydrological Processes, 2018, 32(20): 3128−3139. doi: 10.1002/hyp.13250
[7] 李新乐, 吴波, 张建平, 等. 白刺沙包浅层土壤水分动态及其对不同降雨量的响应[J]. 生态学报, 2019, 39(15): 5701−5708. Li X L, Wu B, Zhang J P, et al. Dynamics of shallow soil water content in Nitraria tangutorum nebkha and response to rainfall[J]. Acta Ecologica Sinica, 2019, 39(15): 5701−5708.
[8] Ren Z, Pan J, Li Z, et al. The interaction of aeolian sand and slope on runoff and soil loss on a loess slope via simulated rainfall under laboratory conditions[J]. Water, 2023, 15(5): 888. doi: 10.3390/w15050888
[9] 杨磊, 张涵丹, 陈利顶. 黄土宽梁缓坡丘陵区次降雨对土壤水分补给效率与阈值研究[J]. 中国科学: 地球科学, 2018, 48(4): 457−466. Yang L, Zhang H D, Chen L D. Identification on threshold and efficiency of rainfall replenishment to soil water in semi-arid loess hilly areas[J]. Science China Earth Sciences, 2018, 48(4): 457−466.
[10] 高露, 张圣微, 朱仲元, 等. 干旱半干旱区退化草地土壤水分变化及其对降雨时间格局的响应[J]. 水土保持学报, 2020, 34(1): 195−201. Gao L, Zhang S W, Zhu Z Y, et al. Soil moisture changes in degraded grassland and its response to rainfall temporal pattern in arid and semi-arid areas[J]. Journal of Soil and Water Conservation, 2020, 34(1): 195−201.
[11] Mei X, Zhu Q, Ma L, et al. The spatial variability of soil water storage and its controlling factors during dry and wet periods on loess hillslopes[J]. Catena, 2018, 162: 333−344. doi: 10.1016/j.catena.2017.10.029
[12] Ge F, Xu M, Gong C, et al. Land cover changes the soil moisture response to rainfall on the Loess Plateau[J/OL]. Hydrological Processes, 2022, 36(11): e14714[2023−02−20]. https://doi.org/10.1002/hyp.14714.
[13] 刘粲. 黄土高原植被恢复对土壤水分的影响研究[D]. 石家庄: 河北地质大学, 2022. Liu C. Study on the effect of vegetation restoration on soil moisture on the Loess Plateau[D]. Shijiazhuang: Hebei GEO University, 2022.
[14] Liu Y F, Fang H, Leite P A M, et al. Mattic epipedon fragmentation strengthened the soil infiltration capacity of a hillside alpine meadow on the Qinghai-Tibetan Plateau[J/OL]. Ecohydrology, 2023: e2552[2023−04−30]. https://doi.org/10.1002/eco.2552.
[15] Gao X, Li H, Zhao X, et al. Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: considering both deep soil moisture deficit and soil organic carbon sequestration[J]. Geoderma, 2018, 319: 61−69. doi: 10.1016/j.geoderma.2018.01.003
[16] Wang Y, Zhu Q, Zhao W, et al. The dynamic trend of soil water content in artificial forests on the Loess Plateau, China[J/OL]. Forests, 2016, 7(12): 236[2022−10−21]. https://doi.org/10.3390/f7100236.
[17] 王贺年, 余新晓, 李轶涛. 北京山区林地土壤水分动态变化[J]. 山地学报, 2011, 29(6): 701−706. doi: 10.3969/j.issn.1008-2786.2011.06.009 Wang H N, Yu X X, Li Y T. Soil water dynamics of four advantage forest in Beijing mountain area[J]. Journal of Mountain Science, 2011, 29(6): 701−706. doi: 10.3969/j.issn.1008-2786.2011.06.009
[18] 崔艳红, 毕华兴, 侯贵荣, 等. 晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析[J]. 北京林业大学学报, 2021, 43(1): 77−87. Cui Y H, Bi H X, Hou R G, et al. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77−87.
[19] Koukoula M, Schwartz C S, Nikolopoulos E I, et al. Understanding the impact of soil moisture on precipitation under different climate and meteorological conditions: a numerical sensitivity study over the CONUS[J/OL]. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021JD035096[2023−04−25]. https://doi.org/10.1029/2021JD035096.
