Effects of Cutting Intensity on Photosynthetic Physiological Characteristics of Natural Pinus Koraiensis Seedlings and Transplanted Pinus Koraiensis Seedlings
-
摘要:
目的 阔叶红松林是我国东北东部山区的地带性顶级植被,但由于20世纪50年代以来不合理的开发利用多被天然次生林、过伐林和人工林所取代。人工促进红松天然更新可加快林下红松恢复,加速阔叶红松林演替进程,因此对于红松光合生理机制的研究具有十分重要的意义。 方法 为探讨人工促进红松天然更新的可行性及不同采伐强度对红松人工移植苗的生理影响,本研究选择3种不同采伐强度的样地(样地采伐强度分别为对照0%、17%、35%),就红松人工移植苗和红松天然苗两种幼苗进行光合生理对比试验。 结果 (1)6年生红松人工移植苗与6年生红松天然苗的光合效率及大多数叶绿素荧光参数无显著差异,包括净光合速率、水分利用效率、碳同化量子效率、最大光化学效率、实际光化学效率、电子传递效率、开放的PSⅡ激发能捕获效率、非光化学猝灭系数;(2)从光响应参数来看,红松人工移植苗的光补偿点和暗呼吸速率高于红松天然苗,但二者差异不显著;(3)不同采伐强度中,红松人工移植苗和红松天然苗在35%采伐强度(郁闭度0.6)下的最大光化学效率最低(P < 0.05),表明两种红松幼苗在35%采伐强度下受到一定程度的胁迫;(4)随着采伐强度的增大,红松人工移植苗的净光合速率、最大净光合速率、光化学猝灭系数、光饱和点呈先升后降的趋势,在17%采伐强度(郁闭度0.8)下达最大值。 结论 6年生红松人工移植苗与6年生红松天然苗的光合生理差异不显著,冠下更新的红松人工移植苗可以很好地适应林下环境;林冠下红松更新不提倡伐后郁闭度0.6条件下造林,可在伐后郁闭度0.8条件下补植红松幼苗。 Abstract:Objectives The mixed-broadleaved Korean pine (Pinus Koraiensis) forest is a zonal climax in mountainous area in eastern part of northeast China, however, due to the unreasonable utilization in the 1950s, most of the mixed-broadleaved Korean pine forests in China were replaced by natural secondary forests, over-cutting forests and planted forests. The recovery of understory Korean pine and succession process of mixed-broadleaved Korean pine forests can be accelerated by artificial promotion of natural regeneration of Pinus Koraiensis, so it is very important to study the photosynthetic physiological mechanism of Pinus Koraiensis. Methods In order to explore the feasibility of artificial promotion of natural regeneration of Pinus Koraiensis and the physiological effects of different cutting intensities on transplanted Pinus Koraiensis seedlings, three plots with different cutting intensities (the cutting intensities of the plots were 0%, 17% and 35%) were selected in this study, and the photosynthetic physiology of the transplanted Pinus Koraiensis seedlings and the natural Pinus Koraiensis seedlings was compared. Result (1) There was no significant difference in photosynthetic efficiency and most chlorophyll fluorescence parameters between 6-year-old transplanted seedlings of Pinus Koraiensis and 6-year-old natural seedlings of Pinus Koraiensis, including net photosynthetic rate, water use efficiency, carbon assimilation quantum efficiency, maximum photochemical efficiency, actual photochemical efficiency, electron transfer efficiency, open PSII excitation energy capture efficiency, and non-photochemical quenching coefficient. (2) From the perspective of light response parameters, the light compensation point and dark respiration rate of transplanted Pinus Koraiensis seedlings were higher than those of natural Pinus Koraiensis seedlings, but the difference was not significant. (3) The maximum photochemical efficiency of transplanted and natural Pinus Koraiensis seedlings under 35% cutting intensity (canopy density 0.6) was the lowest (p < 0.05), indicating that the two Pinus Koraiensis seedlings were subjected to a certain degree of stress under 35% cutting intensity. (4) The net photosynthetic rate, maximum net photosynthetic rate, photochemical quenching coefficient and light saturation point of the transplanted seedlings of Pinus Koraiensis increased first and then decreased with the increase of cutting intensity, reaching the maximum at 17% cutting intensity (canopy density 0.8). Conclusions There was no significant difference in photosynthetic physiology between 6-year-old transplanted seedlings of Pinus Koraiensis and 6-year-old natural seedlings of Pinus Koraiensis. The transplanted Pinus Koraiensis seedlings under canopy could well adapt to the forest environment; The regeneration of Pinus Koraiensis under canopy does not advocate afforestation under the condition of post-cutting canopy density of 0.6, and Pinus Koraiensis seedlings can be transplanted under the condition of post-cutting canopy density of 0.8. -
图 1 不同采伐强度与叶室光强的红松幼苗的光合生理参数
低光强:200 μmol/(m2·s),中光强:500 μmol/(m2·s),高光强:1 500 μmol/(m2·s);数据为均值 ± 标准误;图中小写字母表示叶室光强相同时,红松幼苗在不同采伐样地间的差异,大写字母表示采伐强度和叶室光强相同时,红松人工移植苗和红松天然苗两者间的差异,显著水平为0.05。下同。Low light intensity: 200 μmol/(m2·s), Medium light intensity: 500 μmol/(m2·s), High light intensity: 1 500 μmol/(m2·s). Value is mean ± SE. The lowercase letters indicate the difference of Pinus Koraiensis seedlings in different plots, and the uppercase letters indicate the difference between transplanted seedlings and natural seedlings of Pinus Koraiensis at a significant level of 0.05. The same below.
