高级检索
    许振欣, 邓羽松, 林立文, 刘德杨, 蒋代华, 黄智刚, 魏国余. 南亚热带典型人工林土壤饱和导水率特征及其影响因素研究[J]. 北京林业大学学报, 2021, 43(4): 100-107. DOI: 10.12171/j.1000-1522.20200124
    引用本文: 许振欣, 邓羽松, 林立文, 刘德杨, 蒋代华, 黄智刚, 魏国余. 南亚热带典型人工林土壤饱和导水率特征及其影响因素研究[J]. 北京林业大学学报, 2021, 43(4): 100-107. DOI: 10.12171/j.1000-1522.20200124
    Xu Zhenxin, Deng Yusong, Lin Liwen, Liu Deyang, Jiang Daihua, Huang Zhigang, Wei Guoyu. Characteristics of soil saturated hydraulic conductivity and its influencing factors of typical plantations in South Subtropical Zone[J]. Journal of Beijing Forestry University, 2021, 43(4): 100-107. DOI: 10.12171/j.1000-1522.20200124
    Citation: Xu Zhenxin, Deng Yusong, Lin Liwen, Liu Deyang, Jiang Daihua, Huang Zhigang, Wei Guoyu. Characteristics of soil saturated hydraulic conductivity and its influencing factors of typical plantations in South Subtropical Zone[J]. Journal of Beijing Forestry University, 2021, 43(4): 100-107. DOI: 10.12171/j.1000-1522.20200124

    南亚热带典型人工林土壤饱和导水率特征及其影响因素研究

    Characteristics of soil saturated hydraulic conductivity and its influencing factors of typical plantations in South Subtropical Zone

    • 摘要:
        目的  分析南亚热带典型人工林土壤饱和导水率的变化特征及其影响因素,了解水分在土壤中的运动规律,为进一步研究人工林土壤水分运动规律提供基础科学理论支持。
        方法  以广西国有高峰林场内的马尾松、杉木、尾巨桉、米老排、红锥等人工林土壤为研究对象,采用恒定水头法测定5种人工林地的土壤饱和导水率,利用相关性分析和灰色关联分析法等数学分析方法,探讨南亚热带人工林土壤饱和导水率的变化特征及其影响因素。
        结果  (1)杉木和马尾松2种人工林土壤的平均饱和导水率相对较高,尾巨桉人工林土壤的平均饱和导水率最低。不同人工林土壤饱和导水率随土壤深度均具有先减小后增加的变化规律,且土壤表层(0 ~ 10 cm)的饱和导水率均显著高于土壤下层(10 ~ 50 cm)。(2)相关性分析结果表明,有机质含量、大于0.2 mm的水稳性团聚体含量、总孔隙度、非毛管孔隙度、毛管孔隙度、饱和含水量和黏粒含量均与饱和导水率呈正相关关系,土壤密度与饱和导水率呈显著的负相关关系。(3)灰色关联分析结果表明,有机质含量、大于0.2 mm的水稳性团聚体含量、土壤密度、总孔隙度、饱和含水量、非毛管孔隙度和毛管孔隙度是土壤饱和导水率的重要影响因素,砂粒含量、粉粒含量和黏粒含量是次重要因素。
        结论  相比红锥、尾巨桉和米老排,杉木和马尾松可以显著提高土壤饱和导水率,延缓地表径流产生,减少土壤侵蚀。应注重科学的人工林经营措施,以便有效提高土壤的导水与贮水能力。

       

      Abstract:
        Objective  The changing characteristics and influencing factors of soil saturated hydraulic conductivity in typical plantations were analyzed in South Subtropical Zone, the soil moisture movement law in the soil was studied, which provides basic scientific theoretical support for further study of soil moisture movement law in plantations in this area.
        Method  Taking the soils of Pinus massoniana, Cunninghamia lanceolata, Eucalyptus urophylla × E. grandis, Mytilaria laosensis and Castanopsis hystrix located in the state-owned Gaofeng Forest Farm of Guangxi Zhuang Autonomous Region of southern China as the research objects, the soil saturated hydraulic conductivity (Ks) of plantations was determined by the constant water head method, and mathematical analysis methods such as correlation analysis and grey correlation analysis were used to explore the characteristics and influencing factors of soil saturated hydraulic conductivity of plantation soils in South Subtropical Zone.
        Result  (1) The average saturated hydraulic conductivity of Cunninghamia lanceolata and Pinus massoniana was relatively higher, and the average saturated hydraulic conductivity of Eucalyptus urophylla × E. grandis was the lowest. The soil saturated hydraulic conductivity and soil depth of different plantations had the changing rule of decreasing first and then increasing, in which the saturated hydraulic conductivity of the surface soils was significantly higher than that of deep soils. (2) Correlation analysis result showed that content of organic matter, water stable aggregate content greater than 0.2 mm, total porosity, non-capillary porosity, capillary porosity, saturated water content and content of clay were positively correlated with soil saturated hydraulic conductivity, while soil density was significantly negatively correlated with soil saturated hydraulic conductivity. (3) Grey correlation analysis result showed that content of organic matter, water stable aggregate content greater than 0.2 mm, soil density, total porosity, saturated water content, non-capillary porosity and capillary porosity were important factors, content of sand, content of silt and content of clay were the secondary important factors.
        Conclusion  In comparison to Castanopsis hystrix, Eucalyptus urophylla × E. grandis and Mytilaria laosensis, Cunninghamia lanceolata and Pinus massoniana can significantly increase soil saturated hydraulic conductivity, delay the generation of surface runoff and reduce incidence of soil erosion. Scientific management measures should be paid more attention to effectively improve soil water carrying capacity and water storage capacity.

       

    /

    返回文章
    返回