Characteristics of soil saturated hydraulic conductivity and its influencing factors of typical plantations in South Subtropical Zone
-
摘要:目的 分析南亚热带典型人工林土壤饱和导水率的变化特征及其影响因素,了解水分在土壤中的运动规律,为进一步研究人工林土壤水分运动规律提供基础科学理论支持。方法 以广西国有高峰林场内的马尾松、杉木、尾巨桉、米老排、红锥等人工林土壤为研究对象,采用恒定水头法测定5种人工林地的土壤饱和导水率,利用相关性分析和灰色关联分析法等数学分析方法,探讨南亚热带人工林土壤饱和导水率的变化特征及其影响因素。结果 (1)杉木和马尾松2种人工林土壤的平均饱和导水率相对较高,尾巨桉人工林土壤的平均饱和导水率最低。不同人工林土壤饱和导水率随土壤深度均具有先减小后增加的变化规律,且土壤表层(0 ~ 10 cm)的饱和导水率均显著高于土壤下层(10 ~ 50 cm)。(2)相关性分析结果表明,有机质含量、大于0.2 mm的水稳性团聚体含量、总孔隙度、非毛管孔隙度、毛管孔隙度、饱和含水量和黏粒含量均与饱和导水率呈正相关关系,土壤密度与饱和导水率呈显著的负相关关系。(3)灰色关联分析结果表明,有机质含量、大于0.2 mm的水稳性团聚体含量、土壤密度、总孔隙度、饱和含水量、非毛管孔隙度和毛管孔隙度是土壤饱和导水率的重要影响因素,砂粒含量、粉粒含量和黏粒含量是次重要因素。结论 相比红锥、尾巨桉和米老排,杉木和马尾松可以显著提高土壤饱和导水率,延缓地表径流产生,减少土壤侵蚀。应注重科学的人工林经营措施,以便有效提高土壤的导水与贮水能力。Abstract:Objective The changing characteristics and influencing factors of soil saturated hydraulic conductivity in typical plantations were analyzed in South Subtropical Zone, the soil moisture movement law in the soil was studied, which provides basic scientific theoretical support for further study of soil moisture movement law in plantations in this area.Method Taking the soils of Pinus massoniana, Cunninghamia lanceolata, Eucalyptus urophylla × E. grandis, Mytilaria laosensis and Castanopsis hystrix located in the state-owned Gaofeng Forest Farm of Guangxi Zhuang Autonomous Region of southern China as the research objects, the soil saturated hydraulic conductivity (Ks
) of plantations was determined by the constant water head method, and mathematical analysis methods such as correlation analysis and grey correlation analysis were used to explore the characteristics and influencing factors of soil saturated hydraulic conductivity of plantation soils in South Subtropical Zone. Result (1) The average saturated hydraulic conductivity of Cunninghamia lanceolata and Pinus massoniana was relatively higher, and the average saturated hydraulic conductivity of Eucalyptus urophylla × E. grandis was the lowest. The soil saturated hydraulic conductivity and soil depth of different plantations had the changing rule of decreasing first and then increasing, in which the saturated hydraulic conductivity of the surface soils was significantly higher than that of deep soils. (2) Correlation analysis result showed that content of organic matter, water stable aggregate content greater than 0.2 mm, total porosity, non-capillary porosity, capillary porosity, saturated water content and content of clay were positively correlated with soil saturated hydraulic conductivity, while soil density was significantly negatively correlated with soil saturated hydraulic conductivity. (3) Grey correlation analysis result showed that content of organic matter, water stable aggregate content greater than 0.2 mm, soil density, total porosity, saturated water content, non-capillary porosity and capillary porosity were important factors, content of sand, content of silt and content of clay were the secondary