高级检索
    赵盼, 栗丹阳, 马锦林, 梁文汇, 庞晓明, 龙萃, 马婧怡, 郭惠红. 油料树种千年桐的SSR标记开发、遗传多样性与群体结构分析[J]. 北京林业大学学报, 2021, 43(11): 50-61. DOI: 10.12171/j.1000-1522.20210054
    引用本文: 赵盼, 栗丹阳, 马锦林, 梁文汇, 庞晓明, 龙萃, 马婧怡, 郭惠红. 油料树种千年桐的SSR标记开发、遗传多样性与群体结构分析[J]. 北京林业大学学报, 2021, 43(11): 50-61. DOI: 10.12171/j.1000-1522.20210054
    Zhao Pan, Li Danyang, Ma Jinlin, Liang Wenhui, Pang Xiaoming, Long Cui, Ma Jingyi, Guo Huihong. SSR marker development, genetic diversity and population structure analysis in oil tree species Vernicia montana[J]. Journal of Beijing Forestry University, 2021, 43(11): 50-61. DOI: 10.12171/j.1000-1522.20210054
    Citation: Zhao Pan, Li Danyang, Ma Jinlin, Liang Wenhui, Pang Xiaoming, Long Cui, Ma Jingyi, Guo Huihong. SSR marker development, genetic diversity and population structure analysis in oil tree species Vernicia montana[J]. Journal of Beijing Forestry University, 2021, 43(11): 50-61. DOI: 10.12171/j.1000-1522.20210054

    油料树种千年桐的SSR标记开发、遗传多样性与群体结构分析

    SSR marker development, genetic diversity and population structure analysis in oil tree species Vernicia montana

    • 摘要:
        目的  千年桐是大戟科油桐属的一种重要的工业油料树种,较同属的油桐具有更强的抗枯萎病能力,近年来受到了广泛关注。然而,因千年桐栽培历史短及种质管理的不足,目前对其分子遗传方面的研究还非常有限。本研究旨在开发千年桐的基因组SSR标记,进而开展其种质的鉴定、遗传多样性与群体结构分析。
        方法  采用RAD测序技术获得千年桐简化基因组以开发SSR标记,基于SSR标记利用分子变异分析(AMOVA)、非加权组平均法(UPGMA)聚类、主坐标(PCoA)与群体结构分析等方法对来自3个不同地理分布的共105份千年桐种质资源进行研究。
        结果  17个多态性的三核苷酸基因组SSR标记被开发,并能够很好地鉴别所有收集的105份千年桐种质。在其中62份种质中检测到85个私有等位基因,涉及15个SSR位点。AMOVA分析发现,千年桐群体间呈现出中等程度的遗传分化,但群体内的遗传变异远高于群体间的遗传变异。群体结构分析显示,3个来自不同地理分布的千年桐群体中存在4个不同的基因库,群体间既有进化独立性,又有较高程度的遗传混合,这一结果与UPGMA和PCoA分析的结果基本一致。
        结论  新开发的17个SSR标记有效鉴定了105份千年桐种质,揭示了其遗传多样性和群体遗传结构,对千年桐种质保存和育种计划具有非常重要的参考价值。

       

      Abstract:
        Objective  Vernicia montana, belonging to the genus Vernicia of Euphorbiaceae family, is an important industrial oil tree species, which has received great attention in recent years because it is much more resistant to wilt disease than V. fordii of same genus. However, the current researches on the molecular genetics of V. montana are still very limited due to its short cultivation history and inadequate management of germplasm resources. This study aimed to develop V. montana’s genome SSR markers, and then to carry out its germplasm identification, genetic diversity and population structure analyses.
        Method  Using RAD sequencing technology to obtain a simplified genome of V. montana to develop its SSR markers, based on the SSR markers, a series of methods including the analysis of molecular variance (AMOVA), the unweighted pair group method with arithmetic mean (UPGMA) clustering, principal coordinate analysis (PCoA) and population structure analysis were used to study 105 germplasm resources of V. montana from three different geographical distributions.
        Result  17 polymorphic trinucleotide genomic-SSR markers were developed, which well distinguished all the tested 105 V. montana germplasms. A total of 85 private alleles were detected in 62 germplasms at 15 SSR loci. The AMOVA analysis revealed a moderate degree of genetic differentiation among the populations of V. montana; however, the genetic variation within the populations was much higher than that among the populations. Population structure analysis showed that four different gene pools were present in the three V. montana populations from different geographical distributions, and there was both evolutionary independence and a relatively high degree of genetic admixture among the populations, which was basically consistent with the results of UPGMA and PCoA analyses.
        Conclusion  The newly developed 17 SSR markers effectively identified 105 V. montana germplasms, and revealed the genetic diversity and population genetic structure of the germplasms, which would be very helpful for the conservation of germplasms and breeding program in V. montana.

       

    /

    返回文章
    返回