Figure 1. Photosynthetic physiological parameters of Pinus Koraiensis seedlings with different cutting intensity and leaf chamber light intensity
表 2 3块样地的林分特征
Table 2. Stand characteristics of three plots
样地采伐强度
Cutting intensity of plots相对光合有效辐射
Relative photosynthetic effective
radiation (PAR)/%叶面积指数
Leaf area index (LAI)林分密度/(株·hm−2)
Forest density/(tree·ha−1)平均胸径
Mean DBH/cm郁闭度
Canopy densityCK 13.89 ± 1.64a 4.17 ± 0.12a 1106 14.6 0.9 T1 8.48 ± 2.48a 3.11 ± 0.11b 844 13.77 0.8 T2 7.58 ± 1.90b 2.45 ± 0.16c 726 14.83 0.6 注:光环境数据为均值 ± 标准误差(n = 10),不同字母表示样地间的光环境差异(P < 0.05)。Notes: value of light environment is mean ± SE (n = 10), the letters in the figure indicate the difference of light environment between the plots (P < 0.05). 表 1 人工移植苗与天然苗个体大小
Table 1. Seedling size of transplanted seedlings and natural seedlings
处理
Treatment苗高
Seedling height/cm基径
Collar diameter/mm苗龄/a
Seedling age/year移植 Transplant 32.90 ± 2.44a 7.24 ± 0.38a 6 天然更新 Natural regeneration 34.70 ± 0.70a 6.28 ± 0.34a ≈ 6 注:苗高和基径数据为均值 ± 标准误(n = 5),不同小写字母表示红松人工移植苗和红松天然苗的个体大小差异(P < 0.05)。Notes: the data of seedling height and collar diameter are mean ± SE (n = 5), different lower letters indicate the difference of seedling size between transplanted and natural Pinus Koraiensis seedlings (P < 0.05). 表 3 两种红松幼苗的光环境
Table 3. Light environment of two kinds of Pinus Koraiensis seedlings
样地采伐强度
Cutting intensity of plots幼苗类型
Seedling typePAR/% LAI CK 人工移植苗 Transplanted seedlings 16.97 ± 2.17a 3.97 ± 0.26a 天然苗 Natural seedlings 10.81 ± 1.65a 4.36 ± 0.35a T1 人工移植苗 Transplanted seedlings 12.52 ± 4.29a 2.95 ± 0.16a 天然苗 Natural seedlings 4.44 ± 1.0a 3.23 ± 0.31a T2 人工移植苗 Transplanted seedlings 6.34 ± 2.15a 2.66 ± 0.44a 天然苗 Natural seedlings 8.82 ± 3.3a 2.29 ± 0.41a 注:数据为均值 ± 标准误(n = 5),不同小写字母表示每块样地中红松人工移植苗和红松天然苗两者间的光环境差异(P < 0.05)。Notes: value is mean ± SE (n = 5), the letters in the figure indicate the difference of light environment between transplanted and natural Pinus Koraiensis seedlings in each plot (P < 0.05). -
[1] 马建路, 庄丽文, 陈动, 等. 红松的地理分布[J]. 东北林业大学学报, 1992, 20(5): 40−48.Ma J L, Zhuang L W, Chen D et al. Geographic distribution of Pinus Koraiensis in the world[J]. Journal of Northeast Forestry University, 1992, 20(5): 40−48. [2] 屈红军, 叶林, 牟长城. 东北林区过伐林生态系统研究概述[J]. 林业资源管理, 2012(3): 45−50. doi: 10.3969/j.issn.1002-6622.2012.03.011Qu H J, Ye L, Mou C C. Research summary on over cutting forest ecosystem in the northeast forest area[J]. Forest Resources Management, 2012(3): 45−50. doi: 10.3969/j.issn.1002-6622.2012.03.011 [3] 于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434.Yu D P, Zhou W M, Zhou L et al. Exploring the history of the management theory and technology of broad-leaved Korean pine (Pinus Koraiensis Sieb. et Zucc.) forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434. [4] DB 22/T 3129—2020, 林冠下红松造林技术规程[S]. 吉林: 北华大学, 2020.DB 22/T 3129—2020, Technical regulations of afforestation in canopy base for Pinus Koraiensis[S]. Jilin: Beihua University, 2020. [5] 张勇. 红松大苗移植技术探讨[J]. 