important factors.Conclusion In comparison to Castanopsis hystrix, Eucalyptus urophylla × E. grandis and Mytilaria laosensis, Cunninghamia lanceolata and Pinus massoniana can significantly increase soil saturated hydraulic conductivity, delay the generation of surface runoff and reduce incidence of soil erosion. Scientific management measures should be paid more attention to effectively improve soil water carrying capacity and water storage capacity. -
-
表 1 研究区基本情况
Table 1 Basic information of the research area
林地类型
Stand type经纬度
Longitude and latitude海拔
Altitude/m坡度
Slope/(°)林龄/a
Stand age/year郁闭度
Canopy density平均树高
Mean tree height/m平均胸径
Mean DBH/cm马尾松
Pinus massoniana108°22′37″E、22°58′37″N 217 18 ~ 22 25 0.6 10.7 23.5 杉木
Cunninghamia lanceolata108°22′40″E、22°58′01″N 180 22 ~ 28 15 0.7 12.3 20.6 尾巨桉
Eucalyptus urophylla ×
E. grandis108°22′01″E、22°59′20″N 358 20 ~ 25 8 0.5 18.2 13.4 米老排
Mytilaria laosensis108°22′04″E、22°58′08″N 234 22 ~ 26 12 0.8 13.5 18.1 红锥
Castanopsis hystrix108°22′37″E、22°58′08″N 190 22 ~ 25 10 0.6 15.6 16.5 表 2 土壤基本性质和土壤饱和导水率特征统计
Table 2 Statistics of soil saturated hydraulic conductivity and soil basic properties
土壤基本性质
Basic soil property极小值
Min.极大值
Max.均值
Mean中位数
Median标准差
Standard deviation变异系数
CV/%偏度
SkewnessX1/% 18.32 43.06 30.9 30.70 6.84 22.1 −0.203 X2/% 24.66 40.74 32.23 31.56 4.41 13.7 0.187 X3/% 32.16 44.02 36.87 36.32 3.51 9.5 0.709 X4/(g∙cm−3) 0.96 1.53 1.32 1.38 0.17 12.6 −0.713 X5/% 42.14 63.7 50.22 47.97 6.29 12.5 0.705 X6/% 25.9 37.66 31.82 30.91 3.35 10.5 0.179 X7/% 10.66 26.83 18.59 18.28 4.41 23.7 0.172 X8/(g∙kg−1) 6.28 49.08 20.11 19.31 12.49 62.1 0.779 X9/% 30.58 67.17 43.28 41.97 10.74 24.8 0.915 X10/% 55.08 90.6 74.29 72.50 9.2 12.4 −0.136 X11/(mm∙min−1) 0.28 1.18 0.55 0.48 0.25 45.8 1.357 注:X1为砂粒含量;X2为粉粒含量;X3为黏粒含量;X4为土壤密度;X5为总孔隙度;X6为毛管孔隙度;X7为非毛管孔隙度;X8为有机质含量;X9饱和含水量;X10为大于0.2 mm的水稳性团聚体含量;X11为土壤饱和导水率。下同。
Notes:X1 means content of sand; X2 means content of silt; X3 means content of clay; X4 means soil density; X5 means total porosity; X6 means capillary porosity; X7 means non-capillary porosity; X8 means content of organic matter; X9 means saturated water content; X10 means water stable aggregate content greater than 0.2 mm; X11 means soil saturated hydraulic conductivity. The same below.表 3 土壤基本性质与饱和导水率的相关性分析
Table 3 Correlation analysis of soil basic properties and saturated hydraulic conductivity
项目 Item X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 饱和导水率
Saturated hydraulic
conductivityPearson 相关性
Pearson correlation−0.12 −0.04 0.29 −0.661** 0.661** 0.418** 0.600** 0.846** 0.428* 0.673** 显著性
Significance level0.41 0.85 0.06 0.00 0.00 0.01 0.00 0.00 0.04 0.00 注:*表示P < 0.05 显著相关;**表示P < 0.01极显著相关。Notes: * indicates a significant correlation at P < 0.05 level; ** indicates a significant correlation at P < 0.01 level. 表 4 土壤基本性质与饱和导水率的关联系数(ζi)
Table 4 Correlation coefficients of soil basic properties and soil saturated hydraulic conductivity (ζi)