[20] Petrie M D, Collins S L, Litvak M E. The ecological role of small rainfall events in a desert grassland[J]. Ecohydrology, 2015, 8(8): 1614−1622. doi: 10.1002/eco.1614
[21] 赵娜, 李少宁, 徐晓天, 等. 北京地区典型绿化树种水分利用效率及其影响因素[J]. 北京林业大学学报, 2021, 43(3): 44−54. Zhao N, Li S N, Xu X T, et al. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44−54.
[22] 吕娇, Mustaq Shah, 崔义, 等. 土壤紧实度和凋落物覆盖对城市森林土壤持水、渗水能力的影响[J]. 北京林业大学学报, 2020, 42(8): 102−111. Lü J, Mustaq S, Cui Y, et al. Effects of soil compactness and litter covering on soil water holding capacity and water infiltration ability in urban forest[J]. Journal of Beijing Forestry University, 2020, 42(8): 102−111.
[23] 陈文媛, 张少妮, 华瑞, 等. 黄土丘陵区林草恢复进程中土壤入渗特征研究[J]. 北京林业大学学报, 2017, 39(1): 62−69. Chen W Y, Zhang S N, Hua R, et al. Effects of forestland and grassland restoration process on soil infiltration characteristics in loess hilly region[J]. Journal of Beijing Forestry University, 2017, 39(1): 62−69.
[24] Muluneh A, Biazin B, Stroosnijder L, et al. Impact of predicted changes in rainfall and atmospheric carbon dioxide on maize and wheat yields in the Central Rift Valley of Ethiopia[J]. Regional Environmental Change, 2015, 15(6): 1105−1119. doi: 10.1007/s10113-014-0685-x
[25] Sun S, He C, Qiu L, et al. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in northern China[J]. Agricultural and Forest Meteorology, 2018, 252: 39−48. doi: 10.1016/j.agrformet.2017.12.264
[26] Zheng X, Zhu J. A new climatic classification of afforestation in Three-North Regions of China with multi-source remote sensing data[J]. Theoretical and Applied Climatology, 2017, 127(1−2): 465−480. doi: 10.1007/s00704-015-1646-0
[27] Liu Z, Jia G, Yu X. Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain[J/OL]. Agriculture, Ecosystems & Environment, 2020, 287: 106697[2022−05−21]. https://doi.org/10.1016/j.agee.2019.106697.
[28] 徐冉, 张圣微, 朱仲元, 等. 典型草原禁牧条件下土壤水分对降雨模式的响应[J]. 干旱区研究, 2019, 36(6): 1359−1367. Xu R, Zhang S W, Zhu Z Y, et al. Response of soil moisture content to rainfall patterns in typical steppe under grazing prohibition[J]. Arid Zone Research, 2019, 36(6): 1359−1367.
[29] 白盛元. 黄土土柱降雨特征与土壤水分入渗过程研究[D]. 杨凌: 西北农林科技大学, 2015. Bai S Y. Study on progress of soil moisture changing in loess soil column[D]. Yangling: Northwest A&F University, 2015.
[30] 韩姣姣, 段旭, 赵洋毅. 金沙江干热河谷不同植被坡面土壤水分时空分布特征[J]. 干旱区地理, 2019, 42(1): 121−129. Han J J, Duan X, Zhao Y Y. Spatial and temporal variability of soil moisture on slope land of different vegetation of dry-hot valley in Jinsha River[J]. Arid Land Geography, 2019, 42(1): 121−129.
[31] Xia Z, Daojing Z, Jingyun F. Satellite-based studies on large-scale vegetation changes in China[J]. Journal of Integrative Plant Biology, 2012, 54(10): 713−728. doi: 10.1111/j.1744-7909.2012.01167.x
[32] 陈璟, 杨宁. 衡阳紫色土丘陵坡地不同植被恢复过程中土壤水文效应[J]. 中国生态农业学报, 2013, 21(5): 590−597. doi: 10.3724/SP.J.1011.2013.00590 Chen J, Yang N. Soil hydrological function at different vegetation restoration stages in purple soil slopelands in Hengyang[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 590−597. doi: 10.3724/SP.J.1011.2013.00590
[33] 原黎明. 黑河上游天老池流域土壤水分时空变异的试验研究[D]. 兰州: 兰州大学, 2016. Yuan L M. Spatial and temporal distribution pattern of soil moisture about a typical small watershed in the upstream of Heihe River[D]. Lanzhou: Lanzhou University, 2016.