种子科技, 2019, 37(13): 82−83. doi: 10.3969/j.issn.1005-2690.2019.13.048Zhang Y. Discussion on transplantation technology of Pinus Koraiensis seedlings[J]. Seed Science & Technology, 2019, 37(13): 82−83. doi: 10.3969/j.issn.1005-2690.2019.13.048 [6] 崔文革, 张钦亮, 刘振文, 等. 红松直播造林与植苗更新的对照试验[J]. 林业勘查设计, 2012, 162(2): 62−63. doi: 10.3969/j.issn.1673-4505.2012.02.030Cui W G, Zhang Q L, Liu Z W et al. Contrast Test of Direct Seeding Afforestation and Stock Planting Renewal of Korean pine[J]. Forest Investigation Design, 2012, 162(2): 62−63. doi: 10.3969/j.issn.1673-4505.2012.02.030 [7] 何怀江. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响[D]. 北京: 北京林业大学, 2020.He H J. Effects of Thinning Disturbance on Carbon Storage and Carbon Balance in Coniferous and Broad-leaved Mixed Forest in Jiaohe, Jilin Province[D]. Beijing Forestry University, 2020 [8] 刘慎谔. 关于大小兴安岭的森林更新问题[J]. 林业科学, 1957(3): 17−34.Liu S E. Forest regeneration in Xing’an Mountains[J]. Scientia Silvae Sinicae, 1957(3): 17−34. [9] Zhang M, Zhu J J, Yan Q L. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels[J]. Forest Ecology and Management, 2013(Volume 306): 234−242. [10] 周光. 林下红松生存策略与季节光环境驱动机制[D]. 北京: 北京林业大学, 2020.Zhou G. Survival Strategy of Understory Korean Pine Driven by Seasonal Light Availability[D]. Beijing: Beijing Forestry University, 2020. [11] 张群, 范少辉, 沈海龙, 等. 次生林林木空间结构等对红松幼树生长的影响[J]. 林业科学研究, 2004, 17(4): 405−412. doi: 10.3321/j.issn:1001-1498.2004.04.001Zhang Q, Fan S H, Shen H L et al. Influence of the Spatial Structure of tress, etc. on the Young Trees of Pinus Koraiensis under Natural Secondary Forest[J]. Forest Research, 2004, 17(4): 405−412. doi: 10.3321/j.issn:1001-1498.2004.04.001 [12] 孙一荣, 朱教君, 于立忠, 等. 不同光环境对红松幼苗光合生理特征的影响[J]. 生态学杂志, 2009, 28(5): 850−857.Sun Y R, Zhu J J, Yu L Z et al. Photosynthetic characteristics of Pinus Koraiensis seedlings under different light regimes[J]. Chinese Journal of Ecology, 2009, 28(5): 850−857. [13] Sun Y R, Zhu J J, Sun O J X, et al. Photosynthetic and growth responses of Pinus Koraiensis seedlings to canopy openness: Implications for the restoration of mixed-broadleaved Korean pine forests[J]. Environmental and Experimental Botany, 2016: 118−126. [14] 李茂军. 次生林冠下引进红松的浅析[C]//增强自主创新能力 促进吉林经济发展−启明杯·吉林省第四届科学技术学术年会论文集(下册): 吉林大学出版社, 2006: 122-123.Li M J. Analysis of Introducing Pinus Koraiensis under Secondary Forest Canopy[C]//Strengthening Independent Innovation Ability and Promoting Jilin Economic Development-Thesis Collection of the Fourth Annual Conference of Science and Technology in Jilin Province ( Volume Ⅱ): Jilin University Press, 2006: 122−123. [15] 李建胜, 郭颖峰, 李庚奇. 不同郁闭度对红松更新状况的影响[J]. 吉林林业科技, 2013, 42(3): 53. doi: 10.3969/j.issn.1005-7129.2013.03.018Li J S, Guo Y F, Li G Q. Effects of different canopy densities on the regeneration status of Pinus Koraiensis[J]. Journal of Jilin Forestry Science and Technology, 2013, 42(3): 53. doi: 10.3969/j.issn.1005-7129.2013.03.018 [16] 石君杰, 陈忠震, 王广海, 等. 间伐对杨桦次生林冠层结构及林下光照的影响[J]. 应用生态学报, 2019, 30(6): 1956−1964.Shi J J, Chen Z X, Wang G H, et al. Impacts of thinning on canopy structure and understory light in secondary poplar-birch forests[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1956−1964. [17] 刘志理, 金光泽, 周明. 