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 0.348 0 0.388 2 0.333 8 0.463 0 0.463 0 0.353 4 0.542 6 0.703 3 0.403 2 0.525 1 0.922 8 0.907 8 0.972 3 0.860 7 0.860 7 0.776 1 0.924 9 0.609 6 0.962 4 0.663 7 0.816 2 0.575 7 0.738 4 0.926 1 0.926 1 0.918 5 0.855 4 0.631 6 0.802 9 0.935 2 1.000 0 0.429 3 0.765 4 0.883 8 0.883 8 0.987 4 0.977 0 0.922 3 0.896 4 0.963 4 0.648 8 0.528 4 0.733 0 0.601 5 0.601 5 0.503 4 0.861 7 0.661 4 0.785 3 0.454 2 0.662 4 0.407 9 0.946 5 0.718 3 0.718 3 0.880 2 0.520 9 0.745 1 0.425 7 0.894 8 0.548 0 0.581 0 0.509 1 0.636 9 0.636 9 0.589 2 0.823 8 0.783 0 0.627 0 0.846 3 0.536 7 0.701 1 0.704 9 0.536 7 0.536 7 0.946 4 0.440 8 0.778 0 0.870 7 0.743 1 0.797 5 0.598 4 0.646 8 0.985 6 0.985 6 0.758 8 0.820 9 0.787 7 0.646 6 0.557 6 0.688 9 0.651 7 0.625 5 0.973 4 0.973 4 0.768 6 0.722 7 0.863 6 0.792 4 0.835 6 0.384 7 0.653 2 0.360 2 0.568 8 0.568 8 0.439 5 0.691 9 0.625 6 0.933 3 0.677 8 0.837 7 0.489 9 0.756 2 0.914 4 0.914 4 0.776 1 0.873 3 0.695 3 0.438 7 0.722 3 0.918 2 0.456 2 0.925 8 0.751 1 0.751 1 0.758 0 0.462 1 0.742 1 0.608 5 0.737 7 0.560 8 0.394 1 0.671 6 0.754 4 0.754 4 0.635 2 0.556 4 0.802 8 0.747 1 0.793 5 0.542 6 0.426 4 0.722 9 0.622 4 0.622 4 0.811 5 0.871 6 0.716 2 0.709 2 0.801 1 0.451 7 0.483 3 0.603 6 0.881 8 0.881 8 0.725 0 0.718 1 0.856 9 0.905 2 0.600 0 0.466 0 0.573 6 0.429 3 0.413 3 0.413 3 0.501 3 0.447 3 0.872 2 0.450 9 0.700 8 0.412 8 0.871 0 0.412 7 0.568 8 0.568 8 0.396 0 0.889 2 0.735 8 0.358 1 0.963 7 0.761 3 0.784 8 0.942 2 0.970 0 0.970 0 0.551 8 0.642 0 0.844 3 0.748 9 0.993 9 0.872 3 0.664 6 0.976 1 0.832 8 0.832 8 0.643 9 0.594 6 0.701 9 0.920 2 0.963 5 0.583 7 0.615 8 0.685 6 0.797 6 0.797 6 0.845 2 0.823 4 0.905 3 0.858 3 0.829 9 0.427 9 0.457 8 0.531 5 0.685 6 0.685 6 0.590 3 0.883 0 0.747 7 0.920 3 0.519 0 0.477 7 0.577 5 0.761 6 0.774 5 0.774 5 0.898 7 0.715 5 0.890 5 0.722 5 0.618 0 0.561 8 0.890 8 0.912 1 0.820 3 0.820 3 0.820 7 0.764 7 0.916 6 0.838 2 0.798 9 0.770 2 0.704 9 0.672 8 0.959 6 0.959 6 0.694 3 0.764 7 0.647 5 0.896 9 0.496 4 表 5 土壤基本性质与饱和导水率的关联度(ri)
Table 5 Degree of association of both soil basic properties and soil saturated hydraulic conductivity (ri)
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 0.640 0 0.592 5 0.693 6 0.756 1 0.756 1 0.702 8 0.727 5 0.767 5 0.730 8 0.745 4 -
[1] Fodor N, Sandor R, Orfanus T, et al. Evaluation method dependency of measured saturated hydraulic conductivity[J]. Geoderma, 2011, 165(1): 60−68. doi: 10.1016/j.geoderma.2011.07.004
[2] Xu C H, Xu X L, Liu M X, et al. Enhancing pedotransfer functions(PTFs) using soil spectral reflectance data for estimating saturated hydraulic conductivity in southwestern China[J]. Catena, 2017, 158: 350−356. doi: 10.1016/j.catena.2017.07.014
[3] Klopp H, Arriaga F, Daigh A, et al. Analysis of pedotransfer functions to predict the effects of salinity and sodicity on saturated hydraulic conductivity of soils[J]. Geoderma, 2020, 362: 1−6.