[34] Griesbauer H, de Long S C, Rogers B, et al. Growth sensitivity to climate varies with soil moisture regime in spruce-fir forests in central British Columbia[J]. Trees, 2021, 35(2): 649−669. doi: 10.1007/s00468-020-02066-8
[35] 冯博. 黄土高原北部两种典型草地土壤水分时空分异及对降雨的响应[D]. 沈阳: 沈阳农业大学, 2020. Feng B. Spatiotemporal variation of soil moisture and its response to rainfall in two typical grasslands in the northern Loess Plateau[D]. Shenyang: Shenyang Agricultural University, 2020.
[36] 王云强, 邵明安, 刘志鹏. 黄土高原区域尺度土壤水分空间变异性[J]. 水科学进展, 2012, 23(3): 310−316. Wang Y Q, Shao M A, Liu Z P. Spatial variability of soil moisture at a regional scale in the Loess Plateau[J]. Advances in Water Science, 2012, 23(3): 310−316.
[37] Yu B, Liu G, Liu Q, et al. Soil moisture variations at different topographic domains and land use types in the semi-arid Loess Plateau, China[J]. Catena, 2018, 165: 125−132. doi: 10.1016/j.catena.2018.01.020
[38] 赵磊磊, 朱清科, 聂立水, 等. 陕北黄土区陡坡土壤水分变异规律研究[J]. 生态环境学报, 2012, 21(2): 253−259. doi: 10.3969/j.issn.1674-5906.2012.02.010 Zhao L L, Zhu Q K, Nie L S, et al. Soil moisture variation patterns of steep slope in the loess region in northern Shaanxi Province[J]. Ecology and Environmental Sciences, 2012, 21(2): 253−259. doi: 10.3969/j.issn.1674-5906.2012.02.010
[39] Li X, Shao M, Xu X. Prediction of soil water storage using temporal stability in different landscape positions on the northern Loess Plateau, China[J/OL]. Hydrological Processes, 2022, 36(9): e14671[2023−04−25]. https://doi.org/10.1002/hyp.14671.
[40] 吴远菲, 肖培青, 郝仕龙, 等. 黄丘区典型灌木和荒草地土壤含水量变化对降雨的响应[J]. 水土保持研究, 2022, 29(4): 1−6. doi: 10.3969/j.issn.1005-3409.2022.4.stbcyj202204002 Wu Y F, Xiao P Q, Hao S L, et al. Response of soil moisture of typical shrubland and waste grassland to precipitation in the loess hilly-gully region[J]. Research of Soil and Water Conservation, 2022, 29(4): 1−6. doi: 10.3969/j.issn.1005-3409.2022.4.stbcyj202204002
[41] Li F, Zhao W, Liu H. The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of northwest China[J/OL]. PLoS One, 2013, 8(9): e73003[2021−10−21]. https://pubmed.ncbi.nlm.nih.gov/24019888/.
[42] Liu Y, Cui Z, Huang Z, et al. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China[J/OL]. Catena, 2019, 182: 104147[2022−01−23]. https://doi.org/10.1016/j.catena.2019.104147.
[43] Yu G, Zhuang J, Nakayama K, et al. Root water uptake and profile soil water as affected by vertical root distribution[J]. Plant Ecology, 2007, 189(1): 15−30. doi: 10.1007/s11258-006-9163-y
[44] Lee E, Kumar P, Barron G G A, et al. Impact of hydraulic redistribution on multispecies vegetation water use in a semiarid savanna ecosystem: an experimental and modeling synthesis[J]. Water Resources Research, 2018, 54(6): 4009−4027. doi: 10.1029/2017WR021006
[45] Jin Z, Guo L, Lin H, et al. Soil moisture response to rainfall on the Chinese Loess Plateau after a long-term vegetation rehabilitation[J]. Hydrological Processes, 2018, 32(12): 1738−1754. doi: 10.1002/hyp.13143
[46] Sehler R, Li J, Reager J T, et al. Investigating relationship between soil moisture and precipitation globally using remote sensing observations[J]. Journal of Contemporary Water Research & Education, 2019, 168(1): 106−118.
-
期刊类型引用(1)
1. 姜泽明,周甜甜,卜洪洋,张力平,孙素琴,马芳. 落叶松树皮原花青素生产过程的红外光谱分析. 光谱学与光谱分析. 2018(01): 62-67 . 百度学术
其他类型引用(2)