利用直接法和间接法测定针阔混交林叶面积指数的季节动态[J]. 植物生态学报, 2014, 38(8): 843−856. doi: 10.3724/SP.J.1258.2014.00079Liu Z L, Jin G Z, Zhou M. Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods[J]. Chinese Journal of Plant Ecology, 2014, 38(8): 843−856. doi: 10.3724/SP.J.1258.2014.00079 [18] Parent Sylvain, Messier Christian. A simple and efficient method to estimate microsite light availability under a forest canopy[J]. Can J for Res, 1996, 26(1): 151−154. doi: 10.1139/x26-017 [19] LI-COR, 2011. Using the LI-6800. Portable Photosynthesis System. Version 1.2 LI-COR Bioscience Inc., Lincoln, Nebraska. [20] 胡乘风, 陈巧玲, 乔雪涛, 等. 阔叶红松林主要树种光合与光谱反射特性及初级生产力研究[J]. 北京林业大学学报, 2020, 42(5): 12−24. doi: 10.12171/j.1000-1522.20190364Hu C F, Chen Q L, Qiao X T et al. Photosynthetic, spectral reflectance characteristics and primary productivity of main tree species in broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2020, 42(5): 12−24. doi: 10.12171/j.1000-1522.20190364 [21] 杜澜, 夏捷, 李海花, 等. 逐步失水过程中绿竹光响应进程及其拟合[J]. 应用生态学报, 2019, 30(6): 2011−2020.Du L, Xia J, Li H H, et al. Light response process and simulation of Dendrocalamopsis oldhami in the process of gradual water loss[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2011−2020. [22] 李昕, 戴洪才, 章依平, 等. 次生林下栽植红松及其调控的研究[J]. 应用生态学报, 1993, 4(4): 364−367. doi: 10.3321/j.issn:1001-9332.1993.04.014Li X, Dai H C, Zhang Y P, et al. Plantation of Korean pine under secondary forest and its regulation[J]. Chinese Journal of Applied Ecology, 1993, 4(4): 364−367. doi: 10.3321/j.issn:1001-9332.1993.04.014 [23] 朱济凡, 刘慎谔, 王战, 等. 小兴安领红松针阔叶混交林[J]. 林业科学, 1958(4): 1−15.Zhu J F, Liu S E, Wang Z, et al. Mixed coniferous and broad-leaved forest of Pinus Koraiensis in Xiaoxingan[J]. Scientia Silvae Sinicae, 1958(4): 1−15. [24] 张群, 范少辉, 沈海龙. 红松混交林中红松幼树生长环境的研究进展及展望[J]. 林业科学研究, 2003, 16(2): 216−224. doi: 10.3321/j.issn:1001-1498.2003.02.016Zhang Q, Fan S H, Shen H L. Research and Development on the Growth Environment of the Young Tree of Pinus Koraiensis in Pinus Koraiensis-Broadleaved Mixed Forest[J]. Forest Research, 2003, 16(2): 216−224. doi: 10.3321/j.issn:1001-1498.2003.02.016 [25] 张春锋. 人工诱导阔叶红松林抚育间伐效果分析和红松苗遮荫效应的研究[D]. 沈阳: 沈阳农业大学, 2007.Zhang C F. Analysis of Effects of Intermediate Felling on Artificially Induced Broad-leaved Korean Pine Forest and Studies on Seedlings of Pinus Koraiensis with Different Shading Treatments[D]. Shenyang: Shenyang Agricultural University, 2007. [26] 徐振邦, 代力民, 陈吉泉, 等. 长白山红松阔叶混交林森林天然更新条件的研究[J]. 生态学报, 2001, 21(9): 1413−1420. doi: 10.3321/j.issn:1000-0933.2001.09.003Xu Z B, Dai L M, Chen J Q, et al. Natural regeneration condition in Pinus Koraiensis broad-leaved mixed forest[J]. Acta Ecologica Sinica, 2001, 21(9): 1413−1420. doi: 10.3321/j.issn:1000-0933.2001.09.003 [27] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444−448.Zhang S R. A Discussion on Chlorophyll Fluorescence Kinetics Parameters and Their Significance[J]. Chinese Bulletin of Botany, 1999, 16(4): 444−448. -