[4] Becker R, Gebremichael M, Märker M. Impact of soil surface and subsurface properties on soil saturated hydraulic conductivity in the semi-arid walnut gulch experimental watershed, Arizona, USA[J]. Geoderma, 2018, 322: 112−120. doi: 10.1016/j.geoderma.2018.02.023
[5] 孟晨, 牛健植, 骆紫藤, 等. 鹫峰地区不同植被群落土壤性质及饱和导水率特征[J]. 水土保持学报, 2015, 29(3):156−160. Meng C, Niu J Z, Luo Z T, et al. Soil properties and saturated hydraulic conductivity under different plant communities in Jiufeng area[J]. Journal of Soil and Water Conservation, 2015, 29(3): 156−160.
[6] 王贤, 张洪江, 程金花, 等. 重庆市四面山典型林分土壤饱和导水率研究[J]. 水土保持通报, 2012, 32(2):29−34. Wang X, Zhang H J, Cheng J H, et al. Saturated hydraulic conductivity in soils under typical forests in Simian Mountains of Chongqing City[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 29−34.
[7] 胡传旺, 王辉, 刘常, 等. 南方典型土壤水力特征差异性分析[J]. 水土保持学报, 2017, 31(2):97−102. Hu C W, Wang H, Liu C, et al. Difference analysis of hydraulic characteristics of typical soils in south China[J]. Journal of Soil and Water Conservation, 2017, 31(2): 97−102.
[8] 张一璇, 史常青, 杨浩, 等. 永定河流域官厅水库南岸典型林分土壤饱和导水率研究[J]. 生态学报, 2019, 39(18):6681−6689. Zhang Y X, Shi C Q, Yang H, et al. Saturated hydraulic conductivity of soils of typical forest of the south coast of Guanting Reservoir in Yongding River Watershed[J]. Acta Ecologica Sinica, 2019, 39(18): 6681−6689.
[9] 马思文, 张洪江, 程金花, 等. 三峡库区典型城郊防护林土壤饱和导水率特征研究[J]. 南京林业大学学报(自然科学版), 2018, 42(5):99−106. Ma S W, Zhang H J, Cheng J H, et al. Characteristics of soil saturated hydraulic conductivity in classic suburb shelter forests in the Three Gorges Reservoir[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(5): 99−106.
[10] 杨倩, 刘目兴, 王苗苗, 等. 武汉市典型绿地植被类型对表层土壤入渗和持水性能的影响[J]. 长江流域资源与环境, 2019, 28(6):1324−1333. Yang Q, Liu M X, Wang M M, et al. Characterization of surface soil water infiltration and retention capacity in urban green space of Wuhan City[J]. Resources and Environment in the Yangtze Basin, 2019, 28(6): 1324−1333.
[11] 覃淼, 翟禄新, 周正朝. 桂北地区土地利用类型对土壤饱和导水率和持水能力的影响研究[J]. 水土保持研究, 2015, 22(3):28−39. Qin M, Zhai L X, Zhou Z Z. Influence of land use types on soil saturated hydraulic conductivity and water retention in northern Guangxi[J]. Research of Soil and Water Conservation, 2015, 22(3): 28−39.
[12] 朱积余, 廖培来. 广西名优经济树种[M]. 北京: 中国林业出版社, 2006. Zhu J Y, Liao P L. Famous and high-quality economic tree species in Guangxi[M]. Beijing: China Forestry Publishing House, 2006.
[13] Bissonnais Y L. Aggregate stability and assessment of soil crustability and erodibility: theory and methodology[J]. European Journal of Soil Science, 1996, 47: 425−437. doi: 10.1111/j.1365-2389.1996.tb01843.x
[14] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2001. Bao S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2001.
[15] Zhang Y J, Zhang X. Grey correlation analysis between strength of slag cement and particle fractions of slag powder[J]. Cement & Concrete Composites, 2007, 29(6): 498−504.
[16] 孙林凯, 金家善, 耿俊豹. 基于修正邓氏灰色关联度的设备费用影响因素分析[J]. 数学实践与认识, 2012, 42(8):140−145. Sun L K, Jin J S, Geng J B. Research on the influence factors of the equipment’s expense based on the amend grey correlation[J]. Journal of Mathematics in Practice and Theory, 2012, 42(8): 140−145.
[17] 金晓, 陈丽华. 晋西黄土区不同植被类型土壤抗冲性及表层根系分布特征[J]. 水土保持学报, 2019, 33(6):120−126. Jin X, Chen L H. Soil anti-scourability and root distribution characteristics in surface soil under different vegetation types in the loess region of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2019, 33(6): 120−126.
[18] 李向富, 刘目兴, 易军, 等. 三峡山地不同垂直带土壤层的水文功能及其影响因子[J]. 长江流域资源与环境, 2018, 27(8):1809−1818. Li X F, Liu M X, Yi J, et al. Soil hydrological function of different altitudinal hillslopes of the Three Gorges Mountain and its impact factors[J]. Resources and Environment in the Yangtze Basin, 2018, 27(8): 1809−1818.
[19] 刘目兴, 吴丹, 吴四平, 等. 三峡库区森林土壤大孔隙特征及对饱和导水率的影响[J]. 生态学报, 2016, 36(11):3189−3196. Liu M X, Wu D, Wu S P, et al. Characteristic of soil macropores under various types of forest coverage and their influence on saturated hydraulic conductivity in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2016, 36(11): 3189−3196.
[20] 骆紫藤, 牛健植, 孟晨, 等. 华北土石山区森林土壤中石砾分布特征对土壤大孔隙及导水性质的影响[J]. 水土保持学报, 2016, 30(3):305−316. Luo Z T, Niu J Z, Meng C, et al. Effect of distribution of rock fragment on macropores and hydraulic conductivity in forest soil in rocky mountain area of northern China[J]. Journal of Soil and Water Conservation, 2016, 30(3): 305−316.
[21] 阮芯竹, 程金花, 张洪江, 等. 重庆市四面山不同土地利用类型饱和导水率[J]. 水土保持通报, 2015, 35(1):79−84. Ruan X Z, Cheng J H, Zhang H J, et al. Saturated hydraulic conductivity of different land use types in Simian Mountain of Chongqing City[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 79−84.
[22] 毛娜, 黄来明, 邵明安. 黄土区坡面尺度不同植被类型土壤饱和导水率剖面分布及影响因素[J]. 土壤, 2019, 51(2):381−389. Mao N, Huang L M, Shao M A. Profile distribution of soil saturated hydraulic conductivity and controlling factors under different vegetations on slope in loess region[J]. Soils, 2019, 51(2): 381−389.
[23] 李平, 王冬梅, 丁聪, 等. 黄土高寒区小流域土壤饱和导水率和土壤密度的分布特征[J]. 中国水土保持科学, 2019, 17(4):10−17. Li P, Wang D M, Ding C, et al. Distributions characteristics of soil saturated hydraulic conductivity and soil bulk density in a small watershed in the alpine zone of the Loess Plateau[J]. Science of Soil and Water Conservation, 2019, 17(4): 10−17.
[24] 陈雪, 宋娅丽, 王克勤, 等. 布设等高反坡阶对滇中松华坝水源区坡耕地土壤饱和导水率的影响[J]. 福建农林大学学报(自然科学版), 2019, 48(5):649−655. Chen X, Song Y L, Wang K Q, et al. Effect contour reverse slope terrace on the saturated water conductivity of sloping farmland in Songhuaba water source area in central Yunnan[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(5): 649−655.
[25] 王子龙, 赵勇刚, 赵世伟, 等. 退耕典型草地土壤饱和导水率及其影响因素研究[J]. 草地学报, 2016, 24(6):1254−1262. doi: 10.11733/j.issn.1007-0435.2016.06.015 Wang Z L, Zhao Y G, Zhao S W, et al. Study on soil saturated hydraulic conductivity and its influencing factors in typical grassland of farmland conservation[J]. Acta Agrestia Sinica, 2016, 24(6): 1254−1262. doi: 10.11733/j.issn.1007-0435.2016.06.015
[26] 刘宇, 张洪江. 张友燚, 等. 晋西黄土丘陵区主要人工林土壤饱和导水率研究[J]. 水土保持通报, 2013, 33(4):131−135. Liu Y, Zhang H J, Zhang Y Y, et al. Saturated hydraulic conductivity of soil under main planted forests in loess hilly region of western Shanxi Province[J]. Bulletin of Soil and Water Conservation, 2013, 33(4): 131−135.
[27] 李建兴, 何丙辉, 谌芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响[J]. 生态学报, 2013, 33(5):1535−1547. doi: 10.5846/stxb201205170737 Li J X, He B H, Chen Y. Root features of typical herb plants for hillslope protection and their effects on soil infiltration[J]. Acta Ecologica Sinica, 2013, 33(5): 1535−1547. doi: 10.5846/stxb201205170737